1/*
2 * linux/arch/arm/common/sa1111.c
3 *
4 * SA1111 support
5 *
6 * Original code by John Dorsey
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This file contains all generic SA1111 support.
13 *
14 * All initialization functions provided here are intended to be called
15 * from machine specific code with proper arguments when required.
16 */
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/irq.h>
20#include <linux/kernel.h>
21#include <linux/delay.h>
22#include <linux/errno.h>
23#include <linux/ioport.h>
24#include <linux/platform_device.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27#include <linux/dma-mapping.h>
28#include <linux/clk.h>
29#include <linux/io.h>
30
31#include <mach/hardware.h>
32#include <asm/mach/irq.h>
33#include <asm/mach-types.h>
34#include <asm/sizes.h>
35
36#include <asm/hardware/sa1111.h>
37
38/* SA1111 IRQs */
39#define IRQ_GPAIN0		(0)
40#define IRQ_GPAIN1		(1)
41#define IRQ_GPAIN2		(2)
42#define IRQ_GPAIN3		(3)
43#define IRQ_GPBIN0		(4)
44#define IRQ_GPBIN1		(5)
45#define IRQ_GPBIN2		(6)
46#define IRQ_GPBIN3		(7)
47#define IRQ_GPBIN4		(8)
48#define IRQ_GPBIN5		(9)
49#define IRQ_GPCIN0		(10)
50#define IRQ_GPCIN1		(11)
51#define IRQ_GPCIN2		(12)
52#define IRQ_GPCIN3		(13)
53#define IRQ_GPCIN4		(14)
54#define IRQ_GPCIN5		(15)
55#define IRQ_GPCIN6		(16)
56#define IRQ_GPCIN7		(17)
57#define IRQ_MSTXINT		(18)
58#define IRQ_MSRXINT		(19)
59#define IRQ_MSSTOPERRINT	(20)
60#define IRQ_TPTXINT		(21)
61#define IRQ_TPRXINT		(22)
62#define IRQ_TPSTOPERRINT	(23)
63#define SSPXMTINT		(24)
64#define SSPRCVINT		(25)
65#define SSPROR			(26)
66#define AUDXMTDMADONEA		(32)
67#define AUDRCVDMADONEA		(33)
68#define AUDXMTDMADONEB		(34)
69#define AUDRCVDMADONEB		(35)
70#define AUDTFSR			(36)
71#define AUDRFSR			(37)
72#define AUDTUR			(38)
73#define AUDROR			(39)
74#define AUDDTS			(40)
75#define AUDRDD			(41)
76#define AUDSTO			(42)
77#define IRQ_USBPWR		(43)
78#define IRQ_HCIM		(44)
79#define IRQ_HCIBUFFACC		(45)
80#define IRQ_HCIRMTWKP		(46)
81#define IRQ_NHCIMFCIR		(47)
82#define IRQ_USB_PORT_RESUME	(48)
83#define IRQ_S0_READY_NINT	(49)
84#define IRQ_S1_READY_NINT	(50)
85#define IRQ_S0_CD_VALID		(51)
86#define IRQ_S1_CD_VALID		(52)
87#define IRQ_S0_BVD1_STSCHG	(53)
88#define IRQ_S1_BVD1_STSCHG	(54)
89#define SA1111_IRQ_NR		(55)
90
91extern void sa1110_mb_enable(void);
92extern void sa1110_mb_disable(void);
93
94/*
95 * We keep the following data for the overall SA1111.  Note that the
96 * struct device and struct resource are "fake"; they should be supplied
97 * by the bus above us.  However, in the interests of getting all SA1111
98 * drivers converted over to the device model, we provide this as an
99 * anchor point for all the other drivers.
100 */
101struct sa1111 {
102	struct device	*dev;
103	struct clk	*clk;
104	unsigned long	phys;
105	int		irq;
106	int		irq_base;	/* base for cascaded on-chip IRQs */
107	spinlock_t	lock;
108	void __iomem	*base;
109	struct sa1111_platform_data *pdata;
110#ifdef CONFIG_PM
111	void		*saved_state;
112#endif
113};
114
115/*
116 * We _really_ need to eliminate this.  Its only users
117 * are the PWM and DMA checking code.
118 */
119static struct sa1111 *g_sa1111;
120
121struct sa1111_dev_info {
122	unsigned long	offset;
123	unsigned long	skpcr_mask;
124	bool		dma;
125	unsigned int	devid;
126	unsigned int	irq[6];
127};
128
129static struct sa1111_dev_info sa1111_devices[] = {
130	{
131		.offset		= SA1111_USB,
132		.skpcr_mask	= SKPCR_UCLKEN,
133		.dma		= true,
134		.devid		= SA1111_DEVID_USB,
135		.irq = {
136			IRQ_USBPWR,
137			IRQ_HCIM,
138			IRQ_HCIBUFFACC,
139			IRQ_HCIRMTWKP,
140			IRQ_NHCIMFCIR,
141			IRQ_USB_PORT_RESUME
142		},
143	},
144	{
145		.offset		= 0x0600,
146		.skpcr_mask	= SKPCR_I2SCLKEN | SKPCR_L3CLKEN,
147		.dma		= true,
148		.devid		= SA1111_DEVID_SAC,
149		.irq = {
150			AUDXMTDMADONEA,
151			AUDXMTDMADONEB,
152			AUDRCVDMADONEA,
153			AUDRCVDMADONEB
154		},
155	},
156	{
157		.offset		= 0x0800,
158		.skpcr_mask	= SKPCR_SCLKEN,
159		.devid		= SA1111_DEVID_SSP,
160	},
161	{
162		.offset		= SA1111_KBD,
163		.skpcr_mask	= SKPCR_PTCLKEN,
164		.devid		= SA1111_DEVID_PS2_KBD,
165		.irq = {
166			IRQ_TPRXINT,
167			IRQ_TPTXINT
168		},
169	},
170	{
171		.offset		= SA1111_MSE,
172		.skpcr_mask	= SKPCR_PMCLKEN,
173		.devid		= SA1111_DEVID_PS2_MSE,
174		.irq = {
175			IRQ_MSRXINT,
176			IRQ_MSTXINT
177		},
178	},
179	{
180		.offset		= 0x1800,
181		.skpcr_mask	= 0,
182		.devid		= SA1111_DEVID_PCMCIA,
183		.irq = {
184			IRQ_S0_READY_NINT,
185			IRQ_S0_CD_VALID,
186			IRQ_S0_BVD1_STSCHG,
187			IRQ_S1_READY_NINT,
188			IRQ_S1_CD_VALID,
189			IRQ_S1_BVD1_STSCHG,
190		},
191	},
192};
193
194/*
195 * SA1111 interrupt support.  Since clearing an IRQ while there are
196 * active IRQs causes the interrupt output to pulse, the upper levels
197 * will call us again if there are more interrupts to process.
198 */
199static void
200sa1111_irq_handler(unsigned int irq, struct irq_desc *desc)
201{
202	unsigned int stat0, stat1, i;
203	struct sa1111 *sachip = irq_get_handler_data(irq);
204	void __iomem *mapbase = sachip->base + SA1111_INTC;
205
206	stat0 = sa1111_readl(mapbase + SA1111_INTSTATCLR0);
207	stat1 = sa1111_readl(mapbase + SA1111_INTSTATCLR1);
208
209	sa1111_writel(stat0, mapbase + SA1111_INTSTATCLR0);
210
211	desc->irq_data.chip->irq_ack(&desc->irq_data);
212
213	sa1111_writel(stat1, mapbase + SA1111_INTSTATCLR1);
214
215	if (stat0 == 0 && stat1 == 0) {
216		do_bad_IRQ(irq, desc);
217		return;
218	}
219
220	for (i = 0; stat0; i++, stat0 >>= 1)
221		if (stat0 & 1)
222			generic_handle_irq(i + sachip->irq_base);
223
224	for (i = 32; stat1; i++, stat1 >>= 1)
225		if (stat1 & 1)
226			generic_handle_irq(i + sachip->irq_base);
227
228	/* For level-based interrupts */
229	desc->irq_data.chip->irq_unmask(&desc->irq_data);
230}
231
232#define SA1111_IRQMASK_LO(x)	(1 << (x - sachip->irq_base))
233#define SA1111_IRQMASK_HI(x)	(1 << (x - sachip->irq_base - 32))
234
235static void sa1111_ack_irq(struct irq_data *d)
236{
237}
238
239static void sa1111_mask_lowirq(struct irq_data *d)
240{
241	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
242	void __iomem *mapbase = sachip->base + SA1111_INTC;
243	unsigned long ie0;
244
245	ie0 = sa1111_readl(mapbase + SA1111_INTEN0);
246	ie0 &= ~SA1111_IRQMASK_LO(d->irq);
247	writel(ie0, mapbase + SA1111_INTEN0);
248}
249
250static void sa1111_unmask_lowirq(struct irq_data *d)
251{
252	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
253	void __iomem *mapbase = sachip->base + SA1111_INTC;
254	unsigned long ie0;
255
256	ie0 = sa1111_readl(mapbase + SA1111_INTEN0);
257	ie0 |= SA1111_IRQMASK_LO(d->irq);
258	sa1111_writel(ie0, mapbase + SA1111_INTEN0);
259}
260
261/*
262 * Attempt to re-trigger the interrupt.  The SA1111 contains a register
263 * (INTSET) which claims to do this.  However, in practice no amount of
264 * manipulation of INTEN and INTSET guarantees that the interrupt will
265 * be triggered.  In fact, its very difficult, if not impossible to get
266 * INTSET to re-trigger the interrupt.
267 */
268static int sa1111_retrigger_lowirq(struct irq_data *d)
269{
270	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
271	void __iomem *mapbase = sachip->base + SA1111_INTC;
272	unsigned int mask = SA1111_IRQMASK_LO(d->irq);
273	unsigned long ip0;
274	int i;
275
276	ip0 = sa1111_readl(mapbase + SA1111_INTPOL0);
277	for (i = 0; i < 8; i++) {
278		sa1111_writel(ip0 ^ mask, mapbase + SA1111_INTPOL0);
279		sa1111_writel(ip0, mapbase + SA1111_INTPOL0);
280		if (sa1111_readl(mapbase + SA1111_INTSTATCLR0) & mask)
281			break;
282	}
283
284	if (i == 8)
285		pr_err("Danger Will Robinson: failed to re-trigger IRQ%d\n",
286		       d->irq);
287	return i == 8 ? -1 : 0;
288}
289
290static int sa1111_type_lowirq(struct irq_data *d, unsigned int flags)
291{
292	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
293	void __iomem *mapbase = sachip->base + SA1111_INTC;
294	unsigned int mask = SA1111_IRQMASK_LO(d->irq);
295	unsigned long ip0;
296
297	if (flags == IRQ_TYPE_PROBE)
298		return 0;
299
300	if ((!(flags & IRQ_TYPE_EDGE_RISING) ^ !(flags & IRQ_TYPE_EDGE_FALLING)) == 0)
301		return -EINVAL;
302
303	ip0 = sa1111_readl(mapbase + SA1111_INTPOL0);
304	if (flags & IRQ_TYPE_EDGE_RISING)
305		ip0 &= ~mask;
306	else
307		ip0 |= mask;
308	sa1111_writel(ip0, mapbase + SA1111_INTPOL0);
309	sa1111_writel(ip0, mapbase + SA1111_WAKEPOL0);
310
311	return 0;
312}
313
314static int sa1111_wake_lowirq(struct irq_data *d, unsigned int on)
315{
316	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
317	void __iomem *mapbase = sachip->base + SA1111_INTC;
318	unsigned int mask = SA1111_IRQMASK_LO(d->irq);
319	unsigned long we0;
320
321	we0 = sa1111_readl(mapbase + SA1111_WAKEEN0);
322	if (on)
323		we0 |= mask;
324	else
325		we0 &= ~mask;
326	sa1111_writel(we0, mapbase + SA1111_WAKEEN0);
327
328	return 0;
329}
330
331static struct irq_chip sa1111_low_chip = {
332	.name		= "SA1111-l",
333	.irq_ack	= sa1111_ack_irq,
334	.irq_mask	= sa1111_mask_lowirq,
335	.irq_unmask	= sa1111_unmask_lowirq,
336	.irq_retrigger	= sa1111_retrigger_lowirq,
337	.irq_set_type	= sa1111_type_lowirq,
338	.irq_set_wake	= sa1111_wake_lowirq,
339};
340
341static void sa1111_mask_highirq(struct irq_data *d)
342{
343	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
344	void __iomem *mapbase = sachip->base + SA1111_INTC;
345	unsigned long ie1;
346
347	ie1 = sa1111_readl(mapbase + SA1111_INTEN1);
348	ie1 &= ~SA1111_IRQMASK_HI(d->irq);
349	sa1111_writel(ie1, mapbase + SA1111_INTEN1);
350}
351
352static void sa1111_unmask_highirq(struct irq_data *d)
353{
354	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
355	void __iomem *mapbase = sachip->base + SA1111_INTC;
356	unsigned long ie1;
357
358	ie1 = sa1111_readl(mapbase + SA1111_INTEN1);
359	ie1 |= SA1111_IRQMASK_HI(d->irq);
360	sa1111_writel(ie1, mapbase + SA1111_INTEN1);
361}
362
363/*
364 * Attempt to re-trigger the interrupt.  The SA1111 contains a register
365 * (INTSET) which claims to do this.  However, in practice no amount of
366 * manipulation of INTEN and INTSET guarantees that the interrupt will
367 * be triggered.  In fact, its very difficult, if not impossible to get
368 * INTSET to re-trigger the interrupt.
369 */
370static int sa1111_retrigger_highirq(struct irq_data *d)
371{
372	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
373	void __iomem *mapbase = sachip->base + SA1111_INTC;
374	unsigned int mask = SA1111_IRQMASK_HI(d->irq);
375	unsigned long ip1;
376	int i;
377
378	ip1 = sa1111_readl(mapbase + SA1111_INTPOL1);
379	for (i = 0; i < 8; i++) {
380		sa1111_writel(ip1 ^ mask, mapbase + SA1111_INTPOL1);
381		sa1111_writel(ip1, mapbase + SA1111_INTPOL1);
382		if (sa1111_readl(mapbase + SA1111_INTSTATCLR1) & mask)
383			break;
384	}
385
386	if (i == 8)
387		pr_err("Danger Will Robinson: failed to re-trigger IRQ%d\n",
388		       d->irq);
389	return i == 8 ? -1 : 0;
390}
391
392static int sa1111_type_highirq(struct irq_data *d, unsigned int flags)
393{
394	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
395	void __iomem *mapbase = sachip->base + SA1111_INTC;
396	unsigned int mask = SA1111_IRQMASK_HI(d->irq);
397	unsigned long ip1;
398
399	if (flags == IRQ_TYPE_PROBE)
400		return 0;
401
402	if ((!(flags & IRQ_TYPE_EDGE_RISING) ^ !(flags & IRQ_TYPE_EDGE_FALLING)) == 0)
403		return -EINVAL;
404
405	ip1 = sa1111_readl(mapbase + SA1111_INTPOL1);
406	if (flags & IRQ_TYPE_EDGE_RISING)
407		ip1 &= ~mask;
408	else
409		ip1 |= mask;
410	sa1111_writel(ip1, mapbase + SA1111_INTPOL1);
411	sa1111_writel(ip1, mapbase + SA1111_WAKEPOL1);
412
413	return 0;
414}
415
416static int sa1111_wake_highirq(struct irq_data *d, unsigned int on)
417{
418	struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
419	void __iomem *mapbase = sachip->base + SA1111_INTC;
420	unsigned int mask = SA1111_IRQMASK_HI(d->irq);
421	unsigned long we1;
422
423	we1 = sa1111_readl(mapbase + SA1111_WAKEEN1);
424	if (on)
425		we1 |= mask;
426	else
427		we1 &= ~mask;
428	sa1111_writel(we1, mapbase + SA1111_WAKEEN1);
429
430	return 0;
431}
432
433static struct irq_chip sa1111_high_chip = {
434	.name		= "SA1111-h",
435	.irq_ack	= sa1111_ack_irq,
436	.irq_mask	= sa1111_mask_highirq,
437	.irq_unmask	= sa1111_unmask_highirq,
438	.irq_retrigger	= sa1111_retrigger_highirq,
439	.irq_set_type	= sa1111_type_highirq,
440	.irq_set_wake	= sa1111_wake_highirq,
441};
442
443static int sa1111_setup_irq(struct sa1111 *sachip, unsigned irq_base)
444{
445	void __iomem *irqbase = sachip->base + SA1111_INTC;
446	unsigned i, irq;
447	int ret;
448
449	/*
450	 * We're guaranteed that this region hasn't been taken.
451	 */
452	request_mem_region(sachip->phys + SA1111_INTC, 512, "irq");
453
454	ret = irq_alloc_descs(-1, irq_base, SA1111_IRQ_NR, -1);
455	if (ret <= 0) {
456		dev_err(sachip->dev, "unable to allocate %u irqs: %d\n",
457			SA1111_IRQ_NR, ret);
458		if (ret == 0)
459			ret = -EINVAL;
460		return ret;
461	}
462
463	sachip->irq_base = ret;
464
465	/* disable all IRQs */
466	sa1111_writel(0, irqbase + SA1111_INTEN0);
467	sa1111_writel(0, irqbase + SA1111_INTEN1);
468	sa1111_writel(0, irqbase + SA1111_WAKEEN0);
469	sa1111_writel(0, irqbase + SA1111_WAKEEN1);
470
471	/*
472	 * detect on rising edge.  Note: Feb 2001 Errata for SA1111
473	 * specifies that S0ReadyInt and S1ReadyInt should be '1'.
474	 */
475	sa1111_writel(0, irqbase + SA1111_INTPOL0);
476	sa1111_writel(SA1111_IRQMASK_HI(IRQ_S0_READY_NINT) |
477		      SA1111_IRQMASK_HI(IRQ_S1_READY_NINT),
478		      irqbase + SA1111_INTPOL1);
479
480	/* clear all IRQs */
481	sa1111_writel(~0, irqbase + SA1111_INTSTATCLR0);
482	sa1111_writel(~0, irqbase + SA1111_INTSTATCLR1);
483
484	for (i = IRQ_GPAIN0; i <= SSPROR; i++) {
485		irq = sachip->irq_base + i;
486		irq_set_chip_and_handler(irq, &sa1111_low_chip,
487					 handle_edge_irq);
488		irq_set_chip_data(irq, sachip);
489		set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
490	}
491
492	for (i = AUDXMTDMADONEA; i <= IRQ_S1_BVD1_STSCHG; i++) {
493		irq = sachip->irq_base + i;
494		irq_set_chip_and_handler(irq, &sa1111_high_chip,
495					 handle_edge_irq);
496		irq_set_chip_data(irq, sachip);
497		set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
498	}
499
500	/*
501	 * Register SA1111 interrupt
502	 */
503	irq_set_irq_type(sachip->irq, IRQ_TYPE_EDGE_RISING);
504	irq_set_handler_data(sachip->irq, sachip);
505	irq_set_chained_handler(sachip->irq, sa1111_irq_handler);
506
507	dev_info(sachip->dev, "Providing IRQ%u-%u\n",
508		sachip->irq_base, sachip->irq_base + SA1111_IRQ_NR - 1);
509
510	return 0;
511}
512
513/*
514 * Bring the SA1111 out of reset.  This requires a set procedure:
515 *  1. nRESET asserted (by hardware)
516 *  2. CLK turned on from SA1110
517 *  3. nRESET deasserted
518 *  4. VCO turned on, PLL_BYPASS turned off
519 *  5. Wait lock time, then assert RCLKEn
520 *  7. PCR set to allow clocking of individual functions
521 *
522 * Until we've done this, the only registers we can access are:
523 *   SBI_SKCR
524 *   SBI_SMCR
525 *   SBI_SKID
526 */
527static void sa1111_wake(struct sa1111 *sachip)
528{
529	unsigned long flags, r;
530
531	spin_lock_irqsave(&sachip->lock, flags);
532
533	clk_enable(sachip->clk);
534
535	/*
536	 * Turn VCO on, and disable PLL Bypass.
537	 */
538	r = sa1111_readl(sachip->base + SA1111_SKCR);
539	r &= ~SKCR_VCO_OFF;
540	sa1111_writel(r, sachip->base + SA1111_SKCR);
541	r |= SKCR_PLL_BYPASS | SKCR_OE_EN;
542	sa1111_writel(r, sachip->base + SA1111_SKCR);
543
544	/*
545	 * Wait lock time.  SA1111 manual _doesn't_
546	 * specify a figure for this!  We choose 100us.
547	 */
548	udelay(100);
549
550	/*
551	 * Enable RCLK.  We also ensure that RDYEN is set.
552	 */
553	r |= SKCR_RCLKEN | SKCR_RDYEN;
554	sa1111_writel(r, sachip->base + SA1111_SKCR);
555
556	/*
557	 * Wait 14 RCLK cycles for the chip to finish coming out
558	 * of reset. (RCLK=24MHz).  This is 590ns.
559	 */
560	udelay(1);
561
562	/*
563	 * Ensure all clocks are initially off.
564	 */
565	sa1111_writel(0, sachip->base + SA1111_SKPCR);
566
567	spin_unlock_irqrestore(&sachip->lock, flags);
568}
569
570#ifdef CONFIG_ARCH_SA1100
571
572static u32 sa1111_dma_mask[] = {
573	~0,
574	~(1 << 20),
575	~(1 << 23),
576	~(1 << 24),
577	~(1 << 25),
578	~(1 << 20),
579	~(1 << 20),
580	0,
581};
582
583/*
584 * Configure the SA1111 shared memory controller.
585 */
586void
587sa1111_configure_smc(struct sa1111 *sachip, int sdram, unsigned int drac,
588		     unsigned int cas_latency)
589{
590	unsigned int smcr = SMCR_DTIM | SMCR_MBGE | FInsrt(drac, SMCR_DRAC);
591
592	if (cas_latency == 3)
593		smcr |= SMCR_CLAT;
594
595	sa1111_writel(smcr, sachip->base + SA1111_SMCR);
596
597	/*
598	 * Now clear the bits in the DMA mask to work around the SA1111
599	 * DMA erratum (Intel StrongARM SA-1111 Microprocessor Companion
600	 * Chip Specification Update, June 2000, Erratum #7).
601	 */
602	if (sachip->dev->dma_mask)
603		*sachip->dev->dma_mask &= sa1111_dma_mask[drac >> 2];
604
605	sachip->dev->coherent_dma_mask &= sa1111_dma_mask[drac >> 2];
606}
607#endif
608
609static void sa1111_dev_release(struct device *_dev)
610{
611	struct sa1111_dev *dev = SA1111_DEV(_dev);
612
613	kfree(dev);
614}
615
616static int
617sa1111_init_one_child(struct sa1111 *sachip, struct resource *parent,
618		      struct sa1111_dev_info *info)
619{
620	struct sa1111_dev *dev;
621	unsigned i;
622	int ret;
623
624	dev = kzalloc(sizeof(struct sa1111_dev), GFP_KERNEL);
625	if (!dev) {
626		ret = -ENOMEM;
627		goto err_alloc;
628	}
629
630	device_initialize(&dev->dev);
631	dev_set_name(&dev->dev, "%4.4lx", info->offset);
632	dev->devid	 = info->devid;
633	dev->dev.parent  = sachip->dev;
634	dev->dev.bus     = &sa1111_bus_type;
635	dev->dev.release = sa1111_dev_release;
636	dev->res.start   = sachip->phys + info->offset;
637	dev->res.end     = dev->res.start + 511;
638	dev->res.name    = dev_name(&dev->dev);
639	dev->res.flags   = IORESOURCE_MEM;
640	dev->mapbase     = sachip->base + info->offset;
641	dev->skpcr_mask  = info->skpcr_mask;
642
643	for (i = 0; i < ARRAY_SIZE(info->irq); i++)
644		dev->irq[i] = sachip->irq_base + info->irq[i];
645
646	/*
647	 * If the parent device has a DMA mask associated with it, and
648	 * this child supports DMA, propagate it down to the children.
649	 */
650	if (info->dma && sachip->dev->dma_mask) {
651		dev->dma_mask = *sachip->dev->dma_mask;
652		dev->dev.dma_mask = &dev->dma_mask;
653		dev->dev.coherent_dma_mask = sachip->dev->coherent_dma_mask;
654	}
655
656	ret = request_resource(parent, &dev->res);
657	if (ret) {
658		dev_err(sachip->dev, "failed to allocate resource for %s\n",
659			dev->res.name);
660		goto err_resource;
661	}
662
663	ret = device_add(&dev->dev);
664	if (ret)
665		goto err_add;
666	return 0;
667
668 err_add:
669	release_resource(&dev->res);
670 err_resource:
671	put_device(&dev->dev);
672 err_alloc:
673	return ret;
674}
675
676/**
677 *	sa1111_probe - probe for a single SA1111 chip.
678 *	@phys_addr: physical address of device.
679 *
680 *	Probe for a SA1111 chip.  This must be called
681 *	before any other SA1111-specific code.
682 *
683 *	Returns:
684 *	%-ENODEV	device not found.
685 *	%-EBUSY		physical address already marked in-use.
686 *	%-EINVAL	no platform data passed
687 *	%0		successful.
688 */
689static int __sa1111_probe(struct device *me, struct resource *mem, int irq)
690{
691	struct sa1111_platform_data *pd = me->platform_data;
692	struct sa1111 *sachip;
693	unsigned long id;
694	unsigned int has_devs;
695	int i, ret = -ENODEV;
696
697	if (!pd)
698		return -EINVAL;
699
700	sachip = kzalloc(sizeof(struct sa1111), GFP_KERNEL);
701	if (!sachip)
702		return -ENOMEM;
703
704	sachip->clk = clk_get(me, "SA1111_CLK");
705	if (IS_ERR(sachip->clk)) {
706		ret = PTR_ERR(sachip->clk);
707		goto err_free;
708	}
709
710	ret = clk_prepare(sachip->clk);
711	if (ret)
712		goto err_clkput;
713
714	spin_lock_init(&sachip->lock);
715
716	sachip->dev = me;
717	dev_set_drvdata(sachip->dev, sachip);
718
719	sachip->pdata = pd;
720	sachip->phys = mem->start;
721	sachip->irq = irq;
722
723	/*
724	 * Map the whole region.  This also maps the
725	 * registers for our children.
726	 */
727	sachip->base = ioremap(mem->start, PAGE_SIZE * 2);
728	if (!sachip->base) {
729		ret = -ENOMEM;
730		goto err_clk_unprep;
731	}
732
733	/*
734	 * Probe for the chip.  Only touch the SBI registers.
735	 */
736	id = sa1111_readl(sachip->base + SA1111_SKID);
737	if ((id & SKID_ID_MASK) != SKID_SA1111_ID) {
738		printk(KERN_DEBUG "SA1111 not detected: ID = %08lx\n", id);
739		ret = -ENODEV;
740		goto err_unmap;
741	}
742
743	pr_info("SA1111 Microprocessor Companion Chip: silicon revision %lx, metal revision %lx\n",
744		(id & SKID_SIREV_MASK) >> 4, id & SKID_MTREV_MASK);
745
746	/*
747	 * We found it.  Wake the chip up, and initialise.
748	 */
749	sa1111_wake(sachip);
750
751	/*
752	 * The interrupt controller must be initialised before any
753	 * other device to ensure that the interrupts are available.
754	 */
755	if (sachip->irq != NO_IRQ) {
756		ret = sa1111_setup_irq(sachip, pd->irq_base);
757		if (ret)
758			goto err_unmap;
759	}
760
761#ifdef CONFIG_ARCH_SA1100
762	{
763	unsigned int val;
764
765	/*
766	 * The SDRAM configuration of the SA1110 and the SA1111 must
767	 * match.  This is very important to ensure that SA1111 accesses
768	 * don't corrupt the SDRAM.  Note that this ungates the SA1111's
769	 * MBGNT signal, so we must have called sa1110_mb_disable()
770	 * beforehand.
771	 */
772	sa1111_configure_smc(sachip, 1,
773			     FExtr(MDCNFG, MDCNFG_SA1110_DRAC0),
774			     FExtr(MDCNFG, MDCNFG_SA1110_TDL0));
775
776	/*
777	 * We only need to turn on DCLK whenever we want to use the
778	 * DMA.  It can otherwise be held firmly in the off position.
779	 * (currently, we always enable it.)
780	 */
781	val = sa1111_readl(sachip->base + SA1111_SKPCR);
782	sa1111_writel(val | SKPCR_DCLKEN, sachip->base + SA1111_SKPCR);
783
784	/*
785	 * Enable the SA1110 memory bus request and grant signals.
786	 */
787	sa1110_mb_enable();
788	}
789#endif
790
791	g_sa1111 = sachip;
792
793	has_devs = ~0;
794	if (pd)
795		has_devs &= ~pd->disable_devs;
796
797	for (i = 0; i < ARRAY_SIZE(sa1111_devices); i++)
798		if (sa1111_devices[i].devid & has_devs)
799			sa1111_init_one_child(sachip, mem, &sa1111_devices[i]);
800
801	return 0;
802
803 err_unmap:
804	iounmap(sachip->base);
805 err_clk_unprep:
806	clk_unprepare(sachip->clk);
807 err_clkput:
808	clk_put(sachip->clk);
809 err_free:
810	kfree(sachip);
811	return ret;
812}
813
814static int sa1111_remove_one(struct device *dev, void *data)
815{
816	struct sa1111_dev *sadev = SA1111_DEV(dev);
817	device_del(&sadev->dev);
818	release_resource(&sadev->res);
819	put_device(&sadev->dev);
820	return 0;
821}
822
823static void __sa1111_remove(struct sa1111 *sachip)
824{
825	void __iomem *irqbase = sachip->base + SA1111_INTC;
826
827	device_for_each_child(sachip->dev, NULL, sa1111_remove_one);
828
829	/* disable all IRQs */
830	sa1111_writel(0, irqbase + SA1111_INTEN0);
831	sa1111_writel(0, irqbase + SA1111_INTEN1);
832	sa1111_writel(0, irqbase + SA1111_WAKEEN0);
833	sa1111_writel(0, irqbase + SA1111_WAKEEN1);
834
835	clk_disable(sachip->clk);
836	clk_unprepare(sachip->clk);
837
838	if (sachip->irq != NO_IRQ) {
839		irq_set_chained_handler(sachip->irq, NULL);
840		irq_set_handler_data(sachip->irq, NULL);
841		irq_free_descs(sachip->irq_base, SA1111_IRQ_NR);
842
843		release_mem_region(sachip->phys + SA1111_INTC, 512);
844	}
845
846	iounmap(sachip->base);
847	clk_put(sachip->clk);
848	kfree(sachip);
849}
850
851struct sa1111_save_data {
852	unsigned int	skcr;
853	unsigned int	skpcr;
854	unsigned int	skcdr;
855	unsigned char	skaud;
856	unsigned char	skpwm0;
857	unsigned char	skpwm1;
858
859	/*
860	 * Interrupt controller
861	 */
862	unsigned int	intpol0;
863	unsigned int	intpol1;
864	unsigned int	inten0;
865	unsigned int	inten1;
866	unsigned int	wakepol0;
867	unsigned int	wakepol1;
868	unsigned int	wakeen0;
869	unsigned int	wakeen1;
870};
871
872#ifdef CONFIG_PM
873
874static int sa1111_suspend(struct platform_device *dev, pm_message_t state)
875{
876	struct sa1111 *sachip = platform_get_drvdata(dev);
877	struct sa1111_save_data *save;
878	unsigned long flags;
879	unsigned int val;
880	void __iomem *base;
881
882	save = kmalloc(sizeof(struct sa1111_save_data), GFP_KERNEL);
883	if (!save)
884		return -ENOMEM;
885	sachip->saved_state = save;
886
887	spin_lock_irqsave(&sachip->lock, flags);
888
889	/*
890	 * Save state.
891	 */
892	base = sachip->base;
893	save->skcr     = sa1111_readl(base + SA1111_SKCR);
894	save->skpcr    = sa1111_readl(base + SA1111_SKPCR);
895	save->skcdr    = sa1111_readl(base + SA1111_SKCDR);
896	save->skaud    = sa1111_readl(base + SA1111_SKAUD);
897	save->skpwm0   = sa1111_readl(base + SA1111_SKPWM0);
898	save->skpwm1   = sa1111_readl(base + SA1111_SKPWM1);
899
900	sa1111_writel(0, sachip->base + SA1111_SKPWM0);
901	sa1111_writel(0, sachip->base + SA1111_SKPWM1);
902
903	base = sachip->base + SA1111_INTC;
904	save->intpol0  = sa1111_readl(base + SA1111_INTPOL0);
905	save->intpol1  = sa1111_readl(base + SA1111_INTPOL1);
906	save->inten0   = sa1111_readl(base + SA1111_INTEN0);
907	save->inten1   = sa1111_readl(base + SA1111_INTEN1);
908	save->wakepol0 = sa1111_readl(base + SA1111_WAKEPOL0);
909	save->wakepol1 = sa1111_readl(base + SA1111_WAKEPOL1);
910	save->wakeen0  = sa1111_readl(base + SA1111_WAKEEN0);
911	save->wakeen1  = sa1111_readl(base + SA1111_WAKEEN1);
912
913	/*
914	 * Disable.
915	 */
916	val = sa1111_readl(sachip->base + SA1111_SKCR);
917	sa1111_writel(val | SKCR_SLEEP, sachip->base + SA1111_SKCR);
918
919	clk_disable(sachip->clk);
920
921	spin_unlock_irqrestore(&sachip->lock, flags);
922
923#ifdef CONFIG_ARCH_SA1100
924	sa1110_mb_disable();
925#endif
926
927	return 0;
928}
929
930/*
931 *	sa1111_resume - Restore the SA1111 device state.
932 *	@dev: device to restore
933 *
934 *	Restore the general state of the SA1111; clock control and
935 *	interrupt controller.  Other parts of the SA1111 must be
936 *	restored by their respective drivers, and must be called
937 *	via LDM after this function.
938 */
939static int sa1111_resume(struct platform_device *dev)
940{
941	struct sa1111 *sachip = platform_get_drvdata(dev);
942	struct sa1111_save_data *save;
943	unsigned long flags, id;
944	void __iomem *base;
945
946	save = sachip->saved_state;
947	if (!save)
948		return 0;
949
950	/*
951	 * Ensure that the SA1111 is still here.
952	 * FIXME: shouldn't do this here.
953	 */
954	id = sa1111_readl(sachip->base + SA1111_SKID);
955	if ((id & SKID_ID_MASK) != SKID_SA1111_ID) {
956		__sa1111_remove(sachip);
957		platform_set_drvdata(dev, NULL);
958		kfree(save);
959		return 0;
960	}
961
962	/*
963	 * First of all, wake up the chip.
964	 */
965	sa1111_wake(sachip);
966
967#ifdef CONFIG_ARCH_SA1100
968	/* Enable the memory bus request/grant signals */
969	sa1110_mb_enable();
970#endif
971
972	/*
973	 * Only lock for write ops. Also, sa1111_wake must be called with
974	 * released spinlock!
975	 */
976	spin_lock_irqsave(&sachip->lock, flags);
977
978	sa1111_writel(0, sachip->base + SA1111_INTC + SA1111_INTEN0);
979	sa1111_writel(0, sachip->base + SA1111_INTC + SA1111_INTEN1);
980
981	base = sachip->base;
982	sa1111_writel(save->skcr,     base + SA1111_SKCR);
983	sa1111_writel(save->skpcr,    base + SA1111_SKPCR);
984	sa1111_writel(save->skcdr,    base + SA1111_SKCDR);
985	sa1111_writel(save->skaud,    base + SA1111_SKAUD);
986	sa1111_writel(save->skpwm0,   base + SA1111_SKPWM0);
987	sa1111_writel(save->skpwm1,   base + SA1111_SKPWM1);
988
989	base = sachip->base + SA1111_INTC;
990	sa1111_writel(save->intpol0,  base + SA1111_INTPOL0);
991	sa1111_writel(save->intpol1,  base + SA1111_INTPOL1);
992	sa1111_writel(save->inten0,   base + SA1111_INTEN0);
993	sa1111_writel(save->inten1,   base + SA1111_INTEN1);
994	sa1111_writel(save->wakepol0, base + SA1111_WAKEPOL0);
995	sa1111_writel(save->wakepol1, base + SA1111_WAKEPOL1);
996	sa1111_writel(save->wakeen0,  base + SA1111_WAKEEN0);
997	sa1111_writel(save->wakeen1,  base + SA1111_WAKEEN1);
998
999	spin_unlock_irqrestore(&sachip->lock, flags);
1000
1001	sachip->saved_state = NULL;
1002	kfree(save);
1003
1004	return 0;
1005}
1006
1007#else
1008#define sa1111_suspend NULL
1009#define sa1111_resume  NULL
1010#endif
1011
1012static int sa1111_probe(struct platform_device *pdev)
1013{
1014	struct resource *mem;
1015	int irq;
1016
1017	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1018	if (!mem)
1019		return -EINVAL;
1020	irq = platform_get_irq(pdev, 0);
1021	if (irq < 0)
1022		return -ENXIO;
1023
1024	return __sa1111_probe(&pdev->dev, mem, irq);
1025}
1026
1027static int sa1111_remove(struct platform_device *pdev)
1028{
1029	struct sa1111 *sachip = platform_get_drvdata(pdev);
1030
1031	if (sachip) {
1032#ifdef CONFIG_PM
1033		kfree(sachip->saved_state);
1034		sachip->saved_state = NULL;
1035#endif
1036		__sa1111_remove(sachip);
1037		platform_set_drvdata(pdev, NULL);
1038	}
1039
1040	return 0;
1041}
1042
1043/*
1044 *	Not sure if this should be on the system bus or not yet.
1045 *	We really want some way to register a system device at
1046 *	the per-machine level, and then have this driver pick
1047 *	up the registered devices.
1048 *
1049 *	We also need to handle the SDRAM configuration for
1050 *	PXA250/SA1110 machine classes.
1051 */
1052static struct platform_driver sa1111_device_driver = {
1053	.probe		= sa1111_probe,
1054	.remove		= sa1111_remove,
1055	.suspend	= sa1111_suspend,
1056	.resume		= sa1111_resume,
1057	.driver		= {
1058		.name	= "sa1111",
1059	},
1060};
1061
1062/*
1063 *	Get the parent device driver (us) structure
1064 *	from a child function device
1065 */
1066static inline struct sa1111 *sa1111_chip_driver(struct sa1111_dev *sadev)
1067{
1068	return (struct sa1111 *)dev_get_drvdata(sadev->dev.parent);
1069}
1070
1071/*
1072 * The bits in the opdiv field are non-linear.
1073 */
1074static unsigned char opdiv_table[] = { 1, 4, 2, 8 };
1075
1076static unsigned int __sa1111_pll_clock(struct sa1111 *sachip)
1077{
1078	unsigned int skcdr, fbdiv, ipdiv, opdiv;
1079
1080	skcdr = sa1111_readl(sachip->base + SA1111_SKCDR);
1081
1082	fbdiv = (skcdr & 0x007f) + 2;
1083	ipdiv = ((skcdr & 0x0f80) >> 7) + 2;
1084	opdiv = opdiv_table[(skcdr & 0x3000) >> 12];
1085
1086	return 3686400 * fbdiv / (ipdiv * opdiv);
1087}
1088
1089/**
1090 *	sa1111_pll_clock - return the current PLL clock frequency.
1091 *	@sadev: SA1111 function block
1092 *
1093 *	BUG: we should look at SKCR.  We also blindly believe that
1094 *	the chip is being fed with the 3.6864MHz clock.
1095 *
1096 *	Returns the PLL clock in Hz.
1097 */
1098unsigned int sa1111_pll_clock(struct sa1111_dev *sadev)
1099{
1100	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1101
1102	return __sa1111_pll_clock(sachip);
1103}
1104EXPORT_SYMBOL(sa1111_pll_clock);
1105
1106/**
1107 *	sa1111_select_audio_mode - select I2S or AC link mode
1108 *	@sadev: SA1111 function block
1109 *	@mode: One of %SA1111_AUDIO_ACLINK or %SA1111_AUDIO_I2S
1110 *
1111 *	Frob the SKCR to select AC Link mode or I2S mode for
1112 *	the audio block.
1113 */
1114void sa1111_select_audio_mode(struct sa1111_dev *sadev, int mode)
1115{
1116	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1117	unsigned long flags;
1118	unsigned int val;
1119
1120	spin_lock_irqsave(&sachip->lock, flags);
1121
1122	val = sa1111_readl(sachip->base + SA1111_SKCR);
1123	if (mode == SA1111_AUDIO_I2S) {
1124		val &= ~SKCR_SELAC;
1125	} else {
1126		val |= SKCR_SELAC;
1127	}
1128	sa1111_writel(val, sachip->base + SA1111_SKCR);
1129
1130	spin_unlock_irqrestore(&sachip->lock, flags);
1131}
1132EXPORT_SYMBOL(sa1111_select_audio_mode);
1133
1134/**
1135 *	sa1111_set_audio_rate - set the audio sample rate
1136 *	@sadev: SA1111 SAC function block
1137 *	@rate: sample rate to select
1138 */
1139int sa1111_set_audio_rate(struct sa1111_dev *sadev, int rate)
1140{
1141	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1142	unsigned int div;
1143
1144	if (sadev->devid != SA1111_DEVID_SAC)
1145		return -EINVAL;
1146
1147	div = (__sa1111_pll_clock(sachip) / 256 + rate / 2) / rate;
1148	if (div == 0)
1149		div = 1;
1150	if (div > 128)
1151		div = 128;
1152
1153	sa1111_writel(div - 1, sachip->base + SA1111_SKAUD);
1154
1155	return 0;
1156}
1157EXPORT_SYMBOL(sa1111_set_audio_rate);
1158
1159/**
1160 *	sa1111_get_audio_rate - get the audio sample rate
1161 *	@sadev: SA1111 SAC function block device
1162 */
1163int sa1111_get_audio_rate(struct sa1111_dev *sadev)
1164{
1165	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1166	unsigned long div;
1167
1168	if (sadev->devid != SA1111_DEVID_SAC)
1169		return -EINVAL;
1170
1171	div = sa1111_readl(sachip->base + SA1111_SKAUD) + 1;
1172
1173	return __sa1111_pll_clock(sachip) / (256 * div);
1174}
1175EXPORT_SYMBOL(sa1111_get_audio_rate);
1176
1177void sa1111_set_io_dir(struct sa1111_dev *sadev,
1178		       unsigned int bits, unsigned int dir,
1179		       unsigned int sleep_dir)
1180{
1181	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1182	unsigned long flags;
1183	unsigned int val;
1184	void __iomem *gpio = sachip->base + SA1111_GPIO;
1185
1186#define MODIFY_BITS(port, mask, dir)		\
1187	if (mask) {				\
1188		val = sa1111_readl(port);	\
1189		val &= ~(mask);			\
1190		val |= (dir) & (mask);		\
1191		sa1111_writel(val, port);	\
1192	}
1193
1194	spin_lock_irqsave(&sachip->lock, flags);
1195	MODIFY_BITS(gpio + SA1111_GPIO_PADDR, bits & 15, dir);
1196	MODIFY_BITS(gpio + SA1111_GPIO_PBDDR, (bits >> 8) & 255, dir >> 8);
1197	MODIFY_BITS(gpio + SA1111_GPIO_PCDDR, (bits >> 16) & 255, dir >> 16);
1198
1199	MODIFY_BITS(gpio + SA1111_GPIO_PASDR, bits & 15, sleep_dir);
1200	MODIFY_BITS(gpio + SA1111_GPIO_PBSDR, (bits >> 8) & 255, sleep_dir >> 8);
1201	MODIFY_BITS(gpio + SA1111_GPIO_PCSDR, (bits >> 16) & 255, sleep_dir >> 16);
1202	spin_unlock_irqrestore(&sachip->lock, flags);
1203}
1204EXPORT_SYMBOL(sa1111_set_io_dir);
1205
1206void sa1111_set_io(struct sa1111_dev *sadev, unsigned int bits, unsigned int v)
1207{
1208	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1209	unsigned long flags;
1210	unsigned int val;
1211	void __iomem *gpio = sachip->base + SA1111_GPIO;
1212
1213	spin_lock_irqsave(&sachip->lock, flags);
1214	MODIFY_BITS(gpio + SA1111_GPIO_PADWR, bits & 15, v);
1215	MODIFY_BITS(gpio + SA1111_GPIO_PBDWR, (bits >> 8) & 255, v >> 8);
1216	MODIFY_BITS(gpio + SA1111_GPIO_PCDWR, (bits >> 16) & 255, v >> 16);
1217	spin_unlock_irqrestore(&sachip->lock, flags);
1218}
1219EXPORT_SYMBOL(sa1111_set_io);
1220
1221void sa1111_set_sleep_io(struct sa1111_dev *sadev, unsigned int bits, unsigned int v)
1222{
1223	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1224	unsigned long flags;
1225	unsigned int val;
1226	void __iomem *gpio = sachip->base + SA1111_GPIO;
1227
1228	spin_lock_irqsave(&sachip->lock, flags);
1229	MODIFY_BITS(gpio + SA1111_GPIO_PASSR, bits & 15, v);
1230	MODIFY_BITS(gpio + SA1111_GPIO_PBSSR, (bits >> 8) & 255, v >> 8);
1231	MODIFY_BITS(gpio + SA1111_GPIO_PCSSR, (bits >> 16) & 255, v >> 16);
1232	spin_unlock_irqrestore(&sachip->lock, flags);
1233}
1234EXPORT_SYMBOL(sa1111_set_sleep_io);
1235
1236/*
1237 * Individual device operations.
1238 */
1239
1240/**
1241 *	sa1111_enable_device - enable an on-chip SA1111 function block
1242 *	@sadev: SA1111 function block device to enable
1243 */
1244int sa1111_enable_device(struct sa1111_dev *sadev)
1245{
1246	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1247	unsigned long flags;
1248	unsigned int val;
1249	int ret = 0;
1250
1251	if (sachip->pdata && sachip->pdata->enable)
1252		ret = sachip->pdata->enable(sachip->pdata->data, sadev->devid);
1253
1254	if (ret == 0) {
1255		spin_lock_irqsave(&sachip->lock, flags);
1256		val = sa1111_readl(sachip->base + SA1111_SKPCR);
1257		sa1111_writel(val | sadev->skpcr_mask, sachip->base + SA1111_SKPCR);
1258		spin_unlock_irqrestore(&sachip->lock, flags);
1259	}
1260	return ret;
1261}
1262EXPORT_SYMBOL(sa1111_enable_device);
1263
1264/**
1265 *	sa1111_disable_device - disable an on-chip SA1111 function block
1266 *	@sadev: SA1111 function block device to disable
1267 */
1268void sa1111_disable_device(struct sa1111_dev *sadev)
1269{
1270	struct sa1111 *sachip = sa1111_chip_driver(sadev);
1271	unsigned long flags;
1272	unsigned int val;
1273
1274	spin_lock_irqsave(&sachip->lock, flags);
1275	val = sa1111_readl(sachip->base + SA1111_SKPCR);
1276	sa1111_writel(val & ~sadev->skpcr_mask, sachip->base + SA1111_SKPCR);
1277	spin_unlock_irqrestore(&sachip->lock, flags);
1278
1279	if (sachip->pdata && sachip->pdata->disable)
1280		sachip->pdata->disable(sachip->pdata->data, sadev->devid);
1281}
1282EXPORT_SYMBOL(sa1111_disable_device);
1283
1284/*
1285 *	SA1111 "Register Access Bus."
1286 *
1287 *	We model this as a regular bus type, and hang devices directly
1288 *	off this.
1289 */
1290static int sa1111_match(struct device *_dev, struct device_driver *_drv)
1291{
1292	struct sa1111_dev *dev = SA1111_DEV(_dev);
1293	struct sa1111_driver *drv = SA1111_DRV(_drv);
1294
1295	return dev->devid & drv->devid;
1296}
1297
1298static int sa1111_bus_suspend(struct device *dev, pm_message_t state)
1299{
1300	struct sa1111_dev *sadev = SA1111_DEV(dev);
1301	struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1302	int ret = 0;
1303
1304	if (drv && drv->suspend)
1305		ret = drv->suspend(sadev, state);
1306	return ret;
1307}
1308
1309static int sa1111_bus_resume(struct device *dev)
1310{
1311	struct sa1111_dev *sadev = SA1111_DEV(dev);
1312	struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1313	int ret = 0;
1314
1315	if (drv && drv->resume)
1316		ret = drv->resume(sadev);
1317	return ret;
1318}
1319
1320static void sa1111_bus_shutdown(struct device *dev)
1321{
1322	struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1323
1324	if (drv && drv->shutdown)
1325		drv->shutdown(SA1111_DEV(dev));
1326}
1327
1328static int sa1111_bus_probe(struct device *dev)
1329{
1330	struct sa1111_dev *sadev = SA1111_DEV(dev);
1331	struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1332	int ret = -ENODEV;
1333
1334	if (drv->probe)
1335		ret = drv->probe(sadev);
1336	return ret;
1337}
1338
1339static int sa1111_bus_remove(struct device *dev)
1340{
1341	struct sa1111_dev *sadev = SA1111_DEV(dev);
1342	struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1343	int ret = 0;
1344
1345	if (drv->remove)
1346		ret = drv->remove(sadev);
1347	return ret;
1348}
1349
1350struct bus_type sa1111_bus_type = {
1351	.name		= "sa1111-rab",
1352	.match		= sa1111_match,
1353	.probe		= sa1111_bus_probe,
1354	.remove		= sa1111_bus_remove,
1355	.suspend	= sa1111_bus_suspend,
1356	.resume		= sa1111_bus_resume,
1357	.shutdown	= sa1111_bus_shutdown,
1358};
1359EXPORT_SYMBOL(sa1111_bus_type);
1360
1361int sa1111_driver_register(struct sa1111_driver *driver)
1362{
1363	driver->drv.bus = &sa1111_bus_type;
1364	return driver_register(&driver->drv);
1365}
1366EXPORT_SYMBOL(sa1111_driver_register);
1367
1368void sa1111_driver_unregister(struct sa1111_driver *driver)
1369{
1370	driver_unregister(&driver->drv);
1371}
1372EXPORT_SYMBOL(sa1111_driver_unregister);
1373
1374#ifdef CONFIG_DMABOUNCE
1375/*
1376 * According to the "Intel StrongARM SA-1111 Microprocessor Companion
1377 * Chip Specification Update" (June 2000), erratum #7, there is a
1378 * significant bug in the SA1111 SDRAM shared memory controller.  If
1379 * an access to a region of memory above 1MB relative to the bank base,
1380 * it is important that address bit 10 _NOT_ be asserted. Depending
1381 * on the configuration of the RAM, bit 10 may correspond to one
1382 * of several different (processor-relative) address bits.
1383 *
1384 * This routine only identifies whether or not a given DMA address
1385 * is susceptible to the bug.
1386 *
1387 * This should only get called for sa1111_device types due to the
1388 * way we configure our device dma_masks.
1389 */
1390static int sa1111_needs_bounce(struct device *dev, dma_addr_t addr, size_t size)
1391{
1392	/*
1393	 * Section 4.6 of the "Intel StrongARM SA-1111 Development Module
1394	 * User's Guide" mentions that jumpers R51 and R52 control the
1395	 * target of SA-1111 DMA (either SDRAM bank 0 on Assabet, or
1396	 * SDRAM bank 1 on Neponset). The default configuration selects
1397	 * Assabet, so any address in bank 1 is necessarily invalid.
1398	 */
1399	return (machine_is_assabet() || machine_is_pfs168()) &&
1400		(addr >= 0xc8000000 || (addr + size) >= 0xc8000000);
1401}
1402
1403static int sa1111_notifier_call(struct notifier_block *n, unsigned long action,
1404	void *data)
1405{
1406	struct sa1111_dev *dev = SA1111_DEV(data);
1407
1408	switch (action) {
1409	case BUS_NOTIFY_ADD_DEVICE:
1410		if (dev->dev.dma_mask && dev->dma_mask < 0xffffffffUL) {
1411			int ret = dmabounce_register_dev(&dev->dev, 1024, 4096,
1412					sa1111_needs_bounce);
1413			if (ret)
1414				dev_err(&dev->dev, "failed to register with dmabounce: %d\n", ret);
1415		}
1416		break;
1417
1418	case BUS_NOTIFY_DEL_DEVICE:
1419		if (dev->dev.dma_mask && dev->dma_mask < 0xffffffffUL)
1420			dmabounce_unregister_dev(&dev->dev);
1421		break;
1422	}
1423	return NOTIFY_OK;
1424}
1425
1426static struct notifier_block sa1111_bus_notifier = {
1427	.notifier_call = sa1111_notifier_call,
1428};
1429#endif
1430
1431static int __init sa1111_init(void)
1432{
1433	int ret = bus_register(&sa1111_bus_type);
1434#ifdef CONFIG_DMABOUNCE
1435	if (ret == 0)
1436		bus_register_notifier(&sa1111_bus_type, &sa1111_bus_notifier);
1437#endif
1438	if (ret == 0)
1439		platform_driver_register(&sa1111_device_driver);
1440	return ret;
1441}
1442
1443static void __exit sa1111_exit(void)
1444{
1445	platform_driver_unregister(&sa1111_device_driver);
1446#ifdef CONFIG_DMABOUNCE
1447	bus_unregister_notifier(&sa1111_bus_type, &sa1111_bus_notifier);
1448#endif
1449	bus_unregister(&sa1111_bus_type);
1450}
1451
1452subsys_initcall(sa1111_init);
1453module_exit(sa1111_exit);
1454
1455MODULE_DESCRIPTION("Intel Corporation SA1111 core driver");
1456MODULE_LICENSE("GPL");
1457