1/* 2 * CRIS pgtable.h - macros and functions to manipulate page tables. 3 */ 4 5#ifndef _CRIS_PGTABLE_H 6#define _CRIS_PGTABLE_H 7 8#include <asm/page.h> 9#include <asm-generic/pgtable-nopmd.h> 10 11#ifndef __ASSEMBLY__ 12#include <linux/sched.h> 13#include <asm/mmu.h> 14#endif 15#include <arch/pgtable.h> 16 17/* 18 * The Linux memory management assumes a three-level page table setup. On 19 * CRIS, we use that, but "fold" the mid level into the top-level page 20 * table. Since the MMU TLB is software loaded through an interrupt, it 21 * supports any page table structure, so we could have used a three-level 22 * setup, but for the amounts of memory we normally use, a two-level is 23 * probably more efficient. 24 * 25 * This file contains the functions and defines necessary to modify and use 26 * the CRIS page table tree. 27 */ 28#ifndef __ASSEMBLY__ 29extern void paging_init(void); 30#endif 31 32/* Certain architectures need to do special things when pte's 33 * within a page table are directly modified. Thus, the following 34 * hook is made available. 35 */ 36#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) 37#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 38 39/* 40 * (pmds are folded into pgds so this doesn't get actually called, 41 * but the define is needed for a generic inline function.) 42 */ 43#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 44#define set_pgu(pudptr, pudval) (*(pudptr) = pudval) 45 46/* PGDIR_SHIFT determines the size of the area a second-level page table can 47 * map. It is equal to the page size times the number of PTE's that fit in 48 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number. 49 */ 50 51#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) 52#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 53#define PGDIR_MASK (~(PGDIR_SIZE-1)) 54 55/* 56 * entries per page directory level: we use a two-level, so 57 * we don't really have any PMD directory physically. 58 * pointers are 4 bytes so we can use the page size and 59 * divide it by 4 (shift by 2). 60 */ 61#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) 62#define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2)) 63 64/* calculate how many PGD entries a user-level program can use 65 * the first mappable virtual address is 0 66 * (TASK_SIZE is the maximum virtual address space) 67 */ 68 69#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 70#define FIRST_USER_ADDRESS 0UL 71 72/* zero page used for uninitialized stuff */ 73#ifndef __ASSEMBLY__ 74extern unsigned long empty_zero_page; 75#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 76#endif 77 78/* number of bits that fit into a memory pointer */ 79#define BITS_PER_PTR (8*sizeof(unsigned long)) 80 81/* to align the pointer to a pointer address */ 82#define PTR_MASK (~(sizeof(void*)-1)) 83 84/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ 85/* 64-bit machines, beware! SRB. */ 86#define SIZEOF_PTR_LOG2 2 87 88/* to find an entry in a page-table */ 89#define PAGE_PTR(address) \ 90((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) 91 92/* to set the page-dir */ 93#define SET_PAGE_DIR(tsk,pgdir) 94 95#define pte_none(x) (!pte_val(x)) 96#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 97#define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) 98 99#define pmd_none(x) (!pmd_val(x)) 100/* by removing the _PAGE_KERNEL bit from the comparison, the same pmd_bad 101 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries. 102 */ 103#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE) 104#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 105#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) 106 107#ifndef __ASSEMBLY__ 108 109/* 110 * The following only work if pte_present() is true. 111 * Undefined behaviour if not.. 112 */ 113 114static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 115static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } 116static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 117static inline int pte_special(pte_t pte) { return 0; } 118 119static inline pte_t pte_wrprotect(pte_t pte) 120{ 121 pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); 122 return pte; 123} 124 125static inline pte_t pte_mkclean(pte_t pte) 126{ 127 pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); 128 return pte; 129} 130 131static inline pte_t pte_mkold(pte_t pte) 132{ 133 pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ); 134 return pte; 135} 136 137static inline pte_t pte_mkwrite(pte_t pte) 138{ 139 pte_val(pte) |= _PAGE_WRITE; 140 if (pte_val(pte) & _PAGE_MODIFIED) 141 pte_val(pte) |= _PAGE_SILENT_WRITE; 142 return pte; 143} 144 145static inline pte_t pte_mkdirty(pte_t pte) 146{ 147 pte_val(pte) |= _PAGE_MODIFIED; 148 if (pte_val(pte) & _PAGE_WRITE) 149 pte_val(pte) |= _PAGE_SILENT_WRITE; 150 return pte; 151} 152 153static inline pte_t pte_mkyoung(pte_t pte) 154{ 155 pte_val(pte) |= _PAGE_ACCESSED; 156 if (pte_val(pte) & _PAGE_READ) 157 { 158 pte_val(pte) |= _PAGE_SILENT_READ; 159 if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) == 160 (_PAGE_WRITE | _PAGE_MODIFIED)) 161 pte_val(pte) |= _PAGE_SILENT_WRITE; 162 } 163 return pte; 164} 165static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 166 167/* 168 * Conversion functions: convert a page and protection to a page entry, 169 * and a page entry and page directory to the page they refer to. 170 */ 171 172/* What actually goes as arguments to the various functions is less than 173 * obvious, but a rule of thumb is that struct page's goes as struct page *, 174 * really physical DRAM addresses are unsigned long's, and DRAM "virtual" 175 * addresses (the 0xc0xxxxxx's) goes as void *'s. 176 */ 177 178static inline pte_t __mk_pte(void * page, pgprot_t pgprot) 179{ 180 pte_t pte; 181 /* the PTE needs a physical address */ 182 pte_val(pte) = __pa(page) | pgprot_val(pgprot); 183 return pte; 184} 185 186#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) 187 188#define mk_pte_phys(physpage, pgprot) \ 189({ \ 190 pte_t __pte; \ 191 \ 192 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ 193 __pte; \ 194}) 195 196static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 197{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 198 199#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE)) 200 201 202/* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval 203 * __pte_page(pte_val) refers to the "virtual" DRAM interval 204 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start 205 */ 206 207static inline unsigned long __pte_page(pte_t pte) 208{ 209 /* the PTE contains a physical address */ 210 return (unsigned long)__va(pte_val(pte) & PAGE_MASK); 211} 212 213#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) 214 215/* permanent address of a page */ 216 217#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) 218#define pte_page(pte) (mem_map+pte_pagenr(pte)) 219 220/* only the pte's themselves need to point to physical DRAM (see above) 221 * the pagetable links are purely handled within the kernel SW and thus 222 * don't need the __pa and __va transformations. 223 */ 224 225static inline void pmd_set(pmd_t * pmdp, pte_t * ptep) 226{ pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; } 227 228#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 229#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 230 231/* to find an entry in a page-table-directory. */ 232#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 233 234/* to find an entry in a page-table-directory */ 235static inline pgd_t * pgd_offset(const struct mm_struct *mm, unsigned long address) 236{ 237 return mm->pgd + pgd_index(address); 238} 239 240/* to find an entry in a kernel page-table-directory */ 241#define pgd_offset_k(address) pgd_offset(&init_mm, address) 242 243/* Find an entry in the third-level page table.. */ 244#define __pte_offset(address) \ 245 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 246#define pte_offset_kernel(dir, address) \ 247 ((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address)) 248#define pte_offset_map(dir, address) \ 249 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 250 251#define pte_unmap(pte) do { } while (0) 252#define pte_pfn(x) ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT) 253#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 254 255#define pte_ERROR(e) \ 256 printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) 257#define pgd_ERROR(e) \ 258 printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) 259 260 261extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ 262 263/* 264 * CRIS doesn't have any external MMU info: the kernel page 265 * tables contain all the necessary information. 266 * 267 * Actually I am not sure on what this could be used for. 268 */ 269static inline void update_mmu_cache(struct vm_area_struct * vma, 270 unsigned long address, pte_t *ptep) 271{ 272} 273 274/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ 275/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ 276 277#define __swp_type(x) (((x).val >> 5) & 0x7f) 278#define __swp_offset(x) ((x).val >> 12) 279#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) 280#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 281#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 282 283#define kern_addr_valid(addr) (1) 284 285#include <asm-generic/pgtable.h> 286 287/* 288 * No page table caches to initialise 289 */ 290#define pgtable_cache_init() do { } while (0) 291 292typedef pte_t *pte_addr_t; 293 294#endif /* __ASSEMBLY__ */ 295#endif /* _CRIS_PGTABLE_H */ 296