1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31#define MIPS_TCS_PER_COUNTER 2
32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34struct cpu_hw_events {
35	/* Array of events on this cpu. */
36	struct perf_event	*events[MIPS_MAX_HWEVENTS];
37
38	/*
39	 * Set the bit (indexed by the counter number) when the counter
40	 * is used for an event.
41	 */
42	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44	/*
45	 * Software copy of the control register for each performance counter.
46	 * MIPS CPUs vary in performance counters. They use this differently,
47	 * and even may not use it.
48	 */
49	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52	.saved_ctrl = {0},
53};
54
55/* The description of MIPS performance events. */
56struct mips_perf_event {
57	unsigned int event_id;
58	/*
59	 * MIPS performance counters are indexed starting from 0.
60	 * CNTR_EVEN indicates the indexes of the counters to be used are
61	 * even numbers.
62	 */
63	unsigned int cntr_mask;
64	#define CNTR_EVEN	0x55555555
65	#define CNTR_ODD	0xaaaaaaaa
66	#define CNTR_ALL	0xffffffff
67#ifdef CONFIG_MIPS_MT_SMP
68	enum {
69		T  = 0,
70		V  = 1,
71		P  = 2,
72	} range;
73#else
74	#define T
75	#define V
76	#define P
77#endif
78};
79
80static struct mips_perf_event raw_event;
81static DEFINE_MUTEX(raw_event_mutex);
82
83#define C(x) PERF_COUNT_HW_CACHE_##x
84
85struct mips_pmu {
86	u64		max_period;
87	u64		valid_count;
88	u64		overflow;
89	const char	*name;
90	int		irq;
91	u64		(*read_counter)(unsigned int idx);
92	void		(*write_counter)(unsigned int idx, u64 val);
93	const struct mips_perf_event *(*map_raw_event)(u64 config);
94	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95	const struct mips_perf_event (*cache_event_map)
96				[PERF_COUNT_HW_CACHE_MAX]
97				[PERF_COUNT_HW_CACHE_OP_MAX]
98				[PERF_COUNT_HW_CACHE_RESULT_MAX];
99	unsigned int	num_counters;
100};
101
102static struct mips_pmu mipspmu;
103
104#define M_CONFIG1_PC	(1 << 4)
105
106#define M_PERFCTL_EXL			(1	<<  0)
107#define M_PERFCTL_KERNEL		(1	<<  1)
108#define M_PERFCTL_SUPERVISOR		(1	<<  2)
109#define M_PERFCTL_USER			(1	<<  3)
110#define M_PERFCTL_INTERRUPT_ENABLE	(1	<<  4)
111#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
112#define M_PERFCTL_VPEID(vpe)		((vpe)	  << 16)
113
114#ifdef CONFIG_CPU_BMIPS5000
115#define M_PERFCTL_MT_EN(filter)		0
116#else /* !CONFIG_CPU_BMIPS5000 */
117#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
118#endif /* CONFIG_CPU_BMIPS5000 */
119
120#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
121#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
122#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(2)
123#define M_PERFCTL_TCID(tcid)		((tcid)	  << 22)
124#define M_PERFCTL_WIDE			(1	<< 30)
125#define M_PERFCTL_MORE			(1	<< 31)
126#define M_PERFCTL_TC			(1	<< 30)
127
128#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
129					M_PERFCTL_KERNEL |		\
130					M_PERFCTL_USER |		\
131					M_PERFCTL_SUPERVISOR |		\
132					M_PERFCTL_INTERRUPT_ENABLE)
133
134#ifdef CONFIG_MIPS_MT_SMP
135#define M_PERFCTL_CONFIG_MASK		0x3fff801f
136#else
137#define M_PERFCTL_CONFIG_MASK		0x1f
138#endif
139#define M_PERFCTL_EVENT_MASK		0xfe0
140
141
142#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143static int cpu_has_mipsmt_pertccounters;
144
145static DEFINE_RWLOCK(pmuint_rwlock);
146
147#if defined(CONFIG_CPU_BMIPS5000)
148#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
149			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150#else
151/*
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154 */
155#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
156			 0 : smp_processor_id())
157#endif
158
159/* Copied from op_model_mipsxx.c */
160static unsigned int vpe_shift(void)
161{
162	if (num_possible_cpus() > 1)
163		return 1;
164
165	return 0;
166}
167
168static unsigned int counters_total_to_per_cpu(unsigned int counters)
169{
170	return counters >> vpe_shift();
171}
172
173#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174#define vpe_id()	0
175
176#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177
178static void resume_local_counters(void);
179static void pause_local_counters(void);
180static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181static int mipsxx_pmu_handle_shared_irq(void);
182
183static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184{
185	if (vpe_id() == 1)
186		idx = (idx + 2) & 3;
187	return idx;
188}
189
190static u64 mipsxx_pmu_read_counter(unsigned int idx)
191{
192	idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194	switch (idx) {
195	case 0:
196		/*
197		 * The counters are unsigned, we must cast to truncate
198		 * off the high bits.
199		 */
200		return (u32)read_c0_perfcntr0();
201	case 1:
202		return (u32)read_c0_perfcntr1();
203	case 2:
204		return (u32)read_c0_perfcntr2();
205	case 3:
206		return (u32)read_c0_perfcntr3();
207	default:
208		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209		return 0;
210	}
211}
212
213static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214{
215	idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217	switch (idx) {
218	case 0:
219		return read_c0_perfcntr0_64();
220	case 1:
221		return read_c0_perfcntr1_64();
222	case 2:
223		return read_c0_perfcntr2_64();
224	case 3:
225		return read_c0_perfcntr3_64();
226	default:
227		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228		return 0;
229	}
230}
231
232static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233{
234	idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236	switch (idx) {
237	case 0:
238		write_c0_perfcntr0(val);
239		return;
240	case 1:
241		write_c0_perfcntr1(val);
242		return;
243	case 2:
244		write_c0_perfcntr2(val);
245		return;
246	case 3:
247		write_c0_perfcntr3(val);
248		return;
249	}
250}
251
252static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253{
254	idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256	switch (idx) {
257	case 0:
258		write_c0_perfcntr0_64(val);
259		return;
260	case 1:
261		write_c0_perfcntr1_64(val);
262		return;
263	case 2:
264		write_c0_perfcntr2_64(val);
265		return;
266	case 3:
267		write_c0_perfcntr3_64(val);
268		return;
269	}
270}
271
272static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273{
274	idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276	switch (idx) {
277	case 0:
278		return read_c0_perfctrl0();
279	case 1:
280		return read_c0_perfctrl1();
281	case 2:
282		return read_c0_perfctrl2();
283	case 3:
284		return read_c0_perfctrl3();
285	default:
286		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287		return 0;
288	}
289}
290
291static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292{
293	idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295	switch (idx) {
296	case 0:
297		write_c0_perfctrl0(val);
298		return;
299	case 1:
300		write_c0_perfctrl1(val);
301		return;
302	case 2:
303		write_c0_perfctrl2(val);
304		return;
305	case 3:
306		write_c0_perfctrl3(val);
307		return;
308	}
309}
310
311static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312				    struct hw_perf_event *hwc)
313{
314	int i;
315
316	/*
317	 * We only need to care the counter mask. The range has been
318	 * checked definitely.
319	 */
320	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323		/*
324		 * Note that some MIPS perf events can be counted by both
325		 * even and odd counters, wheresas many other are only by
326		 * even _or_ odd counters. This introduces an issue that
327		 * when the former kind of event takes the counter the
328		 * latter kind of event wants to use, then the "counter
329		 * allocation" for the latter event will fail. In fact if
330		 * they can be dynamically swapped, they both feel happy.
331		 * But here we leave this issue alone for now.
332		 */
333		if (test_bit(i, &cntr_mask) &&
334			!test_and_set_bit(i, cpuc->used_mask))
335			return i;
336	}
337
338	return -EAGAIN;
339}
340
341static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342{
343	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
344
345	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
349		/* Make sure interrupt enabled. */
350		M_PERFCTL_INTERRUPT_ENABLE;
351	if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352		/* enable the counter for the calling thread */
353		cpuc->saved_ctrl[idx] |=
354			(1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
356	/*
357	 * We do not actually let the counter run. Leave it until start().
358	 */
359}
360
361static void mipsxx_pmu_disable_event(int idx)
362{
363	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
364	unsigned long flags;
365
366	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368	local_irq_save(flags);
369	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370		~M_PERFCTL_COUNT_EVENT_WHENEVER;
371	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372	local_irq_restore(flags);
373}
374
375static int mipspmu_event_set_period(struct perf_event *event,
376				    struct hw_perf_event *hwc,
377				    int idx)
378{
379	u64 left = local64_read(&hwc->period_left);
380	u64 period = hwc->sample_period;
381	int ret = 0;
382
383	if (unlikely((left + period) & (1ULL << 63))) {
384		/* left underflowed by more than period. */
385		left = period;
386		local64_set(&hwc->period_left, left);
387		hwc->last_period = period;
388		ret = 1;
389	} else	if (unlikely((left + period) <= period)) {
390		/* left underflowed by less than period. */
391		left += period;
392		local64_set(&hwc->period_left, left);
393		hwc->last_period = period;
394		ret = 1;
395	}
396
397	if (left > mipspmu.max_period) {
398		left = mipspmu.max_period;
399		local64_set(&hwc->period_left, left);
400	}
401
402	local64_set(&hwc->prev_count, mipspmu.overflow - left);
403
404	mipspmu.write_counter(idx, mipspmu.overflow - left);
405
406	perf_event_update_userpage(event);
407
408	return ret;
409}
410
411static void mipspmu_event_update(struct perf_event *event,
412				 struct hw_perf_event *hwc,
413				 int idx)
414{
415	u64 prev_raw_count, new_raw_count;
416	u64 delta;
417
418again:
419	prev_raw_count = local64_read(&hwc->prev_count);
420	new_raw_count = mipspmu.read_counter(idx);
421
422	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423				new_raw_count) != prev_raw_count)
424		goto again;
425
426	delta = new_raw_count - prev_raw_count;
427
428	local64_add(delta, &event->count);
429	local64_sub(delta, &hwc->period_left);
430}
431
432static void mipspmu_start(struct perf_event *event, int flags)
433{
434	struct hw_perf_event *hwc = &event->hw;
435
436	if (flags & PERF_EF_RELOAD)
437		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439	hwc->state = 0;
440
441	/* Set the period for the event. */
442	mipspmu_event_set_period(event, hwc, hwc->idx);
443
444	/* Enable the event. */
445	mipsxx_pmu_enable_event(hwc, hwc->idx);
446}
447
448static void mipspmu_stop(struct perf_event *event, int flags)
449{
450	struct hw_perf_event *hwc = &event->hw;
451
452	if (!(hwc->state & PERF_HES_STOPPED)) {
453		/* We are working on a local event. */
454		mipsxx_pmu_disable_event(hwc->idx);
455		barrier();
456		mipspmu_event_update(event, hwc, hwc->idx);
457		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458	}
459}
460
461static int mipspmu_add(struct perf_event *event, int flags)
462{
463	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464	struct hw_perf_event *hwc = &event->hw;
465	int idx;
466	int err = 0;
467
468	perf_pmu_disable(event->pmu);
469
470	/* To look for a free counter for this event. */
471	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472	if (idx < 0) {
473		err = idx;
474		goto out;
475	}
476
477	/*
478	 * If there is an event in the counter we are going to use then
479	 * make sure it is disabled.
480	 */
481	event->hw.idx = idx;
482	mipsxx_pmu_disable_event(idx);
483	cpuc->events[idx] = event;
484
485	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486	if (flags & PERF_EF_START)
487		mipspmu_start(event, PERF_EF_RELOAD);
488
489	/* Propagate our changes to the userspace mapping. */
490	perf_event_update_userpage(event);
491
492out:
493	perf_pmu_enable(event->pmu);
494	return err;
495}
496
497static void mipspmu_del(struct perf_event *event, int flags)
498{
499	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
500	struct hw_perf_event *hwc = &event->hw;
501	int idx = hwc->idx;
502
503	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504
505	mipspmu_stop(event, PERF_EF_UPDATE);
506	cpuc->events[idx] = NULL;
507	clear_bit(idx, cpuc->used_mask);
508
509	perf_event_update_userpage(event);
510}
511
512static void mipspmu_read(struct perf_event *event)
513{
514	struct hw_perf_event *hwc = &event->hw;
515
516	/* Don't read disabled counters! */
517	if (hwc->idx < 0)
518		return;
519
520	mipspmu_event_update(event, hwc, hwc->idx);
521}
522
523static void mipspmu_enable(struct pmu *pmu)
524{
525#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526	write_unlock(&pmuint_rwlock);
527#endif
528	resume_local_counters();
529}
530
531/*
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed accross CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
541 */
542static void mipspmu_disable(struct pmu *pmu)
543{
544	pause_local_counters();
545#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546	write_lock(&pmuint_rwlock);
547#endif
548}
549
550static atomic_t active_events = ATOMIC_INIT(0);
551static DEFINE_MUTEX(pmu_reserve_mutex);
552static int (*save_perf_irq)(void);
553
554static int mipspmu_get_irq(void)
555{
556	int err;
557
558	if (mipspmu.irq >= 0) {
559		/* Request my own irq handler. */
560		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561				  IRQF_PERCPU | IRQF_NOBALANCING |
562				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
563				  IRQF_SHARED,
564				  "mips_perf_pmu", &mipspmu);
565		if (err) {
566			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
567				mipspmu.irq);
568		}
569	} else if (cp0_perfcount_irq < 0) {
570		/*
571		 * We are sharing the irq number with the timer interrupt.
572		 */
573		save_perf_irq = perf_irq;
574		perf_irq = mipsxx_pmu_handle_shared_irq;
575		err = 0;
576	} else {
577		pr_warn("The platform hasn't properly defined its interrupt controller\n");
578		err = -ENOENT;
579	}
580
581	return err;
582}
583
584static void mipspmu_free_irq(void)
585{
586	if (mipspmu.irq >= 0)
587		free_irq(mipspmu.irq, &mipspmu);
588	else if (cp0_perfcount_irq < 0)
589		perf_irq = save_perf_irq;
590}
591
592/*
593 * mipsxx/rm9000/loongson2 have different performance counters, they have
594 * specific low-level init routines.
595 */
596static void reset_counters(void *arg);
597static int __hw_perf_event_init(struct perf_event *event);
598
599static void hw_perf_event_destroy(struct perf_event *event)
600{
601	if (atomic_dec_and_mutex_lock(&active_events,
602				&pmu_reserve_mutex)) {
603		/*
604		 * We must not call the destroy function with interrupts
605		 * disabled.
606		 */
607		on_each_cpu(reset_counters,
608			(void *)(long)mipspmu.num_counters, 1);
609		mipspmu_free_irq();
610		mutex_unlock(&pmu_reserve_mutex);
611	}
612}
613
614static int mipspmu_event_init(struct perf_event *event)
615{
616	int err = 0;
617
618	/* does not support taken branch sampling */
619	if (has_branch_stack(event))
620		return -EOPNOTSUPP;
621
622	switch (event->attr.type) {
623	case PERF_TYPE_RAW:
624	case PERF_TYPE_HARDWARE:
625	case PERF_TYPE_HW_CACHE:
626		break;
627
628	default:
629		return -ENOENT;
630	}
631
632	if (event->cpu >= nr_cpumask_bits ||
633	    (event->cpu >= 0 && !cpu_online(event->cpu)))
634		return -ENODEV;
635
636	if (!atomic_inc_not_zero(&active_events)) {
637		mutex_lock(&pmu_reserve_mutex);
638		if (atomic_read(&active_events) == 0)
639			err = mipspmu_get_irq();
640
641		if (!err)
642			atomic_inc(&active_events);
643		mutex_unlock(&pmu_reserve_mutex);
644	}
645
646	if (err)
647		return err;
648
649	return __hw_perf_event_init(event);
650}
651
652static struct pmu pmu = {
653	.pmu_enable	= mipspmu_enable,
654	.pmu_disable	= mipspmu_disable,
655	.event_init	= mipspmu_event_init,
656	.add		= mipspmu_add,
657	.del		= mipspmu_del,
658	.start		= mipspmu_start,
659	.stop		= mipspmu_stop,
660	.read		= mipspmu_read,
661};
662
663static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
664{
665/*
666 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
667 * event_id.
668 */
669#ifdef CONFIG_MIPS_MT_SMP
670	return ((unsigned int)pev->range << 24) |
671		(pev->cntr_mask & 0xffff00) |
672		(pev->event_id & 0xff);
673#else
674	return (pev->cntr_mask & 0xffff00) |
675		(pev->event_id & 0xff);
676#endif
677}
678
679static const struct mips_perf_event *mipspmu_map_general_event(int idx)
680{
681
682	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
683		return ERR_PTR(-EOPNOTSUPP);
684	return &(*mipspmu.general_event_map)[idx];
685}
686
687static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
688{
689	unsigned int cache_type, cache_op, cache_result;
690	const struct mips_perf_event *pev;
691
692	cache_type = (config >> 0) & 0xff;
693	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
694		return ERR_PTR(-EINVAL);
695
696	cache_op = (config >> 8) & 0xff;
697	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
698		return ERR_PTR(-EINVAL);
699
700	cache_result = (config >> 16) & 0xff;
701	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
702		return ERR_PTR(-EINVAL);
703
704	pev = &((*mipspmu.cache_event_map)
705					[cache_type]
706					[cache_op]
707					[cache_result]);
708
709	if (pev->cntr_mask == 0)
710		return ERR_PTR(-EOPNOTSUPP);
711
712	return pev;
713
714}
715
716static int validate_group(struct perf_event *event)
717{
718	struct perf_event *sibling, *leader = event->group_leader;
719	struct cpu_hw_events fake_cpuc;
720
721	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
722
723	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
724		return -EINVAL;
725
726	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
727		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
728			return -EINVAL;
729	}
730
731	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
732		return -EINVAL;
733
734	return 0;
735}
736
737/* This is needed by specific irq handlers in perf_event_*.c */
738static void handle_associated_event(struct cpu_hw_events *cpuc,
739				    int idx, struct perf_sample_data *data,
740				    struct pt_regs *regs)
741{
742	struct perf_event *event = cpuc->events[idx];
743	struct hw_perf_event *hwc = &event->hw;
744
745	mipspmu_event_update(event, hwc, idx);
746	data->period = event->hw.last_period;
747	if (!mipspmu_event_set_period(event, hwc, idx))
748		return;
749
750	if (perf_event_overflow(event, data, regs))
751		mipsxx_pmu_disable_event(idx);
752}
753
754
755static int __n_counters(void)
756{
757	if (!(read_c0_config1() & M_CONFIG1_PC))
758		return 0;
759	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
760		return 1;
761	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
762		return 2;
763	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
764		return 3;
765
766	return 4;
767}
768
769static int n_counters(void)
770{
771	int counters;
772
773	switch (current_cpu_type()) {
774	case CPU_R10000:
775		counters = 2;
776		break;
777
778	case CPU_R12000:
779	case CPU_R14000:
780	case CPU_R16000:
781		counters = 4;
782		break;
783
784	default:
785		counters = __n_counters();
786	}
787
788	return counters;
789}
790
791static void reset_counters(void *arg)
792{
793	int counters = (int)(long)arg;
794	switch (counters) {
795	case 4:
796		mipsxx_pmu_write_control(3, 0);
797		mipspmu.write_counter(3, 0);
798	case 3:
799		mipsxx_pmu_write_control(2, 0);
800		mipspmu.write_counter(2, 0);
801	case 2:
802		mipsxx_pmu_write_control(1, 0);
803		mipspmu.write_counter(1, 0);
804	case 1:
805		mipsxx_pmu_write_control(0, 0);
806		mipspmu.write_counter(0, 0);
807	}
808}
809
810/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
811static const struct mips_perf_event mipsxxcore_event_map
812				[PERF_COUNT_HW_MAX] = {
813	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
815	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
816	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
817};
818
819/* 74K/proAptiv core has different branch event code. */
820static const struct mips_perf_event mipsxxcore_event_map2
821				[PERF_COUNT_HW_MAX] = {
822	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
823	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
824	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
825	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
826};
827
828static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
829	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
830	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
831	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
832	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
833};
834
835static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
836	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
837	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
838	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
839	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
840	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
841	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
842	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
843};
844
845static const struct mips_perf_event bmips5000_event_map
846				[PERF_COUNT_HW_MAX] = {
847	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
848	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
849	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
850};
851
852static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
853	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
854	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
855	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
856	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
857	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
858	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
859};
860
861/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
862static const struct mips_perf_event mipsxxcore_cache_map
863				[PERF_COUNT_HW_CACHE_MAX]
864				[PERF_COUNT_HW_CACHE_OP_MAX]
865				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
866[C(L1D)] = {
867	/*
868	 * Like some other architectures (e.g. ARM), the performance
869	 * counters don't differentiate between read and write
870	 * accesses/misses, so this isn't strictly correct, but it's the
871	 * best we can do. Writes and reads get combined.
872	 */
873	[C(OP_READ)] = {
874		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
875		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
876	},
877	[C(OP_WRITE)] = {
878		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
879		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
880	},
881},
882[C(L1I)] = {
883	[C(OP_READ)] = {
884		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
885		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
886	},
887	[C(OP_WRITE)] = {
888		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
889		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
890	},
891	[C(OP_PREFETCH)] = {
892		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
893		/*
894		 * Note that MIPS has only "hit" events countable for
895		 * the prefetch operation.
896		 */
897	},
898},
899[C(LL)] = {
900	[C(OP_READ)] = {
901		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
902		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
903	},
904	[C(OP_WRITE)] = {
905		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
906		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
907	},
908},
909[C(DTLB)] = {
910	[C(OP_READ)] = {
911		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
912		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
913	},
914	[C(OP_WRITE)] = {
915		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
916		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
917	},
918},
919[C(ITLB)] = {
920	[C(OP_READ)] = {
921		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
922		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
923	},
924	[C(OP_WRITE)] = {
925		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
926		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
927	},
928},
929[C(BPU)] = {
930	/* Using the same code for *HW_BRANCH* */
931	[C(OP_READ)] = {
932		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
933		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
934	},
935	[C(OP_WRITE)] = {
936		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
937		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
938	},
939},
940};
941
942/* 74K/proAptiv core has completely different cache event map. */
943static const struct mips_perf_event mipsxxcore_cache_map2
944				[PERF_COUNT_HW_CACHE_MAX]
945				[PERF_COUNT_HW_CACHE_OP_MAX]
946				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
947[C(L1D)] = {
948	/*
949	 * Like some other architectures (e.g. ARM), the performance
950	 * counters don't differentiate between read and write
951	 * accesses/misses, so this isn't strictly correct, but it's the
952	 * best we can do. Writes and reads get combined.
953	 */
954	[C(OP_READ)] = {
955		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
956		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
957	},
958	[C(OP_WRITE)] = {
959		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
960		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
961	},
962},
963[C(L1I)] = {
964	[C(OP_READ)] = {
965		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
966		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
967	},
968	[C(OP_WRITE)] = {
969		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
970		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
971	},
972	[C(OP_PREFETCH)] = {
973		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
974		/*
975		 * Note that MIPS has only "hit" events countable for
976		 * the prefetch operation.
977		 */
978	},
979},
980[C(LL)] = {
981	[C(OP_READ)] = {
982		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
983		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
984	},
985	[C(OP_WRITE)] = {
986		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
987		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
988	},
989},
990/*
991 * 74K core does not have specific DTLB events. proAptiv core has
992 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
993 * not included here. One can use raw events if really needed.
994 */
995[C(ITLB)] = {
996	[C(OP_READ)] = {
997		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
998		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
999	},
1000	[C(OP_WRITE)] = {
1001		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1002		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1003	},
1004},
1005[C(BPU)] = {
1006	/* Using the same code for *HW_BRANCH* */
1007	[C(OP_READ)] = {
1008		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1009		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1010	},
1011	[C(OP_WRITE)] = {
1012		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1013		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1014	},
1015},
1016};
1017
1018static const struct mips_perf_event loongson3_cache_map
1019				[PERF_COUNT_HW_CACHE_MAX]
1020				[PERF_COUNT_HW_CACHE_OP_MAX]
1021				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1022[C(L1D)] = {
1023	/*
1024	 * Like some other architectures (e.g. ARM), the performance
1025	 * counters don't differentiate between read and write
1026	 * accesses/misses, so this isn't strictly correct, but it's the
1027	 * best we can do. Writes and reads get combined.
1028	 */
1029	[C(OP_READ)] = {
1030		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1031	},
1032	[C(OP_WRITE)] = {
1033		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1034	},
1035},
1036[C(L1I)] = {
1037	[C(OP_READ)] = {
1038		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1039	},
1040	[C(OP_WRITE)] = {
1041		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1042	},
1043},
1044[C(DTLB)] = {
1045	[C(OP_READ)] = {
1046		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1047	},
1048	[C(OP_WRITE)] = {
1049		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1050	},
1051},
1052[C(ITLB)] = {
1053	[C(OP_READ)] = {
1054		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1055	},
1056	[C(OP_WRITE)] = {
1057		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1058	},
1059},
1060[C(BPU)] = {
1061	/* Using the same code for *HW_BRANCH* */
1062	[C(OP_READ)] = {
1063		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1064		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1065	},
1066	[C(OP_WRITE)] = {
1067		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1068		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1069	},
1070},
1071};
1072
1073/* BMIPS5000 */
1074static const struct mips_perf_event bmips5000_cache_map
1075				[PERF_COUNT_HW_CACHE_MAX]
1076				[PERF_COUNT_HW_CACHE_OP_MAX]
1077				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1078[C(L1D)] = {
1079	/*
1080	 * Like some other architectures (e.g. ARM), the performance
1081	 * counters don't differentiate between read and write
1082	 * accesses/misses, so this isn't strictly correct, but it's the
1083	 * best we can do. Writes and reads get combined.
1084	 */
1085	[C(OP_READ)] = {
1086		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1087		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1088	},
1089	[C(OP_WRITE)] = {
1090		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1091		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1092	},
1093},
1094[C(L1I)] = {
1095	[C(OP_READ)] = {
1096		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1097		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1098	},
1099	[C(OP_WRITE)] = {
1100		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1101		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1102	},
1103	[C(OP_PREFETCH)] = {
1104		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1105		/*
1106		 * Note that MIPS has only "hit" events countable for
1107		 * the prefetch operation.
1108		 */
1109	},
1110},
1111[C(LL)] = {
1112	[C(OP_READ)] = {
1113		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1114		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1115	},
1116	[C(OP_WRITE)] = {
1117		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1118		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1119	},
1120},
1121[C(BPU)] = {
1122	/* Using the same code for *HW_BRANCH* */
1123	[C(OP_READ)] = {
1124		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1125	},
1126	[C(OP_WRITE)] = {
1127		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1128	},
1129},
1130};
1131
1132
1133static const struct mips_perf_event octeon_cache_map
1134				[PERF_COUNT_HW_CACHE_MAX]
1135				[PERF_COUNT_HW_CACHE_OP_MAX]
1136				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1137[C(L1D)] = {
1138	[C(OP_READ)] = {
1139		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1140		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1141	},
1142	[C(OP_WRITE)] = {
1143		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1144	},
1145},
1146[C(L1I)] = {
1147	[C(OP_READ)] = {
1148		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1149	},
1150	[C(OP_PREFETCH)] = {
1151		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1152	},
1153},
1154[C(DTLB)] = {
1155	/*
1156	 * Only general DTLB misses are counted use the same event for
1157	 * read and write.
1158	 */
1159	[C(OP_READ)] = {
1160		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1161	},
1162	[C(OP_WRITE)] = {
1163		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1164	},
1165},
1166[C(ITLB)] = {
1167	[C(OP_READ)] = {
1168		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1169	},
1170},
1171};
1172
1173static const struct mips_perf_event xlp_cache_map
1174				[PERF_COUNT_HW_CACHE_MAX]
1175				[PERF_COUNT_HW_CACHE_OP_MAX]
1176				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1177[C(L1D)] = {
1178	[C(OP_READ)] = {
1179		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1180		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1181	},
1182	[C(OP_WRITE)] = {
1183		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1184		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1185	},
1186},
1187[C(L1I)] = {
1188	[C(OP_READ)] = {
1189		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1190		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1191	},
1192},
1193[C(LL)] = {
1194	[C(OP_READ)] = {
1195		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1196		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1197	},
1198	[C(OP_WRITE)] = {
1199		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1200		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1201	},
1202},
1203[C(DTLB)] = {
1204	/*
1205	 * Only general DTLB misses are counted use the same event for
1206	 * read and write.
1207	 */
1208	[C(OP_READ)] = {
1209		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1210	},
1211	[C(OP_WRITE)] = {
1212		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1213	},
1214},
1215[C(ITLB)] = {
1216	[C(OP_READ)] = {
1217		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1218	},
1219	[C(OP_WRITE)] = {
1220		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1221	},
1222},
1223[C(BPU)] = {
1224	[C(OP_READ)] = {
1225		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1226	},
1227},
1228};
1229
1230#ifdef CONFIG_MIPS_MT_SMP
1231static void check_and_calc_range(struct perf_event *event,
1232				 const struct mips_perf_event *pev)
1233{
1234	struct hw_perf_event *hwc = &event->hw;
1235
1236	if (event->cpu >= 0) {
1237		if (pev->range > V) {
1238			/*
1239			 * The user selected an event that is processor
1240			 * wide, while expecting it to be VPE wide.
1241			 */
1242			hwc->config_base |= M_TC_EN_ALL;
1243		} else {
1244			/*
1245			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1246			 * for both CPUs.
1247			 */
1248			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1249			hwc->config_base |= M_TC_EN_VPE;
1250		}
1251	} else
1252		hwc->config_base |= M_TC_EN_ALL;
1253}
1254#else
1255static void check_and_calc_range(struct perf_event *event,
1256				 const struct mips_perf_event *pev)
1257{
1258}
1259#endif
1260
1261static int __hw_perf_event_init(struct perf_event *event)
1262{
1263	struct perf_event_attr *attr = &event->attr;
1264	struct hw_perf_event *hwc = &event->hw;
1265	const struct mips_perf_event *pev;
1266	int err;
1267
1268	/* Returning MIPS event descriptor for generic perf event. */
1269	if (PERF_TYPE_HARDWARE == event->attr.type) {
1270		if (event->attr.config >= PERF_COUNT_HW_MAX)
1271			return -EINVAL;
1272		pev = mipspmu_map_general_event(event->attr.config);
1273	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1274		pev = mipspmu_map_cache_event(event->attr.config);
1275	} else if (PERF_TYPE_RAW == event->attr.type) {
1276		/* We are working on the global raw event. */
1277		mutex_lock(&raw_event_mutex);
1278		pev = mipspmu.map_raw_event(event->attr.config);
1279	} else {
1280		/* The event type is not (yet) supported. */
1281		return -EOPNOTSUPP;
1282	}
1283
1284	if (IS_ERR(pev)) {
1285		if (PERF_TYPE_RAW == event->attr.type)
1286			mutex_unlock(&raw_event_mutex);
1287		return PTR_ERR(pev);
1288	}
1289
1290	/*
1291	 * We allow max flexibility on how each individual counter shared
1292	 * by the single CPU operates (the mode exclusion and the range).
1293	 */
1294	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1295
1296	/* Calculate range bits and validate it. */
1297	if (num_possible_cpus() > 1)
1298		check_and_calc_range(event, pev);
1299
1300	hwc->event_base = mipspmu_perf_event_encode(pev);
1301	if (PERF_TYPE_RAW == event->attr.type)
1302		mutex_unlock(&raw_event_mutex);
1303
1304	if (!attr->exclude_user)
1305		hwc->config_base |= M_PERFCTL_USER;
1306	if (!attr->exclude_kernel) {
1307		hwc->config_base |= M_PERFCTL_KERNEL;
1308		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1309		hwc->config_base |= M_PERFCTL_EXL;
1310	}
1311	if (!attr->exclude_hv)
1312		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1313
1314	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1315	/*
1316	 * The event can belong to another cpu. We do not assign a local
1317	 * counter for it for now.
1318	 */
1319	hwc->idx = -1;
1320	hwc->config = 0;
1321
1322	if (!hwc->sample_period) {
1323		hwc->sample_period  = mipspmu.max_period;
1324		hwc->last_period    = hwc->sample_period;
1325		local64_set(&hwc->period_left, hwc->sample_period);
1326	}
1327
1328	err = 0;
1329	if (event->group_leader != event)
1330		err = validate_group(event);
1331
1332	event->destroy = hw_perf_event_destroy;
1333
1334	if (err)
1335		event->destroy(event);
1336
1337	return err;
1338}
1339
1340static void pause_local_counters(void)
1341{
1342	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1343	int ctr = mipspmu.num_counters;
1344	unsigned long flags;
1345
1346	local_irq_save(flags);
1347	do {
1348		ctr--;
1349		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1350		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1351					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1352	} while (ctr > 0);
1353	local_irq_restore(flags);
1354}
1355
1356static void resume_local_counters(void)
1357{
1358	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1359	int ctr = mipspmu.num_counters;
1360
1361	do {
1362		ctr--;
1363		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1364	} while (ctr > 0);
1365}
1366
1367static int mipsxx_pmu_handle_shared_irq(void)
1368{
1369	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1370	struct perf_sample_data data;
1371	unsigned int counters = mipspmu.num_counters;
1372	u64 counter;
1373	int handled = IRQ_NONE;
1374	struct pt_regs *regs;
1375
1376	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1377		return handled;
1378	/*
1379	 * First we pause the local counters, so that when we are locked
1380	 * here, the counters are all paused. When it gets locked due to
1381	 * perf_disable(), the timer interrupt handler will be delayed.
1382	 *
1383	 * See also mipsxx_pmu_start().
1384	 */
1385	pause_local_counters();
1386#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1387	read_lock(&pmuint_rwlock);
1388#endif
1389
1390	regs = get_irq_regs();
1391
1392	perf_sample_data_init(&data, 0, 0);
1393
1394	switch (counters) {
1395#define HANDLE_COUNTER(n)						\
1396	case n + 1:							\
1397		if (test_bit(n, cpuc->used_mask)) {			\
1398			counter = mipspmu.read_counter(n);		\
1399			if (counter & mipspmu.overflow) {		\
1400				handle_associated_event(cpuc, n, &data, regs); \
1401				handled = IRQ_HANDLED;			\
1402			}						\
1403		}
1404	HANDLE_COUNTER(3)
1405	HANDLE_COUNTER(2)
1406	HANDLE_COUNTER(1)
1407	HANDLE_COUNTER(0)
1408	}
1409
1410	/*
1411	 * Do all the work for the pending perf events. We can do this
1412	 * in here because the performance counter interrupt is a regular
1413	 * interrupt, not NMI.
1414	 */
1415	if (handled == IRQ_HANDLED)
1416		irq_work_run();
1417
1418#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1419	read_unlock(&pmuint_rwlock);
1420#endif
1421	resume_local_counters();
1422	return handled;
1423}
1424
1425static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1426{
1427	return mipsxx_pmu_handle_shared_irq();
1428}
1429
1430/* 24K */
1431#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1432	((b) == 0 || (b) == 1 || (b) == 11)
1433
1434/* 34K */
1435#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1436	((b) == 0 || (b) == 1 || (b) == 11)
1437#ifdef CONFIG_MIPS_MT_SMP
1438#define IS_RANGE_P_34K_EVENT(r, b)					\
1439	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1440	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1441	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1442	 ((b) >= 64 && (b) <= 67))
1443#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1444#endif
1445
1446/* 74K */
1447#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1448	((b) == 0 || (b) == 1)
1449
1450/* proAptiv */
1451#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1452	((b) == 0 || (b) == 1)
1453/* P5600 */
1454#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1455	((b) == 0 || (b) == 1)
1456
1457/* 1004K */
1458#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1459	((b) == 0 || (b) == 1 || (b) == 11)
1460#ifdef CONFIG_MIPS_MT_SMP
1461#define IS_RANGE_P_1004K_EVENT(r, b)					\
1462	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1463	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1464	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1465	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1466	 ((b) >= 64 && (b) <= 67))
1467#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1468#endif
1469
1470/* interAptiv */
1471#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1472	((b) == 0 || (b) == 1 || (b) == 11)
1473#ifdef CONFIG_MIPS_MT_SMP
1474/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1475#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1476	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1477	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1478	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1479	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1480	 ((b) >= 64 && (b) <= 67))
1481#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1482#endif
1483
1484/* BMIPS5000 */
1485#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1486	((b) == 0 || (b) == 1)
1487
1488
1489/*
1490 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1491 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1492 * indicate the even/odd bank selector. So, for example, when user wants to take
1493 * the Event Num of 15 for odd counters (by referring to the user manual), then
1494 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1495 * to be used.
1496 *
1497 * Some newer cores have even more events, in which case the user can use raw
1498 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1499 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1500 */
1501static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1502{
1503	/* currently most cores have 7-bit event numbers */
1504	unsigned int raw_id = config & 0xff;
1505	unsigned int base_id = raw_id & 0x7f;
1506
1507	switch (current_cpu_type()) {
1508	case CPU_24K:
1509		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1510			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1511		else
1512			raw_event.cntr_mask =
1513				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1514#ifdef CONFIG_MIPS_MT_SMP
1515		/*
1516		 * This is actually doing nothing. Non-multithreading
1517		 * CPUs will not check and calculate the range.
1518		 */
1519		raw_event.range = P;
1520#endif
1521		break;
1522	case CPU_34K:
1523		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1524			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1525		else
1526			raw_event.cntr_mask =
1527				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1528#ifdef CONFIG_MIPS_MT_SMP
1529		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1530			raw_event.range = P;
1531		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1532			raw_event.range = V;
1533		else
1534			raw_event.range = T;
1535#endif
1536		break;
1537	case CPU_74K:
1538	case CPU_1074K:
1539		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1540			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1541		else
1542			raw_event.cntr_mask =
1543				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1544#ifdef CONFIG_MIPS_MT_SMP
1545		raw_event.range = P;
1546#endif
1547		break;
1548	case CPU_PROAPTIV:
1549		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1550			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1551		else
1552			raw_event.cntr_mask =
1553				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1554#ifdef CONFIG_MIPS_MT_SMP
1555		raw_event.range = P;
1556#endif
1557		break;
1558	case CPU_P5600:
1559		/* 8-bit event numbers */
1560		raw_id = config & 0x1ff;
1561		base_id = raw_id & 0xff;
1562		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1563			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1564		else
1565			raw_event.cntr_mask =
1566				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1567#ifdef CONFIG_MIPS_MT_SMP
1568		raw_event.range = P;
1569#endif
1570		break;
1571	case CPU_1004K:
1572		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1573			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1574		else
1575			raw_event.cntr_mask =
1576				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1577#ifdef CONFIG_MIPS_MT_SMP
1578		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1579			raw_event.range = P;
1580		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1581			raw_event.range = V;
1582		else
1583			raw_event.range = T;
1584#endif
1585		break;
1586	case CPU_INTERAPTIV:
1587		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1588			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1589		else
1590			raw_event.cntr_mask =
1591				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1592#ifdef CONFIG_MIPS_MT_SMP
1593		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1594			raw_event.range = P;
1595		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1596			raw_event.range = V;
1597		else
1598			raw_event.range = T;
1599#endif
1600		break;
1601	case CPU_BMIPS5000:
1602		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1603			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1604		else
1605			raw_event.cntr_mask =
1606				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1607		break;
1608	case CPU_LOONGSON3:
1609		raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1610	break;
1611	}
1612
1613	raw_event.event_id = base_id;
1614
1615	return &raw_event;
1616}
1617
1618static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1619{
1620	unsigned int raw_id = config & 0xff;
1621	unsigned int base_id = raw_id & 0x7f;
1622
1623
1624	raw_event.cntr_mask = CNTR_ALL;
1625	raw_event.event_id = base_id;
1626
1627	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1628		if (base_id > 0x42)
1629			return ERR_PTR(-EOPNOTSUPP);
1630	} else {
1631		if (base_id > 0x3a)
1632			return ERR_PTR(-EOPNOTSUPP);
1633	}
1634
1635	switch (base_id) {
1636	case 0x00:
1637	case 0x0f:
1638	case 0x1e:
1639	case 0x1f:
1640	case 0x2f:
1641	case 0x34:
1642	case 0x3b ... 0x3f:
1643		return ERR_PTR(-EOPNOTSUPP);
1644	default:
1645		break;
1646	}
1647
1648	return &raw_event;
1649}
1650
1651static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1652{
1653	unsigned int raw_id = config & 0xff;
1654
1655	/* Only 1-63 are defined */
1656	if ((raw_id < 0x01) || (raw_id > 0x3f))
1657		return ERR_PTR(-EOPNOTSUPP);
1658
1659	raw_event.cntr_mask = CNTR_ALL;
1660	raw_event.event_id = raw_id;
1661
1662	return &raw_event;
1663}
1664
1665static int __init
1666init_hw_perf_events(void)
1667{
1668	int counters, irq;
1669	int counter_bits;
1670
1671	pr_info("Performance counters: ");
1672
1673	counters = n_counters();
1674	if (counters == 0) {
1675		pr_cont("No available PMU.\n");
1676		return -ENODEV;
1677	}
1678
1679#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1680	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1681	if (!cpu_has_mipsmt_pertccounters)
1682		counters = counters_total_to_per_cpu(counters);
1683#endif
1684
1685	if (get_c0_perfcount_int)
1686		irq = get_c0_perfcount_int();
1687	else if (cp0_perfcount_irq >= 0)
1688		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1689	else
1690		irq = -1;
1691
1692	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1693
1694	switch (current_cpu_type()) {
1695	case CPU_24K:
1696		mipspmu.name = "mips/24K";
1697		mipspmu.general_event_map = &mipsxxcore_event_map;
1698		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1699		break;
1700	case CPU_34K:
1701		mipspmu.name = "mips/34K";
1702		mipspmu.general_event_map = &mipsxxcore_event_map;
1703		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1704		break;
1705	case CPU_74K:
1706		mipspmu.name = "mips/74K";
1707		mipspmu.general_event_map = &mipsxxcore_event_map2;
1708		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1709		break;
1710	case CPU_PROAPTIV:
1711		mipspmu.name = "mips/proAptiv";
1712		mipspmu.general_event_map = &mipsxxcore_event_map2;
1713		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1714		break;
1715	case CPU_P5600:
1716		mipspmu.name = "mips/P5600";
1717		mipspmu.general_event_map = &mipsxxcore_event_map2;
1718		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1719		break;
1720	case CPU_1004K:
1721		mipspmu.name = "mips/1004K";
1722		mipspmu.general_event_map = &mipsxxcore_event_map;
1723		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1724		break;
1725	case CPU_1074K:
1726		mipspmu.name = "mips/1074K";
1727		mipspmu.general_event_map = &mipsxxcore_event_map;
1728		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1729		break;
1730	case CPU_INTERAPTIV:
1731		mipspmu.name = "mips/interAptiv";
1732		mipspmu.general_event_map = &mipsxxcore_event_map;
1733		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1734		break;
1735	case CPU_LOONGSON1:
1736		mipspmu.name = "mips/loongson1";
1737		mipspmu.general_event_map = &mipsxxcore_event_map;
1738		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1739		break;
1740	case CPU_LOONGSON3:
1741		mipspmu.name = "mips/loongson3";
1742		mipspmu.general_event_map = &loongson3_event_map;
1743		mipspmu.cache_event_map = &loongson3_cache_map;
1744		break;
1745	case CPU_CAVIUM_OCTEON:
1746	case CPU_CAVIUM_OCTEON_PLUS:
1747	case CPU_CAVIUM_OCTEON2:
1748		mipspmu.name = "octeon";
1749		mipspmu.general_event_map = &octeon_event_map;
1750		mipspmu.cache_event_map = &octeon_cache_map;
1751		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1752		break;
1753	case CPU_BMIPS5000:
1754		mipspmu.name = "BMIPS5000";
1755		mipspmu.general_event_map = &bmips5000_event_map;
1756		mipspmu.cache_event_map = &bmips5000_cache_map;
1757		break;
1758	case CPU_XLP:
1759		mipspmu.name = "xlp";
1760		mipspmu.general_event_map = &xlp_event_map;
1761		mipspmu.cache_event_map = &xlp_cache_map;
1762		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1763		break;
1764	default:
1765		pr_cont("Either hardware does not support performance "
1766			"counters, or not yet implemented.\n");
1767		return -ENODEV;
1768	}
1769
1770	mipspmu.num_counters = counters;
1771	mipspmu.irq = irq;
1772
1773	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1774		mipspmu.max_period = (1ULL << 63) - 1;
1775		mipspmu.valid_count = (1ULL << 63) - 1;
1776		mipspmu.overflow = 1ULL << 63;
1777		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1778		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1779		counter_bits = 64;
1780	} else {
1781		mipspmu.max_period = (1ULL << 31) - 1;
1782		mipspmu.valid_count = (1ULL << 31) - 1;
1783		mipspmu.overflow = 1ULL << 31;
1784		mipspmu.read_counter = mipsxx_pmu_read_counter;
1785		mipspmu.write_counter = mipsxx_pmu_write_counter;
1786		counter_bits = 32;
1787	}
1788
1789	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1790
1791	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1792		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1793		irq < 0 ? " (share with timer interrupt)" : "");
1794
1795	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1796
1797	return 0;
1798}
1799early_initcall(init_hw_perf_events);
1800