1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved.
7 */
8
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/delay.h>
12#include <linux/kernel.h>
13#include <linux/kdev_t.h>
14#include <linux/string.h>
15#include <linux/screen_info.h>
16#include <linux/console.h>
17#include <linux/timex.h>
18#include <linux/sched.h>
19#include <linux/ioport.h>
20#include <linux/mm.h>
21#include <linux/serial.h>
22#include <linux/irq.h>
23#include <linux/bootmem.h>
24#include <linux/mmzone.h>
25#include <linux/interrupt.h>
26#include <linux/acpi.h>
27#include <linux/compiler.h>
28#include <linux/root_dev.h>
29#include <linux/nodemask.h>
30#include <linux/pm.h>
31#include <linux/efi.h>
32
33#include <asm/io.h>
34#include <asm/sal.h>
35#include <asm/machvec.h>
36#include <asm/processor.h>
37#include <asm/vga.h>
38#include <asm/setup.h>
39#include <asm/sn/arch.h>
40#include <asm/sn/addrs.h>
41#include <asm/sn/pda.h>
42#include <asm/sn/nodepda.h>
43#include <asm/sn/sn_cpuid.h>
44#include <asm/sn/simulator.h>
45#include <asm/sn/leds.h>
46#include <asm/sn/bte.h>
47#include <asm/sn/shub_mmr.h>
48#include <asm/sn/clksupport.h>
49#include <asm/sn/sn_sal.h>
50#include <asm/sn/geo.h>
51#include <asm/sn/sn_feature_sets.h>
52#include "xtalk/xwidgetdev.h"
53#include "xtalk/hubdev.h"
54#include <asm/sn/klconfig.h>
55
56
57DEFINE_PER_CPU(struct pda_s, pda_percpu);
58
59#define MAX_PHYS_MEMORY		(1UL << IA64_MAX_PHYS_BITS)	/* Max physical address supported */
60
61extern void bte_init_node(nodepda_t *, cnodeid_t);
62
63extern void sn_timer_init(void);
64extern unsigned long last_time_offset;
65extern void (*ia64_mark_idle) (int);
66extern void snidle(int);
67
68unsigned long sn_rtc_cycles_per_second;
69EXPORT_SYMBOL(sn_rtc_cycles_per_second);
70
71DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
72EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
73
74DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]);
75EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
76
77DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
78EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
79
80char sn_system_serial_number_string[128];
81EXPORT_SYMBOL(sn_system_serial_number_string);
82u64 sn_partition_serial_number;
83EXPORT_SYMBOL(sn_partition_serial_number);
84u8 sn_partition_id;
85EXPORT_SYMBOL(sn_partition_id);
86u8 sn_system_size;
87EXPORT_SYMBOL(sn_system_size);
88u8 sn_sharing_domain_size;
89EXPORT_SYMBOL(sn_sharing_domain_size);
90u8 sn_coherency_id;
91EXPORT_SYMBOL(sn_coherency_id);
92u8 sn_region_size;
93EXPORT_SYMBOL(sn_region_size);
94int sn_prom_type;	/* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
95
96short physical_node_map[MAX_NUMALINK_NODES];
97static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
98
99EXPORT_SYMBOL(physical_node_map);
100
101int num_cnodes;
102
103static void sn_init_pdas(char **);
104static void build_cnode_tables(void);
105
106static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
107
108/*
109 * The format of "screen_info" is strange, and due to early i386-setup
110 * code. This is just enough to make the console code think we're on a
111 * VGA color display.
112 */
113struct screen_info sn_screen_info = {
114	.orig_x = 0,
115	.orig_y = 0,
116	.orig_video_mode = 3,
117	.orig_video_cols = 80,
118	.orig_video_ega_bx = 3,
119	.orig_video_lines = 25,
120	.orig_video_isVGA = 1,
121	.orig_video_points = 16
122};
123
124/*
125 * This routine can only be used during init, since
126 * smp_boot_data is an init data structure.
127 * We have to use smp_boot_data.cpu_phys_id to find
128 * the physical id of the processor because the normal
129 * cpu_physical_id() relies on data structures that
130 * may not be initialized yet.
131 */
132
133static int __init pxm_to_nasid(int pxm)
134{
135	int i;
136	int nid;
137
138	nid = pxm_to_node(pxm);
139	for (i = 0; i < num_node_memblks; i++) {
140		if (node_memblk[i].nid == nid) {
141			return NASID_GET(node_memblk[i].start_paddr);
142		}
143	}
144	return -1;
145}
146
147/**
148 * early_sn_setup - early setup routine for SN platforms
149 *
150 * Sets up an initial console to aid debugging.  Intended primarily
151 * for bringup.  See start_kernel() in init/main.c.
152 */
153
154void __init early_sn_setup(void)
155{
156	efi_system_table_t *efi_systab;
157	efi_config_table_t *config_tables;
158	struct ia64_sal_systab *sal_systab;
159	struct ia64_sal_desc_entry_point *ep;
160	char *p;
161	int i, j;
162
163	/*
164	 * Parse enough of the SAL tables to locate the SAL entry point. Since, console
165	 * IO on SN2 is done via SAL calls, early_printk won't work without this.
166	 *
167	 * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
168	 * Any changes to those file may have to be made here as well.
169	 */
170	efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
171	config_tables = __va(efi_systab->tables);
172	for (i = 0; i < efi_systab->nr_tables; i++) {
173		if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
174		    0) {
175			sal_systab = __va(config_tables[i].table);
176			p = (char *)(sal_systab + 1);
177			for (j = 0; j < sal_systab->entry_count; j++) {
178				if (*p == SAL_DESC_ENTRY_POINT) {
179					ep = (struct ia64_sal_desc_entry_point
180					      *)p;
181					ia64_sal_handler_init(__va
182							      (ep->sal_proc),
183							      __va(ep->gp));
184					return;
185				}
186				p += SAL_DESC_SIZE(*p);
187			}
188		}
189	}
190	/* Uh-oh, SAL not available?? */
191	printk(KERN_ERR "failed to find SAL entry point\n");
192}
193
194extern int platform_intr_list[];
195static int shub_1_1_found;
196
197/*
198 * sn_check_for_wars
199 *
200 * Set flag for enabling shub specific wars
201 */
202
203static inline int is_shub_1_1(int nasid)
204{
205	unsigned long id;
206	int rev;
207
208	if (is_shub2())
209		return 0;
210	id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
211	rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
212	return rev <= 2;
213}
214
215static void sn_check_for_wars(void)
216{
217	int cnode;
218
219	if (is_shub2()) {
220		/* none yet */
221	} else {
222		for_each_online_node(cnode) {
223			if (is_shub_1_1(cnodeid_to_nasid(cnode)))
224				shub_1_1_found = 1;
225		}
226	}
227}
228
229/*
230 * Scan the EFI PCDP table (if it exists) for an acceptable VGA console
231 * output device.  If one exists, pick it and set sn_legacy_{io,mem} to
232 * reflect the bus offsets needed to address it.
233 *
234 * Since pcdp support in SN is not supported in the 2.4 kernel (or at least
235 * the one lbs is based on) just declare the needed structs here.
236 *
237 * Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf
238 *
239 * Returns 0 if no acceptable vga is found, !0 otherwise.
240 *
241 * Note:  This stuff is duped here because Altix requires the PCDP to
242 * locate a usable VGA device due to lack of proper ACPI support.  Structures
243 * could be used from drivers/firmware/pcdp.h, but it was decided that moving
244 * this file to a more public location just for Altix use was undesirable.
245 */
246
247struct hcdp_uart_desc {
248	u8	pad[45];
249};
250
251struct pcdp {
252	u8	signature[4];	/* should be 'HCDP' */
253	u32	length;
254	u8	rev;		/* should be >=3 for pcdp, <3 for hcdp */
255	u8	sum;
256	u8	oem_id[6];
257	u64	oem_tableid;
258	u32	oem_rev;
259	u32	creator_id;
260	u32	creator_rev;
261	u32	num_type0;
262	struct hcdp_uart_desc uart[0];	/* num_type0 of these */
263	/* pcdp descriptors follow */
264}  __attribute__((packed));
265
266struct pcdp_device_desc {
267	u8	type;
268	u8	primary;
269	u16	length;
270	u16	index;
271	/* interconnect specific structure follows */
272	/* device specific structure follows that */
273}  __attribute__((packed));
274
275struct pcdp_interface_pci {
276	u8	type;		/* 1 == pci */
277	u8	reserved;
278	u16	length;
279	u8	segment;
280	u8	bus;
281	u8 	dev;
282	u8	fun;
283	u16	devid;
284	u16	vendid;
285	u32	acpi_interrupt;
286	u64	mmio_tra;
287	u64	ioport_tra;
288	u8	flags;
289	u8	translation;
290}  __attribute__((packed));
291
292struct pcdp_vga_device {
293	u8	num_eas_desc;
294	/* ACPI Extended Address Space Desc follows */
295}  __attribute__((packed));
296
297/* from pcdp_device_desc.primary */
298#define PCDP_PRIMARY_CONSOLE	0x01
299
300/* from pcdp_device_desc.type */
301#define PCDP_CONSOLE_INOUT	0x0
302#define PCDP_CONSOLE_DEBUG	0x1
303#define PCDP_CONSOLE_OUT	0x2
304#define PCDP_CONSOLE_IN		0x3
305#define PCDP_CONSOLE_TYPE_VGA	0x8
306
307#define PCDP_CONSOLE_VGA	(PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT)
308
309/* from pcdp_interface_pci.type */
310#define PCDP_IF_PCI		1
311
312/* from pcdp_interface_pci.translation */
313#define PCDP_PCI_TRANS_IOPORT	0x02
314#define PCDP_PCI_TRANS_MMIO	0x01
315
316#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
317static void
318sn_scan_pcdp(void)
319{
320	u8 *bp;
321	struct pcdp *pcdp;
322	struct pcdp_device_desc device;
323	struct pcdp_interface_pci if_pci;
324	extern struct efi efi;
325
326	if (efi.hcdp == EFI_INVALID_TABLE_ADDR)
327		return;		/* no hcdp/pcdp table */
328
329	pcdp = __va(efi.hcdp);
330
331	if (pcdp->rev < 3)
332		return;		/* only support PCDP (rev >= 3) */
333
334	for (bp = (u8 *)&pcdp->uart[pcdp->num_type0];
335	     bp < (u8 *)pcdp + pcdp->length;
336	     bp += device.length) {
337		memcpy(&device, bp, sizeof(device));
338		if (! (device.primary & PCDP_PRIMARY_CONSOLE))
339			continue;	/* not primary console */
340
341		if (device.type != PCDP_CONSOLE_VGA)
342			continue;	/* not VGA descriptor */
343
344		memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci));
345		if (if_pci.type != PCDP_IF_PCI)
346			continue;	/* not PCI interconnect */
347
348		if (if_pci.translation & PCDP_PCI_TRANS_IOPORT)
349			vga_console_iobase = if_pci.ioport_tra;
350
351		if (if_pci.translation & PCDP_PCI_TRANS_MMIO)
352			vga_console_membase =
353				if_pci.mmio_tra | __IA64_UNCACHED_OFFSET;
354
355		break; /* once we find the primary, we're done */
356	}
357}
358#endif
359
360static unsigned long sn2_rtc_initial;
361
362/**
363 * sn_setup - SN platform setup routine
364 * @cmdline_p: kernel command line
365 *
366 * Handles platform setup for SN machines.  This includes determining
367 * the RTC frequency (via a SAL call), initializing secondary CPUs, and
368 * setting up per-node data areas.  The console is also initialized here.
369 */
370void __init sn_setup(char **cmdline_p)
371{
372	long status, ticks_per_sec, drift;
373	u32 version = sn_sal_rev();
374	extern void sn_cpu_init(void);
375
376	sn2_rtc_initial = rtc_time();
377	ia64_sn_plat_set_error_handling_features();	// obsolete
378	ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
379	ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
380	/*
381	 * Note: The calls to notify the PROM of ACPI and PCI Segment
382	 *	 support must be done prior to acpi_load_tables(), as
383	 *	 an ACPI capable PROM will rebuild the DSDT as result
384	 *	 of the call.
385	 */
386	ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE);
387	ia64_sn_set_os_feature(OSF_ACPI_ENABLE);
388
389	/* Load the new DSDT and SSDT tables into the global table list. */
390	acpi_table_init();
391
392#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
393	/*
394	 * Handle SN vga console.
395	 *
396	 * SN systems do not have enough ACPI table information
397	 * being passed from prom to identify VGA adapters and the legacy
398	 * addresses to access them.  Until that is done, SN systems rely
399	 * on the PCDP table to identify the primary VGA console if one
400	 * exists.
401	 *
402	 * However, kernel PCDP support is optional, and even if it is built
403	 * into the kernel, it will not be used if the boot cmdline contains
404	 * console= directives.
405	 *
406	 * So, to work around this mess, we duplicate some of the PCDP code
407	 * here so that the primary VGA console (as defined by PCDP) will
408	 * work on SN systems even if a different console (e.g. serial) is
409	 * selected on the boot line (or CONFIG_EFI_PCDP is off).
410	 */
411
412	if (! vga_console_membase)
413		sn_scan_pcdp();
414
415	/*
416	 *	Setup legacy IO space.
417	 *	vga_console_iobase maps to PCI IO Space address 0 on the
418	 * 	bus containing the VGA console.
419	 */
420	if (vga_console_iobase) {
421		io_space[0].mmio_base =
422			(unsigned long) ioremap(vga_console_iobase, 0);
423		io_space[0].sparse = 0;
424	}
425
426	if (vga_console_membase) {
427		/* usable vga ... make tty0 the preferred default console */
428		if (!strstr(*cmdline_p, "console="))
429			add_preferred_console("tty", 0, NULL);
430	} else {
431		printk(KERN_DEBUG "SGI: Disabling VGA console\n");
432		if (!strstr(*cmdline_p, "console="))
433			add_preferred_console("ttySG", 0, NULL);
434#ifdef CONFIG_DUMMY_CONSOLE
435		conswitchp = &dummy_con;
436#else
437		conswitchp = NULL;
438#endif				/* CONFIG_DUMMY_CONSOLE */
439	}
440#endif				/* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
441
442	MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
443
444	/*
445	 * Build the tables for managing cnodes.
446	 */
447	build_cnode_tables();
448
449	status =
450	    ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
451			       &drift);
452	if (status != 0 || ticks_per_sec < 100000) {
453		printk(KERN_WARNING
454		       "unable to determine platform RTC clock frequency, guessing.\n");
455		/* PROM gives wrong value for clock freq. so guess */
456		sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
457	} else
458		sn_rtc_cycles_per_second = ticks_per_sec;
459
460	platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
461
462	printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
463
464	/*
465	 * we set the default root device to /dev/hda
466	 * to make simulation easy
467	 */
468	ROOT_DEV = Root_HDA1;
469
470	/*
471	 * Create the PDAs and NODEPDAs for all the cpus.
472	 */
473	sn_init_pdas(cmdline_p);
474
475	ia64_mark_idle = &snidle;
476
477	/*
478	 * For the bootcpu, we do this here. All other cpus will make the
479	 * call as part of cpu_init in slave cpu initialization.
480	 */
481	sn_cpu_init();
482
483#ifdef CONFIG_SMP
484	init_smp_config();
485#endif
486	screen_info = sn_screen_info;
487
488	sn_timer_init();
489
490	/*
491	 * set pm_power_off to a SAL call to allow
492	 * sn machines to power off. The SAL call can be replaced
493	 * by an ACPI interface call when ACPI is fully implemented
494	 * for sn.
495	 */
496	pm_power_off = ia64_sn_power_down;
497	current->thread.flags |= IA64_THREAD_MIGRATION;
498}
499
500/**
501 * sn_init_pdas - setup node data areas
502 *
503 * One time setup for Node Data Area.  Called by sn_setup().
504 */
505static void __init sn_init_pdas(char **cmdline_p)
506{
507	cnodeid_t cnode;
508
509	/*
510	 * Allocate & initialize the nodepda for each node.
511	 */
512	for_each_online_node(cnode) {
513		nodepdaindr[cnode] =
514		    alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
515		memset(nodepdaindr[cnode]->phys_cpuid, -1,
516		    sizeof(nodepdaindr[cnode]->phys_cpuid));
517		spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
518	}
519
520	/*
521	 * Allocate & initialize nodepda for TIOs.  For now, put them on node 0.
522	 */
523	for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++)
524		nodepdaindr[cnode] =
525		    alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
526
527	/*
528	 * Now copy the array of nodepda pointers to each nodepda.
529	 */
530	for (cnode = 0; cnode < num_cnodes; cnode++)
531		memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
532		       sizeof(nodepdaindr));
533
534	/*
535	 * Set up IO related platform-dependent nodepda fields.
536	 * The following routine actually sets up the hubinfo struct
537	 * in nodepda.
538	 */
539	for_each_online_node(cnode) {
540		bte_init_node(nodepdaindr[cnode], cnode);
541	}
542
543	/*
544	 * Initialize the per node hubdev.  This includes IO Nodes and
545	 * headless/memless nodes.
546	 */
547	for (cnode = 0; cnode < num_cnodes; cnode++) {
548		hubdev_init_node(nodepdaindr[cnode], cnode);
549	}
550}
551
552/**
553 * sn_cpu_init - initialize per-cpu data areas
554 * @cpuid: cpuid of the caller
555 *
556 * Called during cpu initialization on each cpu as it starts.
557 * Currently, initializes the per-cpu data area for SNIA.
558 * Also sets up a few fields in the nodepda.  Also known as
559 * platform_cpu_init() by the ia64 machvec code.
560 */
561void sn_cpu_init(void)
562{
563	int cpuid;
564	int cpuphyid;
565	int nasid;
566	int subnode;
567	int slice;
568	int cnode;
569	int i;
570	static int wars_have_been_checked, set_cpu0_number;
571
572	cpuid = smp_processor_id();
573	if (cpuid == 0 && IS_MEDUSA()) {
574		if (ia64_sn_is_fake_prom())
575			sn_prom_type = 2;
576		else
577			sn_prom_type = 1;
578		printk(KERN_INFO "Running on medusa with %s PROM\n",
579		       (sn_prom_type == 1) ? "real" : "fake");
580	}
581
582	memset(pda, 0, sizeof(*pda));
583	if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
584				&sn_hub_info->nasid_bitmask,
585				&sn_hub_info->nasid_shift,
586				&sn_system_size, &sn_sharing_domain_size,
587				&sn_partition_id, &sn_coherency_id,
588				&sn_region_size))
589		BUG();
590	sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
591
592	/*
593	 * Don't check status. The SAL call is not supported on all PROMs
594	 * but a failure is harmless.
595	 * Architecturally, cpu_init is always called twice on cpu 0. We
596	 * should set cpu_number on cpu 0 once.
597	 */
598	if (cpuid == 0) {
599		if (!set_cpu0_number) {
600			(void) ia64_sn_set_cpu_number(cpuid);
601			set_cpu0_number = 1;
602		}
603	} else
604		(void) ia64_sn_set_cpu_number(cpuid);
605
606	/*
607	 * The boot cpu makes this call again after platform initialization is
608	 * complete.
609	 */
610	if (nodepdaindr[0] == NULL)
611		return;
612
613	for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
614		if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
615			break;
616
617	cpuphyid = get_sapicid();
618
619	if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
620		BUG();
621
622	for (i=0; i < MAX_NUMNODES; i++) {
623		if (nodepdaindr[i]) {
624			nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
625			nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
626			nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
627		}
628	}
629
630	cnode = nasid_to_cnodeid(nasid);
631
632	__this_cpu_write(__sn_nodepda, nodepdaindr[cnode]);
633
634	pda->led_address =
635	    (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
636	pda->led_state = LED_ALWAYS_SET;
637	pda->hb_count = HZ / 2;
638	pda->hb_state = 0;
639	pda->idle_flag = 0;
640
641	if (cpuid != 0) {
642		/* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
643		memcpy(sn_cnodeid_to_nasid,
644		       (&per_cpu(__sn_cnodeid_to_nasid, 0)),
645		       sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
646	}
647
648	/*
649	 * Check for WARs.
650	 * Only needs to be done once, on BSP.
651	 * Has to be done after loop above, because it uses this cpu's
652	 * sn_cnodeid_to_nasid table which was just initialized if this
653	 * isn't cpu 0.
654	 * Has to be done before assignment below.
655	 */
656	if (!wars_have_been_checked) {
657		sn_check_for_wars();
658		wars_have_been_checked = 1;
659	}
660	sn_hub_info->shub_1_1_found = shub_1_1_found;
661
662	/*
663	 * Set up addresses of PIO/MEM write status registers.
664	 */
665	{
666		u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
667		u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
668			SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
669		u64 *pio;
670		pio = is_shub1() ? pio1 : pio2;
671		pda->pio_write_status_addr =
672		   (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]);
673		pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
674	}
675
676	/*
677	 * WAR addresses for SHUB 1.x.
678	 */
679	if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
680		int buddy_nasid;
681		buddy_nasid =
682		    cnodeid_to_nasid(numa_node_id() ==
683				     num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
684		pda->pio_shub_war_cam_addr =
685		    (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
686							      SH1_PI_CAM_CONTROL);
687	}
688}
689
690/*
691 * Build tables for converting between NASIDs and cnodes.
692 */
693static inline int __init board_needs_cnode(int type)
694{
695	return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
696}
697
698void __init build_cnode_tables(void)
699{
700	int nasid;
701	int node;
702	lboard_t *brd;
703
704	memset(physical_node_map, -1, sizeof(physical_node_map));
705	memset(sn_cnodeid_to_nasid, -1,
706			sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
707
708	/*
709	 * First populate the tables with C/M bricks. This ensures that
710	 * cnode == node for all C & M bricks.
711	 */
712	for_each_online_node(node) {
713		nasid = pxm_to_nasid(node_to_pxm(node));
714		sn_cnodeid_to_nasid[node] = nasid;
715		physical_node_map[nasid] = node;
716	}
717
718	/*
719	 * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
720	 * limit on the number of nodes, we can't use the generic node numbers
721	 * for this. Note that num_cnodes is incremented below as TIOs or
722	 * headless/memoryless nodes are discovered.
723	 */
724	num_cnodes = num_online_nodes();
725
726	/* fakeprom does not support klgraph */
727	if (IS_RUNNING_ON_FAKE_PROM())
728		return;
729
730	/* Find TIOs & headless/memoryless nodes and add them to the tables */
731	for_each_online_node(node) {
732		kl_config_hdr_t *klgraph_header;
733		nasid = cnodeid_to_nasid(node);
734		klgraph_header = ia64_sn_get_klconfig_addr(nasid);
735		BUG_ON(klgraph_header == NULL);
736		brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
737		while (brd) {
738			if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
739				sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
740				physical_node_map[brd->brd_nasid] = num_cnodes++;
741			}
742			brd = find_lboard_next(brd);
743		}
744	}
745}
746
747int
748nasid_slice_to_cpuid(int nasid, int slice)
749{
750	long cpu;
751
752	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
753		if (cpuid_to_nasid(cpu) == nasid &&
754					cpuid_to_slice(cpu) == slice)
755			return cpu;
756
757	return -1;
758}
759
760int sn_prom_feature_available(int id)
761{
762	if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
763		return 0;
764	return test_bit(id, sn_prom_features);
765}
766
767void
768sn_kernel_launch_event(void)
769{
770	/* ignore status until we understand possible failure, if any*/
771	if (ia64_sn_kernel_launch_event())
772		printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n");
773}
774EXPORT_SYMBOL(sn_prom_feature_available);
775
776