1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2011 Cavium Networks
7 * Copyright (C) 2008 Wind River Systems
8 */
9
10#include <linux/delay.h>
11#include <linux/init.h>
12#include <linux/irq.h>
13#include <linux/i2c.h>
14#include <linux/usb.h>
15#include <linux/dma-mapping.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/slab.h>
19#include <linux/platform_device.h>
20#include <linux/of_platform.h>
21#include <linux/of_fdt.h>
22#include <linux/libfdt.h>
23#include <linux/usb/ehci_pdriver.h>
24#include <linux/usb/ohci_pdriver.h>
25
26#include <asm/octeon/octeon.h>
27#include <asm/octeon/cvmx-rnm-defs.h>
28#include <asm/octeon/cvmx-helper.h>
29#include <asm/octeon/cvmx-helper-board.h>
30#include <asm/octeon/cvmx-uctlx-defs.h>
31
32/* Octeon Random Number Generator.  */
33static int __init octeon_rng_device_init(void)
34{
35	struct platform_device *pd;
36	int ret = 0;
37
38	struct resource rng_resources[] = {
39		{
40			.flags	= IORESOURCE_MEM,
41			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43		}, {
44			.flags	= IORESOURCE_MEM,
45			.start	= cvmx_build_io_address(8, 0),
46			.end	= cvmx_build_io_address(8, 0) + 0x7
47		}
48	};
49
50	pd = platform_device_alloc("octeon_rng", -1);
51	if (!pd) {
52		ret = -ENOMEM;
53		goto out;
54	}
55
56	ret = platform_device_add_resources(pd, rng_resources,
57					    ARRAY_SIZE(rng_resources));
58	if (ret)
59		goto fail;
60
61	ret = platform_device_add(pd);
62	if (ret)
63		goto fail;
64
65	return ret;
66fail:
67	platform_device_put(pd);
68
69out:
70	return ret;
71}
72device_initcall(octeon_rng_device_init);
73
74#ifdef CONFIG_USB
75
76static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
77
78static int octeon2_usb_clock_start_cnt;
79
80static void octeon2_usb_clocks_start(struct device *dev)
81{
82	u64 div;
83	union cvmx_uctlx_if_ena if_ena;
84	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87	int i;
88	unsigned long io_clk_64_to_ns;
89	u32 clock_rate = 12000000;
90	bool is_crystal_clock = false;
91
92
93	mutex_lock(&octeon2_usb_clocks_mutex);
94
95	octeon2_usb_clock_start_cnt++;
96	if (octeon2_usb_clock_start_cnt != 1)
97		goto exit;
98
99	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
100
101	if (dev->of_node) {
102		struct device_node *uctl_node;
103		const char *clock_type;
104
105		uctl_node = of_get_parent(dev->of_node);
106		if (!uctl_node) {
107			dev_err(dev, "No UCTL device node\n");
108			goto exit;
109		}
110		i = of_property_read_u32(uctl_node,
111					 "refclk-frequency", &clock_rate);
112		if (i) {
113			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
114			goto exit;
115		}
116		i = of_property_read_string(uctl_node,
117					    "refclk-type", &clock_type);
118
119		if (!i && strcmp("crystal", clock_type) == 0)
120			is_crystal_clock = true;
121	}
122
123	/*
124	 * Step 1: Wait for voltages stable.  That surely happened
125	 * before starting the kernel.
126	 *
127	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
128	 */
129	if_ena.u64 = 0;
130	if_ena.s.en = 1;
131	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
132
133	/* Step 3: Configure the reference clock, PHY, and HCLK */
134	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
135
136	/*
137	 * If the UCTL looks like it has already been started, skip
138	 * the initialization, otherwise bus errors are obtained.
139	 */
140	if (clk_rst_ctl.s.hrst)
141		goto end_clock;
142	/* 3a */
143	clk_rst_ctl.s.p_por = 1;
144	clk_rst_ctl.s.hrst = 0;
145	clk_rst_ctl.s.p_prst = 0;
146	clk_rst_ctl.s.h_clkdiv_rst = 0;
147	clk_rst_ctl.s.o_clkdiv_rst = 0;
148	clk_rst_ctl.s.h_clkdiv_en = 0;
149	clk_rst_ctl.s.o_clkdiv_en = 0;
150	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
151
152	/* 3b */
153	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154	switch (clock_rate) {
155	default:
156		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157			clock_rate);
158		/* Fall through */
159	case 12000000:
160		clk_rst_ctl.s.p_refclk_div = 0;
161		break;
162	case 24000000:
163		clk_rst_ctl.s.p_refclk_div = 1;
164		break;
165	case 48000000:
166		clk_rst_ctl.s.p_refclk_div = 2;
167		break;
168	}
169	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
170
171	/* 3c */
172	div = octeon_get_io_clock_rate() / 130000000ull;
173
174	switch (div) {
175	case 0:
176		div = 1;
177		break;
178	case 1:
179	case 2:
180	case 3:
181	case 4:
182		break;
183	case 5:
184		div = 4;
185		break;
186	case 6:
187	case 7:
188		div = 6;
189		break;
190	case 8:
191	case 9:
192	case 10:
193	case 11:
194		div = 8;
195		break;
196	default:
197		div = 12;
198		break;
199	}
200	clk_rst_ctl.s.h_div = div;
201	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202	/* Read it back, */
203	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204	clk_rst_ctl.s.h_clkdiv_en = 1;
205	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206	/* 3d */
207	clk_rst_ctl.s.h_clkdiv_rst = 1;
208	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
209
210	/* 3e: delay 64 io clocks */
211	ndelay(io_clk_64_to_ns);
212
213	/*
214	 * Step 4: Program the power-on reset field in the UCTL
215	 * clock-reset-control register.
216	 */
217	clk_rst_ctl.s.p_por = 0;
218	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219
220	/* Step 5:    Wait 1 ms for the PHY clock to start. */
221	mdelay(1);
222
223	/*
224	 * Step 6: Program the reset input from automatic test
225	 * equipment field in the UPHY CSR
226	 */
227	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228	uphy_ctl_status.s.ate_reset = 1;
229	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
230
231	/* Step 7: Wait for at least 10ns. */
232	ndelay(10);
233
234	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235	uphy_ctl_status.s.ate_reset = 0;
236	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
237
238	/*
239	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240	 * signals and OHCI_CLK48
241	 */
242	ndelay(20);
243
244	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245	/* 10a */
246	clk_rst_ctl.s.o_clkdiv_rst = 1;
247	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
248
249	/* 10b */
250	clk_rst_ctl.s.o_clkdiv_en = 1;
251	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
252
253	/* 10c */
254	ndelay(io_clk_64_to_ns);
255
256	/*
257	 * Step 11: Program the PHY reset field:
258	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
259	 */
260	clk_rst_ctl.s.p_prst = 1;
261	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
262
263	/* Step 12: Wait 1 uS. */
264	udelay(1);
265
266	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267	clk_rst_ctl.s.hrst = 1;
268	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
269
270end_clock:
271	/* Now we can set some other registers.  */
272
273	for (i = 0; i <= 1; i++) {
274		port_ctl_status.u64 =
275			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277		port_ctl_status.s.txvreftune = 15;
278		port_ctl_status.s.txrisetune = 1;
279		port_ctl_status.s.txpreemphasistune = 1;
280		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281			       port_ctl_status.u64);
282	}
283
284	/* Set uSOF cycle period to 60,000 bits. */
285	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
286exit:
287	mutex_unlock(&octeon2_usb_clocks_mutex);
288}
289
290static void octeon2_usb_clocks_stop(void)
291{
292	mutex_lock(&octeon2_usb_clocks_mutex);
293	octeon2_usb_clock_start_cnt--;
294	mutex_unlock(&octeon2_usb_clocks_mutex);
295}
296
297static int octeon_ehci_power_on(struct platform_device *pdev)
298{
299	octeon2_usb_clocks_start(&pdev->dev);
300	return 0;
301}
302
303static void octeon_ehci_power_off(struct platform_device *pdev)
304{
305	octeon2_usb_clocks_stop();
306}
307
308static struct usb_ehci_pdata octeon_ehci_pdata = {
309	/* Octeon EHCI matches CPU endianness. */
310#ifdef __BIG_ENDIAN
311	.big_endian_mmio	= 1,
312#endif
313	.dma_mask_64	= 1,
314	.power_on	= octeon_ehci_power_on,
315	.power_off	= octeon_ehci_power_off,
316};
317
318static void __init octeon_ehci_hw_start(struct device *dev)
319{
320	union cvmx_uctlx_ehci_ctl ehci_ctl;
321
322	octeon2_usb_clocks_start(dev);
323
324	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325	/* Use 64-bit addressing. */
326	ehci_ctl.s.ehci_64b_addr_en = 1;
327	ehci_ctl.s.l2c_addr_msb = 0;
328#ifdef __BIG_ENDIAN
329	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
330	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
331#else
332	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
333	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
334	ehci_ctl.s.inv_reg_a2 = 1;
335#endif
336	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
337
338	octeon2_usb_clocks_stop();
339}
340
341static int __init octeon_ehci_device_init(void)
342{
343	struct platform_device *pd;
344	struct device_node *ehci_node;
345	int ret = 0;
346
347	ehci_node = of_find_node_by_name(NULL, "ehci");
348	if (!ehci_node)
349		return 0;
350
351	pd = of_find_device_by_node(ehci_node);
352	if (!pd)
353		return 0;
354
355	pd->dev.platform_data = &octeon_ehci_pdata;
356	octeon_ehci_hw_start(&pd->dev);
357
358	return ret;
359}
360device_initcall(octeon_ehci_device_init);
361
362static int octeon_ohci_power_on(struct platform_device *pdev)
363{
364	octeon2_usb_clocks_start(&pdev->dev);
365	return 0;
366}
367
368static void octeon_ohci_power_off(struct platform_device *pdev)
369{
370	octeon2_usb_clocks_stop();
371}
372
373static struct usb_ohci_pdata octeon_ohci_pdata = {
374	/* Octeon OHCI matches CPU endianness. */
375#ifdef __BIG_ENDIAN
376	.big_endian_mmio	= 1,
377#endif
378	.power_on	= octeon_ohci_power_on,
379	.power_off	= octeon_ohci_power_off,
380};
381
382static void __init octeon_ohci_hw_start(struct device *dev)
383{
384	union cvmx_uctlx_ohci_ctl ohci_ctl;
385
386	octeon2_usb_clocks_start(dev);
387
388	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
389	ohci_ctl.s.l2c_addr_msb = 0;
390#ifdef __BIG_ENDIAN
391	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
392	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
393#else
394	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
395	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
396	ohci_ctl.s.inv_reg_a2 = 1;
397#endif
398	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
399
400	octeon2_usb_clocks_stop();
401}
402
403static int __init octeon_ohci_device_init(void)
404{
405	struct platform_device *pd;
406	struct device_node *ohci_node;
407	int ret = 0;
408
409	ohci_node = of_find_node_by_name(NULL, "ohci");
410	if (!ohci_node)
411		return 0;
412
413	pd = of_find_device_by_node(ohci_node);
414	if (!pd)
415		return 0;
416
417	pd->dev.platform_data = &octeon_ohci_pdata;
418	octeon_ohci_hw_start(&pd->dev);
419
420	return ret;
421}
422device_initcall(octeon_ohci_device_init);
423
424#endif /* CONFIG_USB */
425
426
427static struct of_device_id __initdata octeon_ids[] = {
428	{ .compatible = "simple-bus", },
429	{ .compatible = "cavium,octeon-6335-uctl", },
430	{ .compatible = "cavium,octeon-5750-usbn", },
431	{ .compatible = "cavium,octeon-3860-bootbus", },
432	{ .compatible = "cavium,mdio-mux", },
433	{ .compatible = "gpio-leds", },
434	{},
435};
436
437static bool __init octeon_has_88e1145(void)
438{
439	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
440	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
441	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
442}
443
444static void __init octeon_fdt_set_phy(int eth, int phy_addr)
445{
446	const __be32 *phy_handle;
447	const __be32 *alt_phy_handle;
448	const __be32 *reg;
449	u32 phandle;
450	int phy;
451	int alt_phy;
452	const char *p;
453	int current_len;
454	char new_name[20];
455
456	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
457	if (!phy_handle)
458		return;
459
460	phandle = be32_to_cpup(phy_handle);
461	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
462
463	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
464	if (alt_phy_handle) {
465		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
466		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
467	} else {
468		alt_phy = -1;
469	}
470
471	if (phy_addr < 0 || phy < 0) {
472		/* Delete the PHY things */
473		fdt_nop_property(initial_boot_params, eth, "phy-handle");
474		/* This one may fail */
475		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
476		if (phy >= 0)
477			fdt_nop_node(initial_boot_params, phy);
478		if (alt_phy >= 0)
479			fdt_nop_node(initial_boot_params, alt_phy);
480		return;
481	}
482
483	if (phy_addr >= 256 && alt_phy > 0) {
484		const struct fdt_property *phy_prop;
485		struct fdt_property *alt_prop;
486		u32 phy_handle_name;
487
488		/* Use the alt phy node instead.*/
489		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
490		phy_handle_name = phy_prop->nameoff;
491		fdt_nop_node(initial_boot_params, phy);
492		fdt_nop_property(initial_boot_params, eth, "phy-handle");
493		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
494		alt_prop->nameoff = phy_handle_name;
495		phy = alt_phy;
496	}
497
498	phy_addr &= 0xff;
499
500	if (octeon_has_88e1145()) {
501		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
502		memset(new_name, 0, sizeof(new_name));
503		strcpy(new_name, "marvell,88e1145");
504		p = fdt_getprop(initial_boot_params, phy, "compatible",
505				&current_len);
506		if (p && current_len >= strlen(new_name))
507			fdt_setprop_inplace(initial_boot_params, phy,
508					"compatible", new_name, current_len);
509	}
510
511	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
512	if (phy_addr == be32_to_cpup(reg))
513		return;
514
515	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
516
517	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
518
519	p = fdt_get_name(initial_boot_params, phy, &current_len);
520	if (p && current_len == strlen(new_name))
521		fdt_set_name(initial_boot_params, phy, new_name);
522	else
523		pr_err("Error: could not rename ethernet phy: <%s>", p);
524}
525
526static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
527{
528	u8 new_mac[6];
529	u64 mac = *pmac;
530	int r;
531
532	new_mac[0] = (mac >> 40) & 0xff;
533	new_mac[1] = (mac >> 32) & 0xff;
534	new_mac[2] = (mac >> 24) & 0xff;
535	new_mac[3] = (mac >> 16) & 0xff;
536	new_mac[4] = (mac >> 8) & 0xff;
537	new_mac[5] = mac & 0xff;
538
539	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
540				new_mac, sizeof(new_mac));
541
542	if (r) {
543		pr_err("Setting \"local-mac-address\" failed %d", r);
544		return;
545	}
546	*pmac = mac + 1;
547}
548
549static void __init octeon_fdt_rm_ethernet(int node)
550{
551	const __be32 *phy_handle;
552
553	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
554	if (phy_handle) {
555		u32 ph = be32_to_cpup(phy_handle);
556		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
557		if (p >= 0)
558			fdt_nop_node(initial_boot_params, p);
559	}
560	fdt_nop_node(initial_boot_params, node);
561}
562
563static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
564{
565	char name_buffer[20];
566	int eth;
567	int phy_addr;
568	int ipd_port;
569
570	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
571	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
572	if (eth < 0)
573		return;
574	if (p > max) {
575		pr_debug("Deleting port %x:%x\n", i, p);
576		octeon_fdt_rm_ethernet(eth);
577		return;
578	}
579	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
580		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
581	else
582		ipd_port = 16 * i + p;
583
584	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
585	octeon_fdt_set_phy(eth, phy_addr);
586	octeon_fdt_set_mac_addr(eth, pmac);
587}
588
589static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
590{
591	char name_buffer[20];
592	int iface;
593	int p;
594	int count = 0;
595
596	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
597	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
598	if (iface < 0)
599		return;
600
601	if (cvmx_helper_interface_enumerate(idx) == 0)
602		count = cvmx_helper_ports_on_interface(idx);
603
604	for (p = 0; p < 16; p++)
605		octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
606}
607
608int __init octeon_prune_device_tree(void)
609{
610	int i, max_port, uart_mask;
611	const char *pip_path;
612	const char *alias_prop;
613	char name_buffer[20];
614	int aliases;
615	u64 mac_addr_base;
616
617	if (fdt_check_header(initial_boot_params))
618		panic("Corrupt Device Tree.");
619
620	aliases = fdt_path_offset(initial_boot_params, "/aliases");
621	if (aliases < 0) {
622		pr_err("Error: No /aliases node in device tree.");
623		return -EINVAL;
624	}
625
626
627	mac_addr_base =
628		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
629		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
630		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
631		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
632		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
633		(octeon_bootinfo->mac_addr_base[5] & 0xffull);
634
635	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
636		max_port = 2;
637	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
638		max_port = 1;
639	else
640		max_port = 0;
641
642	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
643		max_port = 0;
644
645	for (i = 0; i < 2; i++) {
646		int mgmt;
647		snprintf(name_buffer, sizeof(name_buffer),
648			 "mix%d", i);
649		alias_prop = fdt_getprop(initial_boot_params, aliases,
650					name_buffer, NULL);
651		if (alias_prop) {
652			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
653			if (mgmt < 0)
654				continue;
655			if (i >= max_port) {
656				pr_debug("Deleting mix%d\n", i);
657				octeon_fdt_rm_ethernet(mgmt);
658				fdt_nop_property(initial_boot_params, aliases,
659						 name_buffer);
660			} else {
661				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
662				octeon_fdt_set_phy(mgmt, phy_addr);
663				octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
664			}
665		}
666	}
667
668	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
669	if (pip_path) {
670		int pip = fdt_path_offset(initial_boot_params, pip_path);
671		if (pip	 >= 0)
672			for (i = 0; i <= 4; i++)
673				octeon_fdt_pip_iface(pip, i, &mac_addr_base);
674	}
675
676	/* I2C */
677	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
678	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
679	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
680	    OCTEON_IS_MODEL(OCTEON_CN56XX))
681		max_port = 2;
682	else
683		max_port = 1;
684
685	for (i = 0; i < 2; i++) {
686		int i2c;
687		snprintf(name_buffer, sizeof(name_buffer),
688			 "twsi%d", i);
689		alias_prop = fdt_getprop(initial_boot_params, aliases,
690					name_buffer, NULL);
691
692		if (alias_prop) {
693			i2c = fdt_path_offset(initial_boot_params, alias_prop);
694			if (i2c < 0)
695				continue;
696			if (i >= max_port) {
697				pr_debug("Deleting twsi%d\n", i);
698				fdt_nop_node(initial_boot_params, i2c);
699				fdt_nop_property(initial_boot_params, aliases,
700						 name_buffer);
701			}
702		}
703	}
704
705	/* SMI/MDIO */
706	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
707		max_port = 4;
708	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
709		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
710		 OCTEON_IS_MODEL(OCTEON_CN56XX))
711		max_port = 2;
712	else
713		max_port = 1;
714
715	for (i = 0; i < 2; i++) {
716		int i2c;
717		snprintf(name_buffer, sizeof(name_buffer),
718			 "smi%d", i);
719		alias_prop = fdt_getprop(initial_boot_params, aliases,
720					name_buffer, NULL);
721
722		if (alias_prop) {
723			i2c = fdt_path_offset(initial_boot_params, alias_prop);
724			if (i2c < 0)
725				continue;
726			if (i >= max_port) {
727				pr_debug("Deleting smi%d\n", i);
728				fdt_nop_node(initial_boot_params, i2c);
729				fdt_nop_property(initial_boot_params, aliases,
730						 name_buffer);
731			}
732		}
733	}
734
735	/* Serial */
736	uart_mask = 3;
737
738	/* Right now CN52XX is the only chip with a third uart */
739	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
740		uart_mask |= 4; /* uart2 */
741
742	for (i = 0; i < 3; i++) {
743		int uart;
744		snprintf(name_buffer, sizeof(name_buffer),
745			 "uart%d", i);
746		alias_prop = fdt_getprop(initial_boot_params, aliases,
747					name_buffer, NULL);
748
749		if (alias_prop) {
750			uart = fdt_path_offset(initial_boot_params, alias_prop);
751			if (uart_mask & (1 << i)) {
752				__be32 f;
753
754				f = cpu_to_be32(octeon_get_io_clock_rate());
755				fdt_setprop_inplace(initial_boot_params,
756						    uart, "clock-frequency",
757						    &f, sizeof(f));
758				continue;
759			}
760			pr_debug("Deleting uart%d\n", i);
761			fdt_nop_node(initial_boot_params, uart);
762			fdt_nop_property(initial_boot_params, aliases,
763					 name_buffer);
764		}
765	}
766
767	/* Compact Flash */
768	alias_prop = fdt_getprop(initial_boot_params, aliases,
769				 "cf0", NULL);
770	if (alias_prop) {
771		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
772		unsigned long base_ptr, region_base, region_size;
773		unsigned long region1_base = 0;
774		unsigned long region1_size = 0;
775		int cs, bootbus;
776		bool is_16bit = false;
777		bool is_true_ide = false;
778		__be32 new_reg[6];
779		__be32 *ranges;
780		int len;
781
782		int cf = fdt_path_offset(initial_boot_params, alias_prop);
783		base_ptr = 0;
784		if (octeon_bootinfo->major_version == 1
785			&& octeon_bootinfo->minor_version >= 1) {
786			if (octeon_bootinfo->compact_flash_common_base_addr)
787				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
788		} else {
789			base_ptr = 0x1d000800;
790		}
791
792		if (!base_ptr)
793			goto no_cf;
794
795		/* Find CS0 region. */
796		for (cs = 0; cs < 8; cs++) {
797			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
798			region_base = mio_boot_reg_cfg.s.base << 16;
799			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
800			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
801				&& base_ptr < region_base + region_size) {
802				is_16bit = mio_boot_reg_cfg.s.width;
803				break;
804			}
805		}
806		if (cs >= 7) {
807			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
808			goto no_cf;
809		}
810
811		if (!(base_ptr & 0xfffful)) {
812			/*
813			 * Boot loader signals availability of DMA (true_ide
814			 * mode) by setting low order bits of base_ptr to
815			 * zero.
816			 */
817
818			/* Asume that CS1 immediately follows. */
819			mio_boot_reg_cfg.u64 =
820				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
821			region1_base = mio_boot_reg_cfg.s.base << 16;
822			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
823			if (!mio_boot_reg_cfg.s.en)
824				goto no_cf;
825			is_true_ide = true;
826
827		} else {
828			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
829			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
830			if (!is_16bit) {
831				__be32 width = cpu_to_be32(8);
832				fdt_setprop_inplace(initial_boot_params, cf,
833						"cavium,bus-width", &width, sizeof(width));
834			}
835		}
836		new_reg[0] = cpu_to_be32(cs);
837		new_reg[1] = cpu_to_be32(0);
838		new_reg[2] = cpu_to_be32(0x10000);
839		new_reg[3] = cpu_to_be32(cs + 1);
840		new_reg[4] = cpu_to_be32(0);
841		new_reg[5] = cpu_to_be32(0x10000);
842		fdt_setprop_inplace(initial_boot_params, cf,
843				    "reg",  new_reg, sizeof(new_reg));
844
845		bootbus = fdt_parent_offset(initial_boot_params, cf);
846		if (bootbus < 0)
847			goto no_cf;
848		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
849		if (!ranges || len < (5 * 8 * sizeof(__be32)))
850			goto no_cf;
851
852		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
853		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
854		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
855		if (is_true_ide) {
856			cs++;
857			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
858			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
859			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
860		}
861		goto end_cf;
862no_cf:
863		fdt_nop_node(initial_boot_params, cf);
864
865end_cf:
866		;
867	}
868
869	/* 8 char LED */
870	alias_prop = fdt_getprop(initial_boot_params, aliases,
871				 "led0", NULL);
872	if (alias_prop) {
873		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
874		unsigned long base_ptr, region_base, region_size;
875		int cs, bootbus;
876		__be32 new_reg[6];
877		__be32 *ranges;
878		int len;
879		int led = fdt_path_offset(initial_boot_params, alias_prop);
880
881		base_ptr = octeon_bootinfo->led_display_base_addr;
882		if (base_ptr == 0)
883			goto no_led;
884		/* Find CS0 region. */
885		for (cs = 0; cs < 8; cs++) {
886			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
887			region_base = mio_boot_reg_cfg.s.base << 16;
888			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
889			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
890				&& base_ptr < region_base + region_size)
891				break;
892		}
893
894		if (cs > 7)
895			goto no_led;
896
897		new_reg[0] = cpu_to_be32(cs);
898		new_reg[1] = cpu_to_be32(0x20);
899		new_reg[2] = cpu_to_be32(0x20);
900		new_reg[3] = cpu_to_be32(cs);
901		new_reg[4] = cpu_to_be32(0);
902		new_reg[5] = cpu_to_be32(0x20);
903		fdt_setprop_inplace(initial_boot_params, led,
904				    "reg",  new_reg, sizeof(new_reg));
905
906		bootbus = fdt_parent_offset(initial_boot_params, led);
907		if (bootbus < 0)
908			goto no_led;
909		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
910		if (!ranges || len < (5 * 8 * sizeof(__be32)))
911			goto no_led;
912
913		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
914		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
915		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
916		goto end_led;
917
918no_led:
919		fdt_nop_node(initial_boot_params, led);
920end_led:
921		;
922	}
923
924	/* OHCI/UHCI USB */
925	alias_prop = fdt_getprop(initial_boot_params, aliases,
926				 "uctl", NULL);
927	if (alias_prop) {
928		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
929
930		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
931				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
932			pr_debug("Deleting uctl\n");
933			fdt_nop_node(initial_boot_params, uctl);
934			fdt_nop_property(initial_boot_params, aliases, "uctl");
935		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
936			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
937			/* Missing "refclk-type" defaults to crystal. */
938			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
939		}
940	}
941
942	/* DWC2 USB */
943	alias_prop = fdt_getprop(initial_boot_params, aliases,
944				 "usbn", NULL);
945	if (alias_prop) {
946		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
947
948		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
949				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
950			pr_debug("Deleting usbn\n");
951			fdt_nop_node(initial_boot_params, usbn);
952			fdt_nop_property(initial_boot_params, aliases, "usbn");
953		} else  {
954			__be32 new_f[1];
955			enum cvmx_helper_board_usb_clock_types c;
956			c = __cvmx_helper_board_usb_get_clock_type();
957			switch (c) {
958			case USB_CLOCK_TYPE_REF_48:
959				new_f[0] = cpu_to_be32(48000000);
960				fdt_setprop_inplace(initial_boot_params, usbn,
961						    "refclk-frequency",  new_f, sizeof(new_f));
962				/* Fall through ...*/
963			case USB_CLOCK_TYPE_REF_12:
964				/* Missing "refclk-type" defaults to external. */
965				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
966				break;
967			default:
968				break;
969			}
970		}
971	}
972
973	if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
974		int dsr1000n_leds = fdt_path_offset(initial_boot_params,
975						    "/dsr1000n-leds");
976		if (dsr1000n_leds >= 0)
977			fdt_nop_node(initial_boot_params, dsr1000n_leds);
978	}
979
980	return 0;
981}
982
983static int __init octeon_publish_devices(void)
984{
985	return of_platform_bus_probe(NULL, octeon_ids, NULL);
986}
987device_initcall(octeon_publish_devices);
988
989MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
990MODULE_LICENSE("GPL");
991MODULE_DESCRIPTION("Platform driver for Octeon SOC");
992