1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> 7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> 8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. 9 */ 10 11#include <linux/types.h> 12#include <linux/dma-mapping.h> 13#include <linux/mm.h> 14#include <linux/module.h> 15#include <linux/scatterlist.h> 16#include <linux/string.h> 17#include <linux/gfp.h> 18#include <linux/highmem.h> 19#include <linux/dma-contiguous.h> 20 21#include <asm/cache.h> 22#include <asm/cpu-type.h> 23#include <asm/io.h> 24 25#include <dma-coherence.h> 26 27#ifdef CONFIG_DMA_MAYBE_COHERENT 28int coherentio = 0; /* User defined DMA coherency from command line. */ 29EXPORT_SYMBOL_GPL(coherentio); 30int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */ 31 32static int __init setcoherentio(char *str) 33{ 34 coherentio = 1; 35 pr_info("Hardware DMA cache coherency (command line)\n"); 36 return 0; 37} 38early_param("coherentio", setcoherentio); 39 40static int __init setnocoherentio(char *str) 41{ 42 coherentio = 0; 43 pr_info("Software DMA cache coherency (command line)\n"); 44 return 0; 45} 46early_param("nocoherentio", setnocoherentio); 47#endif 48 49static inline struct page *dma_addr_to_page(struct device *dev, 50 dma_addr_t dma_addr) 51{ 52 return pfn_to_page( 53 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT); 54} 55 56/* 57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can 58 * speculatively fill random cachelines with stale data at any time, 59 * requiring an extra flush post-DMA. 60 * 61 * Warning on the terminology - Linux calls an uncached area coherent; 62 * MIPS terminology calls memory areas with hardware maintained coherency 63 * coherent. 64 * 65 * Note that the R14000 and R16000 should also be checked for in this 66 * condition. However this function is only called on non-I/O-coherent 67 * systems and only the R10000 and R12000 are used in such systems, the 68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2. 69 */ 70static inline int cpu_needs_post_dma_flush(struct device *dev) 71{ 72 return !plat_device_is_coherent(dev) && 73 (boot_cpu_type() == CPU_R10000 || 74 boot_cpu_type() == CPU_R12000 || 75 boot_cpu_type() == CPU_BMIPS5000); 76} 77 78static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp) 79{ 80 gfp_t dma_flag; 81 82 /* ignore region specifiers */ 83 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 84 85#ifdef CONFIG_ISA 86 if (dev == NULL) 87 dma_flag = __GFP_DMA; 88 else 89#endif 90#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA) 91 if (dev->coherent_dma_mask < DMA_BIT_MASK(32)) 92 dma_flag = __GFP_DMA; 93 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) 94 dma_flag = __GFP_DMA32; 95 else 96#endif 97#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA) 98 if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) 99 dma_flag = __GFP_DMA32; 100 else 101#endif 102#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32) 103 if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8)) 104 dma_flag = __GFP_DMA; 105 else 106#endif 107 dma_flag = 0; 108 109 /* Don't invoke OOM killer */ 110 gfp |= __GFP_NORETRY; 111 112 return gfp | dma_flag; 113} 114 115void *dma_alloc_noncoherent(struct device *dev, size_t size, 116 dma_addr_t * dma_handle, gfp_t gfp) 117{ 118 void *ret; 119 120 gfp = massage_gfp_flags(dev, gfp); 121 122 ret = (void *) __get_free_pages(gfp, get_order(size)); 123 124 if (ret != NULL) { 125 memset(ret, 0, size); 126 *dma_handle = plat_map_dma_mem(dev, ret, size); 127 } 128 129 return ret; 130} 131EXPORT_SYMBOL(dma_alloc_noncoherent); 132 133static void *mips_dma_alloc_coherent(struct device *dev, size_t size, 134 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs) 135{ 136 void *ret; 137 struct page *page = NULL; 138 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 139 140 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret)) 141 return ret; 142 143 gfp = massage_gfp_flags(dev, gfp); 144 145 if (IS_ENABLED(CONFIG_DMA_CMA) && !(gfp & GFP_ATOMIC)) 146 page = dma_alloc_from_contiguous(dev, 147 count, get_order(size)); 148 if (!page) 149 page = alloc_pages(gfp, get_order(size)); 150 151 if (!page) 152 return NULL; 153 154 ret = page_address(page); 155 memset(ret, 0, size); 156 *dma_handle = plat_map_dma_mem(dev, ret, size); 157 if (!plat_device_is_coherent(dev)) { 158 dma_cache_wback_inv((unsigned long) ret, size); 159 if (!hw_coherentio) 160 ret = UNCAC_ADDR(ret); 161 } 162 163 return ret; 164} 165 166 167void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, 168 dma_addr_t dma_handle) 169{ 170 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); 171 free_pages((unsigned long) vaddr, get_order(size)); 172} 173EXPORT_SYMBOL(dma_free_noncoherent); 174 175static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr, 176 dma_addr_t dma_handle, struct dma_attrs *attrs) 177{ 178 unsigned long addr = (unsigned long) vaddr; 179 int order = get_order(size); 180 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 181 struct page *page = NULL; 182 183 if (dma_release_from_coherent(dev, order, vaddr)) 184 return; 185 186 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); 187 188 if (!plat_device_is_coherent(dev) && !hw_coherentio) 189 addr = CAC_ADDR(addr); 190 191 page = virt_to_page((void *) addr); 192 193 if (!dma_release_from_contiguous(dev, page, count)) 194 __free_pages(page, get_order(size)); 195} 196 197static inline void __dma_sync_virtual(void *addr, size_t size, 198 enum dma_data_direction direction) 199{ 200 switch (direction) { 201 case DMA_TO_DEVICE: 202 dma_cache_wback((unsigned long)addr, size); 203 break; 204 205 case DMA_FROM_DEVICE: 206 dma_cache_inv((unsigned long)addr, size); 207 break; 208 209 case DMA_BIDIRECTIONAL: 210 dma_cache_wback_inv((unsigned long)addr, size); 211 break; 212 213 default: 214 BUG(); 215 } 216} 217 218/* 219 * A single sg entry may refer to multiple physically contiguous 220 * pages. But we still need to process highmem pages individually. 221 * If highmem is not configured then the bulk of this loop gets 222 * optimized out. 223 */ 224static inline void __dma_sync(struct page *page, 225 unsigned long offset, size_t size, enum dma_data_direction direction) 226{ 227 size_t left = size; 228 229 do { 230 size_t len = left; 231 232 if (PageHighMem(page)) { 233 void *addr; 234 235 if (offset + len > PAGE_SIZE) { 236 if (offset >= PAGE_SIZE) { 237 page += offset >> PAGE_SHIFT; 238 offset &= ~PAGE_MASK; 239 } 240 len = PAGE_SIZE - offset; 241 } 242 243 addr = kmap_atomic(page); 244 __dma_sync_virtual(addr + offset, len, direction); 245 kunmap_atomic(addr); 246 } else 247 __dma_sync_virtual(page_address(page) + offset, 248 size, direction); 249 offset = 0; 250 page++; 251 left -= len; 252 } while (left); 253} 254 255static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr, 256 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) 257{ 258 if (cpu_needs_post_dma_flush(dev)) 259 __dma_sync(dma_addr_to_page(dev, dma_addr), 260 dma_addr & ~PAGE_MASK, size, direction); 261 plat_post_dma_flush(dev); 262 plat_unmap_dma_mem(dev, dma_addr, size, direction); 263} 264 265static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg, 266 int nents, enum dma_data_direction direction, struct dma_attrs *attrs) 267{ 268 int i; 269 270 for (i = 0; i < nents; i++, sg++) { 271 if (!plat_device_is_coherent(dev)) 272 __dma_sync(sg_page(sg), sg->offset, sg->length, 273 direction); 274#ifdef CONFIG_NEED_SG_DMA_LENGTH 275 sg->dma_length = sg->length; 276#endif 277 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) + 278 sg->offset; 279 } 280 281 return nents; 282} 283 284static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page, 285 unsigned long offset, size_t size, enum dma_data_direction direction, 286 struct dma_attrs *attrs) 287{ 288 if (!plat_device_is_coherent(dev)) 289 __dma_sync(page, offset, size, direction); 290 291 return plat_map_dma_mem_page(dev, page) + offset; 292} 293 294static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 295 int nhwentries, enum dma_data_direction direction, 296 struct dma_attrs *attrs) 297{ 298 int i; 299 300 for (i = 0; i < nhwentries; i++, sg++) { 301 if (!plat_device_is_coherent(dev) && 302 direction != DMA_TO_DEVICE) 303 __dma_sync(sg_page(sg), sg->offset, sg->length, 304 direction); 305 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction); 306 } 307} 308 309static void mips_dma_sync_single_for_cpu(struct device *dev, 310 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) 311{ 312 if (cpu_needs_post_dma_flush(dev)) 313 __dma_sync(dma_addr_to_page(dev, dma_handle), 314 dma_handle & ~PAGE_MASK, size, direction); 315 plat_post_dma_flush(dev); 316} 317 318static void mips_dma_sync_single_for_device(struct device *dev, 319 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) 320{ 321 if (!plat_device_is_coherent(dev)) 322 __dma_sync(dma_addr_to_page(dev, dma_handle), 323 dma_handle & ~PAGE_MASK, size, direction); 324} 325 326static void mips_dma_sync_sg_for_cpu(struct device *dev, 327 struct scatterlist *sg, int nelems, enum dma_data_direction direction) 328{ 329 int i; 330 331 if (cpu_needs_post_dma_flush(dev)) 332 for (i = 0; i < nelems; i++, sg++) 333 __dma_sync(sg_page(sg), sg->offset, sg->length, 334 direction); 335 plat_post_dma_flush(dev); 336} 337 338static void mips_dma_sync_sg_for_device(struct device *dev, 339 struct scatterlist *sg, int nelems, enum dma_data_direction direction) 340{ 341 int i; 342 343 if (!plat_device_is_coherent(dev)) 344 for (i = 0; i < nelems; i++, sg++) 345 __dma_sync(sg_page(sg), sg->offset, sg->length, 346 direction); 347} 348 349int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 350{ 351 return 0; 352} 353 354int mips_dma_supported(struct device *dev, u64 mask) 355{ 356 return plat_dma_supported(dev, mask); 357} 358 359void dma_cache_sync(struct device *dev, void *vaddr, size_t size, 360 enum dma_data_direction direction) 361{ 362 BUG_ON(direction == DMA_NONE); 363 364 if (!plat_device_is_coherent(dev)) 365 __dma_sync_virtual(vaddr, size, direction); 366} 367 368EXPORT_SYMBOL(dma_cache_sync); 369 370static struct dma_map_ops mips_default_dma_map_ops = { 371 .alloc = mips_dma_alloc_coherent, 372 .free = mips_dma_free_coherent, 373 .map_page = mips_dma_map_page, 374 .unmap_page = mips_dma_unmap_page, 375 .map_sg = mips_dma_map_sg, 376 .unmap_sg = mips_dma_unmap_sg, 377 .sync_single_for_cpu = mips_dma_sync_single_for_cpu, 378 .sync_single_for_device = mips_dma_sync_single_for_device, 379 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu, 380 .sync_sg_for_device = mips_dma_sync_sg_for_device, 381 .mapping_error = mips_dma_mapping_error, 382 .dma_supported = mips_dma_supported 383}; 384 385struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops; 386EXPORT_SYMBOL(mips_dma_map_ops); 387 388#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) 389 390static int __init mips_dma_init(void) 391{ 392 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 393 394 return 0; 395} 396fs_initcall(mips_dma_init); 397