1/* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21#include <linux/cache.h> 22#include <linux/delay.h> 23#include <linux/init.h> 24#include <linux/interrupt.h> 25#include <linux/smp.h> 26#include <linux/spinlock.h> 27#include <linux/threads.h> 28#include <linux/module.h> 29#include <linux/time.h> 30#include <linux/timex.h> 31#include <linux/sched.h> 32#include <linux/cpumask.h> 33#include <linux/cpu.h> 34#include <linux/err.h> 35#include <linux/ftrace.h> 36 37#include <linux/atomic.h> 38#include <asm/cpu.h> 39#include <asm/processor.h> 40#include <asm/idle.h> 41#include <asm/r4k-timer.h> 42#include <asm/mmu_context.h> 43#include <asm/time.h> 44#include <asm/setup.h> 45 46cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 47 48int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 49EXPORT_SYMBOL(__cpu_number_map); 50 51int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 52EXPORT_SYMBOL(__cpu_logical_map); 53 54/* Number of TCs (or siblings in Intel speak) per CPU core */ 55int smp_num_siblings = 1; 56EXPORT_SYMBOL(smp_num_siblings); 57 58/* representing the TCs (or siblings in Intel speak) of each logical CPU */ 59cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 60EXPORT_SYMBOL(cpu_sibling_map); 61 62/* representing the core map of multi-core chips of each logical CPU */ 63cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 64EXPORT_SYMBOL(cpu_core_map); 65 66/* 67 * A logcal cpu mask containing only one VPE per core to 68 * reduce the number of IPIs on large MT systems. 69 */ 70cpumask_t cpu_foreign_map __read_mostly; 71EXPORT_SYMBOL(cpu_foreign_map); 72 73/* representing cpus for which sibling maps can be computed */ 74static cpumask_t cpu_sibling_setup_map; 75 76/* representing cpus for which core maps can be computed */ 77static cpumask_t cpu_core_setup_map; 78 79cpumask_t cpu_coherent_mask; 80 81static inline void set_cpu_sibling_map(int cpu) 82{ 83 int i; 84 85 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 86 87 if (smp_num_siblings > 1) { 88 for_each_cpu(i, &cpu_sibling_setup_map) { 89 if (cpu_data[cpu].package == cpu_data[i].package && 90 cpu_data[cpu].core == cpu_data[i].core) { 91 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 92 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 93 } 94 } 95 } else 96 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 97} 98 99static inline void set_cpu_core_map(int cpu) 100{ 101 int i; 102 103 cpumask_set_cpu(cpu, &cpu_core_setup_map); 104 105 for_each_cpu(i, &cpu_core_setup_map) { 106 if (cpu_data[cpu].package == cpu_data[i].package) { 107 cpumask_set_cpu(i, &cpu_core_map[cpu]); 108 cpumask_set_cpu(cpu, &cpu_core_map[i]); 109 } 110 } 111} 112 113/* 114 * Calculate a new cpu_foreign_map mask whenever a 115 * new cpu appears or disappears. 116 */ 117static inline void calculate_cpu_foreign_map(void) 118{ 119 int i, k, core_present; 120 cpumask_t temp_foreign_map; 121 122 /* Re-calculate the mask */ 123 cpumask_clear(&temp_foreign_map); 124 for_each_online_cpu(i) { 125 core_present = 0; 126 for_each_cpu(k, &temp_foreign_map) 127 if (cpu_data[i].package == cpu_data[k].package && 128 cpu_data[i].core == cpu_data[k].core) 129 core_present = 1; 130 if (!core_present) 131 cpumask_set_cpu(i, &temp_foreign_map); 132 } 133 134 cpumask_copy(&cpu_foreign_map, &temp_foreign_map); 135} 136 137struct plat_smp_ops *mp_ops; 138EXPORT_SYMBOL(mp_ops); 139 140void register_smp_ops(struct plat_smp_ops *ops) 141{ 142 if (mp_ops) 143 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 144 145 mp_ops = ops; 146} 147 148/* 149 * First C code run on the secondary CPUs after being started up by 150 * the master. 151 */ 152asmlinkage void start_secondary(void) 153{ 154 unsigned int cpu; 155 156 cpu_probe(); 157 per_cpu_trap_init(false); 158 mips_clockevent_init(); 159 mp_ops->init_secondary(); 160 cpu_report(); 161 162 /* 163 * XXX parity protection should be folded in here when it's converted 164 * to an option instead of something based on .cputype 165 */ 166 167 calibrate_delay(); 168 preempt_disable(); 169 cpu = smp_processor_id(); 170 cpu_data[cpu].udelay_val = loops_per_jiffy; 171 172 cpumask_set_cpu(cpu, &cpu_coherent_mask); 173 notify_cpu_starting(cpu); 174 175 set_cpu_online(cpu, true); 176 177 set_cpu_sibling_map(cpu); 178 set_cpu_core_map(cpu); 179 180 calculate_cpu_foreign_map(); 181 182 cpumask_set_cpu(cpu, &cpu_callin_map); 183 184 synchronise_count_slave(cpu); 185 186 /* 187 * irq will be enabled in ->smp_finish(), enabling it too early 188 * is dangerous. 189 */ 190 WARN_ON_ONCE(!irqs_disabled()); 191 mp_ops->smp_finish(); 192 193 cpu_startup_entry(CPUHP_ONLINE); 194} 195 196/* 197 * Call into both interrupt handlers, as we share the IPI for them 198 */ 199void __irq_entry smp_call_function_interrupt(void) 200{ 201 irq_enter(); 202 generic_smp_call_function_interrupt(); 203 irq_exit(); 204} 205 206static void stop_this_cpu(void *dummy) 207{ 208 /* 209 * Remove this CPU. Be a bit slow here and 210 * set the bits for every online CPU so we don't miss 211 * any IPI whilst taking this VPE down. 212 */ 213 214 cpumask_copy(&cpu_foreign_map, cpu_online_mask); 215 216 /* Make it visible to every other CPU */ 217 smp_mb(); 218 219 set_cpu_online(smp_processor_id(), false); 220 calculate_cpu_foreign_map(); 221 local_irq_disable(); 222 while (1); 223} 224 225void smp_send_stop(void) 226{ 227 smp_call_function(stop_this_cpu, NULL, 0); 228} 229 230void __init smp_cpus_done(unsigned int max_cpus) 231{ 232} 233 234/* called from main before smp_init() */ 235void __init smp_prepare_cpus(unsigned int max_cpus) 236{ 237 init_new_context(current, &init_mm); 238 current_thread_info()->cpu = 0; 239 mp_ops->prepare_cpus(max_cpus); 240 set_cpu_sibling_map(0); 241 set_cpu_core_map(0); 242 calculate_cpu_foreign_map(); 243#ifndef CONFIG_HOTPLUG_CPU 244 init_cpu_present(cpu_possible_mask); 245#endif 246 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 247} 248 249/* preload SMP state for boot cpu */ 250void smp_prepare_boot_cpu(void) 251{ 252 set_cpu_possible(0, true); 253 set_cpu_online(0, true); 254 cpumask_set_cpu(0, &cpu_callin_map); 255} 256 257int __cpu_up(unsigned int cpu, struct task_struct *tidle) 258{ 259 mp_ops->boot_secondary(cpu, tidle); 260 261 /* 262 * Trust is futile. We should really have timeouts ... 263 */ 264 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) { 265 udelay(100); 266 schedule(); 267 } 268 269 synchronise_count_master(cpu); 270 return 0; 271} 272 273/* Not really SMP stuff ... */ 274int setup_profiling_timer(unsigned int multiplier) 275{ 276 return 0; 277} 278 279static void flush_tlb_all_ipi(void *info) 280{ 281 local_flush_tlb_all(); 282} 283 284void flush_tlb_all(void) 285{ 286 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 287} 288 289static void flush_tlb_mm_ipi(void *mm) 290{ 291 local_flush_tlb_mm((struct mm_struct *)mm); 292} 293 294/* 295 * Special Variant of smp_call_function for use by TLB functions: 296 * 297 * o No return value 298 * o collapses to normal function call on UP kernels 299 * o collapses to normal function call on systems with a single shared 300 * primary cache. 301 */ 302static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 303{ 304 smp_call_function(func, info, 1); 305} 306 307static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 308{ 309 preempt_disable(); 310 311 smp_on_other_tlbs(func, info); 312 func(info); 313 314 preempt_enable(); 315} 316 317/* 318 * The following tlb flush calls are invoked when old translations are 319 * being torn down, or pte attributes are changing. For single threaded 320 * address spaces, a new context is obtained on the current cpu, and tlb 321 * context on other cpus are invalidated to force a new context allocation 322 * at switch_mm time, should the mm ever be used on other cpus. For 323 * multithreaded address spaces, intercpu interrupts have to be sent. 324 * Another case where intercpu interrupts are required is when the target 325 * mm might be active on another cpu (eg debuggers doing the flushes on 326 * behalf of debugees, kswapd stealing pages from another process etc). 327 * Kanoj 07/00. 328 */ 329 330void flush_tlb_mm(struct mm_struct *mm) 331{ 332 preempt_disable(); 333 334 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 335 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 336 } else { 337 unsigned int cpu; 338 339 for_each_online_cpu(cpu) { 340 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 341 cpu_context(cpu, mm) = 0; 342 } 343 } 344 local_flush_tlb_mm(mm); 345 346 preempt_enable(); 347} 348 349struct flush_tlb_data { 350 struct vm_area_struct *vma; 351 unsigned long addr1; 352 unsigned long addr2; 353}; 354 355static void flush_tlb_range_ipi(void *info) 356{ 357 struct flush_tlb_data *fd = info; 358 359 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 360} 361 362void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 363{ 364 struct mm_struct *mm = vma->vm_mm; 365 366 preempt_disable(); 367 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 368 struct flush_tlb_data fd = { 369 .vma = vma, 370 .addr1 = start, 371 .addr2 = end, 372 }; 373 374 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 375 } else { 376 unsigned int cpu; 377 378 for_each_online_cpu(cpu) { 379 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 380 cpu_context(cpu, mm) = 0; 381 } 382 } 383 local_flush_tlb_range(vma, start, end); 384 preempt_enable(); 385} 386 387static void flush_tlb_kernel_range_ipi(void *info) 388{ 389 struct flush_tlb_data *fd = info; 390 391 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 392} 393 394void flush_tlb_kernel_range(unsigned long start, unsigned long end) 395{ 396 struct flush_tlb_data fd = { 397 .addr1 = start, 398 .addr2 = end, 399 }; 400 401 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 402} 403 404static void flush_tlb_page_ipi(void *info) 405{ 406 struct flush_tlb_data *fd = info; 407 408 local_flush_tlb_page(fd->vma, fd->addr1); 409} 410 411void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 412{ 413 preempt_disable(); 414 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 415 struct flush_tlb_data fd = { 416 .vma = vma, 417 .addr1 = page, 418 }; 419 420 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 421 } else { 422 unsigned int cpu; 423 424 for_each_online_cpu(cpu) { 425 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 426 cpu_context(cpu, vma->vm_mm) = 0; 427 } 428 } 429 local_flush_tlb_page(vma, page); 430 preempt_enable(); 431} 432 433static void flush_tlb_one_ipi(void *info) 434{ 435 unsigned long vaddr = (unsigned long) info; 436 437 local_flush_tlb_one(vaddr); 438} 439 440void flush_tlb_one(unsigned long vaddr) 441{ 442 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 443} 444 445EXPORT_SYMBOL(flush_tlb_page); 446EXPORT_SYMBOL(flush_tlb_one); 447 448#if defined(CONFIG_KEXEC) 449void (*dump_ipi_function_ptr)(void *) = NULL; 450void dump_send_ipi(void (*dump_ipi_callback)(void *)) 451{ 452 int i; 453 int cpu = smp_processor_id(); 454 455 dump_ipi_function_ptr = dump_ipi_callback; 456 smp_mb(); 457 for_each_online_cpu(i) 458 if (i != cpu) 459 mp_ops->send_ipi_single(i, SMP_DUMP); 460 461} 462EXPORT_SYMBOL(dump_send_ipi); 463#endif 464 465#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 466 467static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 468static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 469 470void tick_broadcast(const struct cpumask *mask) 471{ 472 atomic_t *count; 473 struct call_single_data *csd; 474 int cpu; 475 476 for_each_cpu(cpu, mask) { 477 count = &per_cpu(tick_broadcast_count, cpu); 478 csd = &per_cpu(tick_broadcast_csd, cpu); 479 480 if (atomic_inc_return(count) == 1) 481 smp_call_function_single_async(cpu, csd); 482 } 483} 484 485static void tick_broadcast_callee(void *info) 486{ 487 int cpu = smp_processor_id(); 488 tick_receive_broadcast(); 489 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 490} 491 492static int __init tick_broadcast_init(void) 493{ 494 struct call_single_data *csd; 495 int cpu; 496 497 for (cpu = 0; cpu < NR_CPUS; cpu++) { 498 csd = &per_cpu(tick_broadcast_csd, cpu); 499 csd->func = tick_broadcast_callee; 500 } 501 502 return 0; 503} 504early_initcall(tick_broadcast_init); 505 506#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 507