1/*
2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3 *
4 * Created by:	Nicolas Pitre, March 2012
5 * Copyright:	(C) 2012-2013  Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/atomic.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/sched.h>
17#include <linux/interrupt.h>
18#include <linux/cpu_pm.h>
19#include <linux/cpu.h>
20#include <linux/cpumask.h>
21#include <linux/kthread.h>
22#include <linux/wait.h>
23#include <linux/time.h>
24#include <linux/clockchips.h>
25#include <linux/hrtimer.h>
26#include <linux/tick.h>
27#include <linux/notifier.h>
28#include <linux/mm.h>
29#include <linux/mutex.h>
30#include <linux/smp.h>
31#include <linux/spinlock.h>
32#include <linux/string.h>
33#include <linux/sysfs.h>
34#include <linux/irqchip/arm-gic.h>
35#include <linux/moduleparam.h>
36
37#include <asm/smp_plat.h>
38#include <asm/cputype.h>
39#include <asm/suspend.h>
40#include <asm/mcpm.h>
41#include <asm/bL_switcher.h>
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/power_cpu_migrate.h>
45
46
47/*
48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
49 * __attribute_const__ and we don't want the compiler to assume any
50 * constness here as the value _does_ change along some code paths.
51 */
52
53static int read_mpidr(void)
54{
55	unsigned int id;
56	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
57	return id & MPIDR_HWID_BITMASK;
58}
59
60/*
61 * bL switcher core code.
62 */
63
64static void bL_do_switch(void *_arg)
65{
66	unsigned ib_mpidr, ib_cpu, ib_cluster;
67	long volatile handshake, **handshake_ptr = _arg;
68
69	pr_debug("%s\n", __func__);
70
71	ib_mpidr = cpu_logical_map(smp_processor_id());
72	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
73	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
74
75	/* Advertise our handshake location */
76	if (handshake_ptr) {
77		handshake = 0;
78		*handshake_ptr = &handshake;
79	} else
80		handshake = -1;
81
82	/*
83	 * Our state has been saved at this point.  Let's release our
84	 * inbound CPU.
85	 */
86	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
87	sev();
88
89	/*
90	 * From this point, we must assume that our counterpart CPU might
91	 * have taken over in its parallel world already, as if execution
92	 * just returned from cpu_suspend().  It is therefore important to
93	 * be very careful not to make any change the other guy is not
94	 * expecting.  This is why we need stack isolation.
95	 *
96	 * Fancy under cover tasks could be performed here.  For now
97	 * we have none.
98	 */
99
100	/*
101	 * Let's wait until our inbound is alive.
102	 */
103	while (!handshake) {
104		wfe();
105		smp_mb();
106	}
107
108	/* Let's put ourself down. */
109	mcpm_cpu_power_down();
110
111	/* should never get here */
112	BUG();
113}
114
115/*
116 * Stack isolation.  To ensure 'current' remains valid, we just use another
117 * piece of our thread's stack space which should be fairly lightly used.
118 * The selected area starts just above the thread_info structure located
119 * at the very bottom of the stack, aligned to a cache line, and indexed
120 * with the cluster number.
121 */
122#define STACK_SIZE 512
123extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
124static int bL_switchpoint(unsigned long _arg)
125{
126	unsigned int mpidr = read_mpidr();
127	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
128	void *stack = current_thread_info() + 1;
129	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
130	stack += clusterid * STACK_SIZE + STACK_SIZE;
131	call_with_stack(bL_do_switch, (void *)_arg, stack);
132	BUG();
133}
134
135/*
136 * Generic switcher interface
137 */
138
139static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
140static int bL_switcher_cpu_pairing[NR_CPUS];
141
142/*
143 * bL_switch_to - Switch to a specific cluster for the current CPU
144 * @new_cluster_id: the ID of the cluster to switch to.
145 *
146 * This function must be called on the CPU to be switched.
147 * Returns 0 on success, else a negative status code.
148 */
149static int bL_switch_to(unsigned int new_cluster_id)
150{
151	unsigned int mpidr, this_cpu, that_cpu;
152	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
153	struct completion inbound_alive;
154	long volatile *handshake_ptr;
155	int ipi_nr, ret;
156
157	this_cpu = smp_processor_id();
158	ob_mpidr = read_mpidr();
159	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
160	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
161	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
162
163	if (new_cluster_id == ob_cluster)
164		return 0;
165
166	that_cpu = bL_switcher_cpu_pairing[this_cpu];
167	ib_mpidr = cpu_logical_map(that_cpu);
168	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
169	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
170
171	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
172		 this_cpu, ob_mpidr, ib_mpidr);
173
174	this_cpu = smp_processor_id();
175
176	/* Close the gate for our entry vectors */
177	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
178	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
179
180	/* Install our "inbound alive" notifier. */
181	init_completion(&inbound_alive);
182	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
183	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
184	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
185
186	/*
187	 * Let's wake up the inbound CPU now in case it requires some delay
188	 * to come online, but leave it gated in our entry vector code.
189	 */
190	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
191	if (ret) {
192		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
193		return ret;
194	}
195
196	/*
197	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
198	 * in a possible WFI, such as in bL_power_down().
199	 */
200	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
201
202	/*
203	 * Wait for the inbound to come up.  This allows for other
204	 * tasks to be scheduled in the mean time.
205	 */
206	wait_for_completion(&inbound_alive);
207	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
208
209	/*
210	 * From this point we are entering the switch critical zone
211	 * and can't take any interrupts anymore.
212	 */
213	local_irq_disable();
214	local_fiq_disable();
215	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
216
217	/* redirect GIC's SGIs to our counterpart */
218	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
219
220	tick_suspend_local();
221
222	ret = cpu_pm_enter();
223
224	/* we can not tolerate errors at this point */
225	if (ret)
226		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
227
228	/* Swap the physical CPUs in the logical map for this logical CPU. */
229	cpu_logical_map(this_cpu) = ib_mpidr;
230	cpu_logical_map(that_cpu) = ob_mpidr;
231
232	/* Let's do the actual CPU switch. */
233	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
234	if (ret > 0)
235		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
236
237	/* We are executing on the inbound CPU at this point */
238	mpidr = read_mpidr();
239	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
240	BUG_ON(mpidr != ib_mpidr);
241
242	mcpm_cpu_powered_up();
243
244	ret = cpu_pm_exit();
245
246	tick_resume_local();
247
248	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
249	local_fiq_enable();
250	local_irq_enable();
251
252	*handshake_ptr = 1;
253	dsb_sev();
254
255	if (ret)
256		pr_err("%s exiting with error %d\n", __func__, ret);
257	return ret;
258}
259
260struct bL_thread {
261	spinlock_t lock;
262	struct task_struct *task;
263	wait_queue_head_t wq;
264	int wanted_cluster;
265	struct completion started;
266	bL_switch_completion_handler completer;
267	void *completer_cookie;
268};
269
270static struct bL_thread bL_threads[NR_CPUS];
271
272static int bL_switcher_thread(void *arg)
273{
274	struct bL_thread *t = arg;
275	struct sched_param param = { .sched_priority = 1 };
276	int cluster;
277	bL_switch_completion_handler completer;
278	void *completer_cookie;
279
280	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
281	complete(&t->started);
282
283	do {
284		if (signal_pending(current))
285			flush_signals(current);
286		wait_event_interruptible(t->wq,
287				t->wanted_cluster != -1 ||
288				kthread_should_stop());
289
290		spin_lock(&t->lock);
291		cluster = t->wanted_cluster;
292		completer = t->completer;
293		completer_cookie = t->completer_cookie;
294		t->wanted_cluster = -1;
295		t->completer = NULL;
296		spin_unlock(&t->lock);
297
298		if (cluster != -1) {
299			bL_switch_to(cluster);
300
301			if (completer)
302				completer(completer_cookie);
303		}
304	} while (!kthread_should_stop());
305
306	return 0;
307}
308
309static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
310{
311	struct task_struct *task;
312
313	task = kthread_create_on_node(bL_switcher_thread, arg,
314				      cpu_to_node(cpu), "kswitcher_%d", cpu);
315	if (!IS_ERR(task)) {
316		kthread_bind(task, cpu);
317		wake_up_process(task);
318	} else
319		pr_err("%s failed for CPU %d\n", __func__, cpu);
320	return task;
321}
322
323/*
324 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
325 *      with completion notification via a callback
326 *
327 * @cpu: the CPU to switch
328 * @new_cluster_id: the ID of the cluster to switch to.
329 * @completer: switch completion callback.  if non-NULL,
330 *	@completer(@completer_cookie) will be called on completion of
331 *	the switch, in non-atomic context.
332 * @completer_cookie: opaque context argument for @completer.
333 *
334 * This function causes a cluster switch on the given CPU by waking up
335 * the appropriate switcher thread.  This function may or may not return
336 * before the switch has occurred.
337 *
338 * If a @completer callback function is supplied, it will be called when
339 * the switch is complete.  This can be used to determine asynchronously
340 * when the switch is complete, regardless of when bL_switch_request()
341 * returns.  When @completer is supplied, no new switch request is permitted
342 * for the affected CPU until after the switch is complete, and @completer
343 * has returned.
344 */
345int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
346			 bL_switch_completion_handler completer,
347			 void *completer_cookie)
348{
349	struct bL_thread *t;
350
351	if (cpu >= ARRAY_SIZE(bL_threads)) {
352		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
353		return -EINVAL;
354	}
355
356	t = &bL_threads[cpu];
357
358	if (IS_ERR(t->task))
359		return PTR_ERR(t->task);
360	if (!t->task)
361		return -ESRCH;
362
363	spin_lock(&t->lock);
364	if (t->completer) {
365		spin_unlock(&t->lock);
366		return -EBUSY;
367	}
368	t->completer = completer;
369	t->completer_cookie = completer_cookie;
370	t->wanted_cluster = new_cluster_id;
371	spin_unlock(&t->lock);
372	wake_up(&t->wq);
373	return 0;
374}
375EXPORT_SYMBOL_GPL(bL_switch_request_cb);
376
377/*
378 * Activation and configuration code.
379 */
380
381static DEFINE_MUTEX(bL_switcher_activation_lock);
382static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
383static unsigned int bL_switcher_active;
384static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
385static cpumask_t bL_switcher_removed_logical_cpus;
386
387int bL_switcher_register_notifier(struct notifier_block *nb)
388{
389	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
390}
391EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
392
393int bL_switcher_unregister_notifier(struct notifier_block *nb)
394{
395	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
396}
397EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
398
399static int bL_activation_notify(unsigned long val)
400{
401	int ret;
402
403	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
404	if (ret & NOTIFY_STOP_MASK)
405		pr_err("%s: notifier chain failed with status 0x%x\n",
406			__func__, ret);
407	return notifier_to_errno(ret);
408}
409
410static void bL_switcher_restore_cpus(void)
411{
412	int i;
413
414	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
415		struct device *cpu_dev = get_cpu_device(i);
416		int ret = device_online(cpu_dev);
417		if (ret)
418			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
419	}
420}
421
422static int bL_switcher_halve_cpus(void)
423{
424	int i, j, cluster_0, gic_id, ret;
425	unsigned int cpu, cluster, mask;
426	cpumask_t available_cpus;
427
428	/* First pass to validate what we have */
429	mask = 0;
430	for_each_online_cpu(i) {
431		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
432		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
433		if (cluster >= 2) {
434			pr_err("%s: only dual cluster systems are supported\n", __func__);
435			return -EINVAL;
436		}
437		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
438			return -EINVAL;
439		mask |= (1 << cluster);
440	}
441	if (mask != 3) {
442		pr_err("%s: no CPU pairing possible\n", __func__);
443		return -EINVAL;
444	}
445
446	/*
447	 * Now let's do the pairing.  We match each CPU with another CPU
448	 * from a different cluster.  To get a uniform scheduling behavior
449	 * without fiddling with CPU topology and compute capacity data,
450	 * we'll use logical CPUs initially belonging to the same cluster.
451	 */
452	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
453	cpumask_copy(&available_cpus, cpu_online_mask);
454	cluster_0 = -1;
455	for_each_cpu(i, &available_cpus) {
456		int match = -1;
457		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
458		if (cluster_0 == -1)
459			cluster_0 = cluster;
460		if (cluster != cluster_0)
461			continue;
462		cpumask_clear_cpu(i, &available_cpus);
463		for_each_cpu(j, &available_cpus) {
464			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
465			/*
466			 * Let's remember the last match to create "odd"
467			 * pairings on purpose in order for other code not
468			 * to assume any relation between physical and
469			 * logical CPU numbers.
470			 */
471			if (cluster != cluster_0)
472				match = j;
473		}
474		if (match != -1) {
475			bL_switcher_cpu_pairing[i] = match;
476			cpumask_clear_cpu(match, &available_cpus);
477			pr_info("CPU%d paired with CPU%d\n", i, match);
478		}
479	}
480
481	/*
482	 * Now we disable the unwanted CPUs i.e. everything that has no
483	 * pairing information (that includes the pairing counterparts).
484	 */
485	cpumask_clear(&bL_switcher_removed_logical_cpus);
486	for_each_online_cpu(i) {
487		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
488		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
489
490		/* Let's take note of the GIC ID for this CPU */
491		gic_id = gic_get_cpu_id(i);
492		if (gic_id < 0) {
493			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
494			bL_switcher_restore_cpus();
495			return -EINVAL;
496		}
497		bL_gic_id[cpu][cluster] = gic_id;
498		pr_info("GIC ID for CPU %u cluster %u is %u\n",
499			cpu, cluster, gic_id);
500
501		if (bL_switcher_cpu_pairing[i] != -1) {
502			bL_switcher_cpu_original_cluster[i] = cluster;
503			continue;
504		}
505
506		ret = device_offline(get_cpu_device(i));
507		if (ret) {
508			bL_switcher_restore_cpus();
509			return ret;
510		}
511		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
512	}
513
514	return 0;
515}
516
517/* Determine the logical CPU a given physical CPU is grouped on. */
518int bL_switcher_get_logical_index(u32 mpidr)
519{
520	int cpu;
521
522	if (!bL_switcher_active)
523		return -EUNATCH;
524
525	mpidr &= MPIDR_HWID_BITMASK;
526	for_each_online_cpu(cpu) {
527		int pairing = bL_switcher_cpu_pairing[cpu];
528		if (pairing == -1)
529			continue;
530		if ((mpidr == cpu_logical_map(cpu)) ||
531		    (mpidr == cpu_logical_map(pairing)))
532			return cpu;
533	}
534	return -EINVAL;
535}
536
537static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
538{
539	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
540}
541
542int bL_switcher_trace_trigger(void)
543{
544	int ret;
545
546	preempt_disable();
547
548	bL_switcher_trace_trigger_cpu(NULL);
549	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
550
551	preempt_enable();
552
553	return ret;
554}
555EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
556
557static int bL_switcher_enable(void)
558{
559	int cpu, ret;
560
561	mutex_lock(&bL_switcher_activation_lock);
562	lock_device_hotplug();
563	if (bL_switcher_active) {
564		unlock_device_hotplug();
565		mutex_unlock(&bL_switcher_activation_lock);
566		return 0;
567	}
568
569	pr_info("big.LITTLE switcher initializing\n");
570
571	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
572	if (ret)
573		goto error;
574
575	ret = bL_switcher_halve_cpus();
576	if (ret)
577		goto error;
578
579	bL_switcher_trace_trigger();
580
581	for_each_online_cpu(cpu) {
582		struct bL_thread *t = &bL_threads[cpu];
583		spin_lock_init(&t->lock);
584		init_waitqueue_head(&t->wq);
585		init_completion(&t->started);
586		t->wanted_cluster = -1;
587		t->task = bL_switcher_thread_create(cpu, t);
588	}
589
590	bL_switcher_active = 1;
591	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
592	pr_info("big.LITTLE switcher initialized\n");
593	goto out;
594
595error:
596	pr_warn("big.LITTLE switcher initialization failed\n");
597	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
598
599out:
600	unlock_device_hotplug();
601	mutex_unlock(&bL_switcher_activation_lock);
602	return ret;
603}
604
605#ifdef CONFIG_SYSFS
606
607static void bL_switcher_disable(void)
608{
609	unsigned int cpu, cluster;
610	struct bL_thread *t;
611	struct task_struct *task;
612
613	mutex_lock(&bL_switcher_activation_lock);
614	lock_device_hotplug();
615
616	if (!bL_switcher_active)
617		goto out;
618
619	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
620		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
621		goto out;
622	}
623
624	bL_switcher_active = 0;
625
626	/*
627	 * To deactivate the switcher, we must shut down the switcher
628	 * threads to prevent any other requests from being accepted.
629	 * Then, if the final cluster for given logical CPU is not the
630	 * same as the original one, we'll recreate a switcher thread
631	 * just for the purpose of switching the CPU back without any
632	 * possibility for interference from external requests.
633	 */
634	for_each_online_cpu(cpu) {
635		t = &bL_threads[cpu];
636		task = t->task;
637		t->task = NULL;
638		if (!task || IS_ERR(task))
639			continue;
640		kthread_stop(task);
641		/* no more switch may happen on this CPU at this point */
642		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
643		if (cluster == bL_switcher_cpu_original_cluster[cpu])
644			continue;
645		init_completion(&t->started);
646		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
647		task = bL_switcher_thread_create(cpu, t);
648		if (!IS_ERR(task)) {
649			wait_for_completion(&t->started);
650			kthread_stop(task);
651			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
652			if (cluster == bL_switcher_cpu_original_cluster[cpu])
653				continue;
654		}
655		/* If execution gets here, we're in trouble. */
656		pr_crit("%s: unable to restore original cluster for CPU %d\n",
657			__func__, cpu);
658		pr_crit("%s: CPU %d can't be restored\n",
659			__func__, bL_switcher_cpu_pairing[cpu]);
660		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
661				  &bL_switcher_removed_logical_cpus);
662	}
663
664	bL_switcher_restore_cpus();
665	bL_switcher_trace_trigger();
666
667	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
668
669out:
670	unlock_device_hotplug();
671	mutex_unlock(&bL_switcher_activation_lock);
672}
673
674static ssize_t bL_switcher_active_show(struct kobject *kobj,
675		struct kobj_attribute *attr, char *buf)
676{
677	return sprintf(buf, "%u\n", bL_switcher_active);
678}
679
680static ssize_t bL_switcher_active_store(struct kobject *kobj,
681		struct kobj_attribute *attr, const char *buf, size_t count)
682{
683	int ret;
684
685	switch (buf[0]) {
686	case '0':
687		bL_switcher_disable();
688		ret = 0;
689		break;
690	case '1':
691		ret = bL_switcher_enable();
692		break;
693	default:
694		ret = -EINVAL;
695	}
696
697	return (ret >= 0) ? count : ret;
698}
699
700static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
701		struct kobj_attribute *attr, const char *buf, size_t count)
702{
703	int ret = bL_switcher_trace_trigger();
704
705	return ret ? ret : count;
706}
707
708static struct kobj_attribute bL_switcher_active_attr =
709	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
710
711static struct kobj_attribute bL_switcher_trace_trigger_attr =
712	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
713
714static struct attribute *bL_switcher_attrs[] = {
715	&bL_switcher_active_attr.attr,
716	&bL_switcher_trace_trigger_attr.attr,
717	NULL,
718};
719
720static struct attribute_group bL_switcher_attr_group = {
721	.attrs = bL_switcher_attrs,
722};
723
724static struct kobject *bL_switcher_kobj;
725
726static int __init bL_switcher_sysfs_init(void)
727{
728	int ret;
729
730	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
731	if (!bL_switcher_kobj)
732		return -ENOMEM;
733	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
734	if (ret)
735		kobject_put(bL_switcher_kobj);
736	return ret;
737}
738
739#endif  /* CONFIG_SYSFS */
740
741bool bL_switcher_get_enabled(void)
742{
743	mutex_lock(&bL_switcher_activation_lock);
744
745	return bL_switcher_active;
746}
747EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
748
749void bL_switcher_put_enabled(void)
750{
751	mutex_unlock(&bL_switcher_activation_lock);
752}
753EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
754
755/*
756 * Veto any CPU hotplug operation on those CPUs we've removed
757 * while the switcher is active.
758 * We're just not ready to deal with that given the trickery involved.
759 */
760static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
761					unsigned long action, void *hcpu)
762{
763	if (bL_switcher_active) {
764		int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
765		switch (action & 0xf) {
766		case CPU_UP_PREPARE:
767		case CPU_DOWN_PREPARE:
768			if (pairing == -1)
769				return NOTIFY_BAD;
770		}
771	}
772	return NOTIFY_DONE;
773}
774
775static bool no_bL_switcher;
776core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
777
778static int __init bL_switcher_init(void)
779{
780	int ret;
781
782	if (!mcpm_is_available())
783		return -ENODEV;
784
785	cpu_notifier(bL_switcher_hotplug_callback, 0);
786
787	if (!no_bL_switcher) {
788		ret = bL_switcher_enable();
789		if (ret)
790			return ret;
791	}
792
793#ifdef CONFIG_SYSFS
794	ret = bL_switcher_sysfs_init();
795	if (ret)
796		pr_err("%s: unable to create sysfs entry\n", __func__);
797#endif
798
799	return 0;
800}
801
802late_initcall(bL_switcher_init);
803