1/* 2 * Copyright 2004-2009 Analog Devices Inc. 3 * 4 * Licensed under the GPL-2 or later. 5 * 6 * Based on: include/asm-m68knommu/uaccess.h 7 */ 8 9#ifndef __BLACKFIN_UACCESS_H 10#define __BLACKFIN_UACCESS_H 11 12/* 13 * User space memory access functions 14 */ 15#include <linux/sched.h> 16#include <linux/mm.h> 17#include <linux/string.h> 18 19#include <asm/segment.h> 20#include <asm/sections.h> 21 22#define get_ds() (KERNEL_DS) 23#define get_fs() (current_thread_info()->addr_limit) 24 25static inline void set_fs(mm_segment_t fs) 26{ 27 current_thread_info()->addr_limit = fs; 28} 29 30#define segment_eq(a, b) ((a) == (b)) 31 32#define VERIFY_READ 0 33#define VERIFY_WRITE 1 34 35#define access_ok(type, addr, size) _access_ok((unsigned long)(addr), (size)) 36 37/* 38 * The fs value determines whether argument validity checking should be 39 * performed or not. If get_fs() == USER_DS, checking is performed, with 40 * get_fs() == KERNEL_DS, checking is bypassed. 41 */ 42 43#ifndef CONFIG_ACCESS_CHECK 44static inline int _access_ok(unsigned long addr, unsigned long size) { return 1; } 45#else 46extern int _access_ok(unsigned long addr, unsigned long size); 47#endif 48 49/* 50 * The exception table consists of pairs of addresses: the first is the 51 * address of an instruction that is allowed to fault, and the second is 52 * the address at which the program should continue. No registers are 53 * modified, so it is entirely up to the continuation code to figure out 54 * what to do. 55 * 56 * All the routines below use bits of fixup code that are out of line 57 * with the main instruction path. This means when everything is well, 58 * we don't even have to jump over them. Further, they do not intrude 59 * on our cache or tlb entries. 60 */ 61 62struct exception_table_entry { 63 unsigned long insn, fixup; 64}; 65 66/* 67 * These are the main single-value transfer routines. They automatically 68 * use the right size if we just have the right pointer type. 69 */ 70 71#define put_user(x, p) \ 72 ({ \ 73 int _err = 0; \ 74 typeof(*(p)) _x = (x); \ 75 typeof(*(p)) __user *_p = (p); \ 76 if (!access_ok(VERIFY_WRITE, _p, sizeof(*(_p)))) {\ 77 _err = -EFAULT; \ 78 } \ 79 else { \ 80 switch (sizeof (*(_p))) { \ 81 case 1: \ 82 __put_user_asm(_x, _p, B); \ 83 break; \ 84 case 2: \ 85 __put_user_asm(_x, _p, W); \ 86 break; \ 87 case 4: \ 88 __put_user_asm(_x, _p, ); \ 89 break; \ 90 case 8: { \ 91 long _xl, _xh; \ 92 _xl = ((__force long *)&_x)[0]; \ 93 _xh = ((__force long *)&_x)[1]; \ 94 __put_user_asm(_xl, ((__force long __user *)_p)+0, );\ 95 __put_user_asm(_xh, ((__force long __user *)_p)+1, );\ 96 } break; \ 97 default: \ 98 _err = __put_user_bad(); \ 99 break; \ 100 } \ 101 } \ 102 _err; \ 103 }) 104 105#define __put_user(x, p) put_user(x, p) 106static inline int bad_user_access_length(void) 107{ 108 panic("bad_user_access_length"); 109 return -1; 110} 111 112#define __put_user_bad() (printk(KERN_INFO "put_user_bad %s:%d %s\n",\ 113 __FILE__, __LINE__, __func__),\ 114 bad_user_access_length(), (-EFAULT)) 115 116/* 117 * Tell gcc we read from memory instead of writing: this is because 118 * we do not write to any memory gcc knows about, so there are no 119 * aliasing issues. 120 */ 121 122#define __ptr(x) ((unsigned long __force *)(x)) 123 124#define __put_user_asm(x, p, bhw) \ 125 __asm__ (#bhw"[%1] = %0;\n\t" \ 126 : /* no outputs */ \ 127 :"d" (x), "a" (__ptr(p)) : "memory") 128 129#define get_user(x, ptr) \ 130({ \ 131 int _err = 0; \ 132 unsigned long _val = 0; \ 133 const typeof(*(ptr)) __user *_p = (ptr); \ 134 const size_t ptr_size = sizeof(*(_p)); \ 135 if (likely(access_ok(VERIFY_READ, _p, ptr_size))) { \ 136 BUILD_BUG_ON(ptr_size >= 8); \ 137 switch (ptr_size) { \ 138 case 1: \ 139 __get_user_asm(_val, _p, B, (Z)); \ 140 break; \ 141 case 2: \ 142 __get_user_asm(_val, _p, W, (Z)); \ 143 break; \ 144 case 4: \ 145 __get_user_asm(_val, _p, , ); \ 146 break; \ 147 } \ 148 } else \ 149 _err = -EFAULT; \ 150 x = (__force typeof(*(ptr)))_val; \ 151 _err; \ 152}) 153 154#define __get_user(x, p) get_user(x, p) 155 156#define __get_user_bad() (bad_user_access_length(), (-EFAULT)) 157 158#define __get_user_asm(x, ptr, bhw, option) \ 159({ \ 160 __asm__ __volatile__ ( \ 161 "%0 =" #bhw "[%1]" #option ";" \ 162 : "=d" (x) \ 163 : "a" (__ptr(ptr))); \ 164}) 165 166#define __copy_from_user(to, from, n) copy_from_user(to, from, n) 167#define __copy_to_user(to, from, n) copy_to_user(to, from, n) 168#define __copy_to_user_inatomic __copy_to_user 169#define __copy_from_user_inatomic __copy_from_user 170 171#define copy_to_user_ret(to, from, n, retval) ({ if (copy_to_user(to, from, n))\ 172 return retval; }) 173 174#define copy_from_user_ret(to, from, n, retval) ({ if (copy_from_user(to, from, n))\ 175 return retval; }) 176 177static inline unsigned long __must_check 178copy_from_user(void *to, const void __user *from, unsigned long n) 179{ 180 if (access_ok(VERIFY_READ, from, n)) 181 memcpy(to, (const void __force *)from, n); 182 else 183 return n; 184 return 0; 185} 186 187static inline unsigned long __must_check 188copy_to_user(void __user *to, const void *from, unsigned long n) 189{ 190 if (access_ok(VERIFY_WRITE, to, n)) 191 memcpy((void __force *)to, from, n); 192 else 193 return n; 194 SSYNC(); 195 return 0; 196} 197 198/* 199 * Copy a null terminated string from userspace. 200 */ 201 202static inline long __must_check 203strncpy_from_user(char *dst, const char __user *src, long count) 204{ 205 char *tmp; 206 if (!access_ok(VERIFY_READ, src, 1)) 207 return -EFAULT; 208 strncpy(dst, (const char __force *)src, count); 209 for (tmp = dst; *tmp && count > 0; tmp++, count--) ; 210 return (tmp - dst); 211} 212 213/* 214 * Get the size of a string in user space. 215 * src: The string to measure 216 * n: The maximum valid length 217 * 218 * Get the size of a NUL-terminated string in user space. 219 * 220 * Returns the size of the string INCLUDING the terminating NUL. 221 * On exception, returns 0. 222 * If the string is too long, returns a value greater than n. 223 */ 224static inline long __must_check strnlen_user(const char __user *src, long n) 225{ 226 if (!access_ok(VERIFY_READ, src, 1)) 227 return 0; 228 return strnlen((const char __force *)src, n) + 1; 229} 230 231static inline long __must_check strlen_user(const char __user *src) 232{ 233 if (!access_ok(VERIFY_READ, src, 1)) 234 return 0; 235 return strlen((const char __force *)src) + 1; 236} 237 238/* 239 * Zero Userspace 240 */ 241 242static inline unsigned long __must_check 243__clear_user(void __user *to, unsigned long n) 244{ 245 if (!access_ok(VERIFY_WRITE, to, n)) 246 return n; 247 memset((void __force *)to, 0, n); 248 return 0; 249} 250 251#define clear_user(to, n) __clear_user(to, n) 252 253/* How to interpret these return values: 254 * CORE: can be accessed by core load or dma memcpy 255 * CORE_ONLY: can only be accessed by core load 256 * DMA: can only be accessed by dma memcpy 257 * IDMA: can only be accessed by interprocessor dma memcpy (BF561) 258 * ITEST: can be accessed by isram memcpy or dma memcpy 259 */ 260enum { 261 BFIN_MEM_ACCESS_CORE = 0, 262 BFIN_MEM_ACCESS_CORE_ONLY, 263 BFIN_MEM_ACCESS_DMA, 264 BFIN_MEM_ACCESS_IDMA, 265 BFIN_MEM_ACCESS_ITEST, 266}; 267/** 268 * bfin_mem_access_type() - what kind of memory access is required 269 * @addr: the address to check 270 * @size: number of bytes needed 271 * @return: <0 is error, >=0 is BFIN_MEM_ACCESS_xxx enum (see above) 272 */ 273int bfin_mem_access_type(unsigned long addr, unsigned long size); 274 275#endif /* _BLACKFIN_UACCESS_H */ 276