1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/pci.h>
11#include <linux/interrupt.h>
12#include <linux/time.h>
13#include <linux/delay.h>
14#include <linux/platform_device.h>
15#include <linux/swiotlb.h>
16
17#include <asm/time.h>
18
19#include <asm/octeon/octeon.h>
20#include <asm/octeon/cvmx-npi-defs.h>
21#include <asm/octeon/cvmx-pci-defs.h>
22#include <asm/octeon/pci-octeon.h>
23
24#include <dma-coherence.h>
25
26#define USE_OCTEON_INTERNAL_ARBITER
27
28/*
29 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
30 * addresses. Use PCI endian swapping 1 so no address swapping is
31 * necessary. The Linux io routines will endian swap the data.
32 */
33#define OCTEON_PCI_IOSPACE_BASE	    0x80011a0400000000ull
34#define OCTEON_PCI_IOSPACE_SIZE	    (1ull<<32)
35
36/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
37#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
38
39u64 octeon_bar1_pci_phys;
40
41/**
42 * This is the bit decoding used for the Octeon PCI controller addresses
43 */
44union octeon_pci_address {
45	uint64_t u64;
46	struct {
47		uint64_t upper:2;
48		uint64_t reserved:13;
49		uint64_t io:1;
50		uint64_t did:5;
51		uint64_t subdid:3;
52		uint64_t reserved2:4;
53		uint64_t endian_swap:2;
54		uint64_t reserved3:10;
55		uint64_t bus:8;
56		uint64_t dev:5;
57		uint64_t func:3;
58		uint64_t reg:8;
59	} s;
60};
61
62int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
63					 u8 slot, u8 pin);
64enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
65
66/**
67 * Map a PCI device to the appropriate interrupt line
68 *
69 * @dev:    The Linux PCI device structure for the device to map
70 * @slot:   The slot number for this device on __BUS 0__. Linux
71 *		 enumerates through all the bridges and figures out the
72 *		 slot on Bus 0 where this device eventually hooks to.
73 * @pin:    The PCI interrupt pin read from the device, then swizzled
74 *		 as it goes through each bridge.
75 * Returns Interrupt number for the device
76 */
77int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
78{
79	if (octeon_pcibios_map_irq)
80		return octeon_pcibios_map_irq(dev, slot, pin);
81	else
82		panic("octeon_pcibios_map_irq not set.");
83}
84
85
86/*
87 * Called to perform platform specific PCI setup
88 */
89int pcibios_plat_dev_init(struct pci_dev *dev)
90{
91	uint16_t config;
92	uint32_t dconfig;
93	int pos;
94	/*
95	 * Force the Cache line setting to 64 bytes. The standard
96	 * Linux bus scan doesn't seem to set it. Octeon really has
97	 * 128 byte lines, but Intel bridges get really upset if you
98	 * try and set values above 64 bytes. Value is specified in
99	 * 32bit words.
100	 */
101	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
102	/* Set latency timers for all devices */
103	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
104
105	/* Enable reporting System errors and parity errors on all devices */
106	/* Enable parity checking and error reporting */
107	pci_read_config_word(dev, PCI_COMMAND, &config);
108	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
109	pci_write_config_word(dev, PCI_COMMAND, config);
110
111	if (dev->subordinate) {
112		/* Set latency timers on sub bridges */
113		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
114		/* More bridge error detection */
115		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
116		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
117		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
118	}
119
120	/* Enable the PCIe normal error reporting */
121	config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
122	config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
123	config |= PCI_EXP_DEVCTL_FERE;	/* Fatal Error Reporting */
124	config |= PCI_EXP_DEVCTL_URRE;	/* Unsupported Request */
125	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
126
127	/* Find the Advanced Error Reporting capability */
128	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
129	if (pos) {
130		/* Clear Uncorrectable Error Status */
131		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
132				      &dconfig);
133		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
134				       dconfig);
135		/* Enable reporting of all uncorrectable errors */
136		/* Uncorrectable Error Mask - turned on bits disable errors */
137		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
138		/*
139		 * Leave severity at HW default. This only controls if
140		 * errors are reported as uncorrectable or
141		 * correctable, not if the error is reported.
142		 */
143		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
144		/* Clear Correctable Error Status */
145		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
146		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
147		/* Enable reporting of all correctable errors */
148		/* Correctable Error Mask - turned on bits disable errors */
149		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
150		/* Advanced Error Capabilities */
151		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
152		/* ECRC Generation Enable */
153		if (config & PCI_ERR_CAP_ECRC_GENC)
154			config |= PCI_ERR_CAP_ECRC_GENE;
155		/* ECRC Check Enable */
156		if (config & PCI_ERR_CAP_ECRC_CHKC)
157			config |= PCI_ERR_CAP_ECRC_CHKE;
158		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
159		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
160		/* Report all errors to the root complex */
161		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
162				       PCI_ERR_ROOT_CMD_COR_EN |
163				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
164				       PCI_ERR_ROOT_CMD_FATAL_EN);
165		/* Clear the Root status register */
166		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
167		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
168	}
169
170	dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
171
172	return 0;
173}
174
175/**
176 * Return the mapping of PCI device number to IRQ line. Each
177 * character in the return string represents the interrupt
178 * line for the device at that position. Device 1 maps to the
179 * first character, etc. The characters A-D are used for PCI
180 * interrupts.
181 *
182 * Returns PCI interrupt mapping
183 */
184const char *octeon_get_pci_interrupts(void)
185{
186	/*
187	 * Returning an empty string causes the interrupts to be
188	 * routed based on the PCI specification. From the PCI spec:
189	 *
190	 * INTA# of Device Number 0 is connected to IRQW on the system
191	 * board.  (Device Number has no significance regarding being
192	 * located on the system board or in a connector.) INTA# of
193	 * Device Number 1 is connected to IRQX on the system
194	 * board. INTA# of Device Number 2 is connected to IRQY on the
195	 * system board. INTA# of Device Number 3 is connected to IRQZ
196	 * on the system board. The table below describes how each
197	 * agent's INTx# lines are connected to the system board
198	 * interrupt lines. The following equation can be used to
199	 * determine to which INTx# signal on the system board a given
200	 * device's INTx# line(s) is connected.
201	 *
202	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
203	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
204	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
205	 * INTD# = 3)
206	 */
207	switch (octeon_bootinfo->board_type) {
208	case CVMX_BOARD_TYPE_NAO38:
209		/* This is really the NAC38 */
210		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
211	case CVMX_BOARD_TYPE_EBH3100:
212	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
213	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
214		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
215	case CVMX_BOARD_TYPE_BBGW_REF:
216		return "AABCD";
217	case CVMX_BOARD_TYPE_CUST_DSR1000N:
218		return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
219	case CVMX_BOARD_TYPE_THUNDER:
220	case CVMX_BOARD_TYPE_EBH3000:
221	default:
222		return "";
223	}
224}
225
226/**
227 * Map a PCI device to the appropriate interrupt line
228 *
229 * @dev:    The Linux PCI device structure for the device to map
230 * @slot:   The slot number for this device on __BUS 0__. Linux
231 *		 enumerates through all the bridges and figures out the
232 *		 slot on Bus 0 where this device eventually hooks to.
233 * @pin:    The PCI interrupt pin read from the device, then swizzled
234 *		 as it goes through each bridge.
235 * Returns Interrupt number for the device
236 */
237int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
238				      u8 slot, u8 pin)
239{
240	int irq_num;
241	const char *interrupts;
242	int dev_num;
243
244	/* Get the board specific interrupt mapping */
245	interrupts = octeon_get_pci_interrupts();
246
247	dev_num = dev->devfn >> 3;
248	if (dev_num < strlen(interrupts))
249		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
250			OCTEON_IRQ_PCI_INT0;
251	else
252		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
253	return irq_num;
254}
255
256
257/*
258 * Read a value from configuration space
259 */
260static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
261			      int reg, int size, u32 *val)
262{
263	union octeon_pci_address pci_addr;
264
265	pci_addr.u64 = 0;
266	pci_addr.s.upper = 2;
267	pci_addr.s.io = 1;
268	pci_addr.s.did = 3;
269	pci_addr.s.subdid = 1;
270	pci_addr.s.endian_swap = 1;
271	pci_addr.s.bus = bus->number;
272	pci_addr.s.dev = devfn >> 3;
273	pci_addr.s.func = devfn & 0x7;
274	pci_addr.s.reg = reg;
275
276	switch (size) {
277	case 4:
278		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
279		return PCIBIOS_SUCCESSFUL;
280	case 2:
281		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
282		return PCIBIOS_SUCCESSFUL;
283	case 1:
284		*val = cvmx_read64_uint8(pci_addr.u64);
285		return PCIBIOS_SUCCESSFUL;
286	}
287	return PCIBIOS_FUNC_NOT_SUPPORTED;
288}
289
290
291/*
292 * Write a value to PCI configuration space
293 */
294static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
295			       int reg, int size, u32 val)
296{
297	union octeon_pci_address pci_addr;
298
299	pci_addr.u64 = 0;
300	pci_addr.s.upper = 2;
301	pci_addr.s.io = 1;
302	pci_addr.s.did = 3;
303	pci_addr.s.subdid = 1;
304	pci_addr.s.endian_swap = 1;
305	pci_addr.s.bus = bus->number;
306	pci_addr.s.dev = devfn >> 3;
307	pci_addr.s.func = devfn & 0x7;
308	pci_addr.s.reg = reg;
309
310	switch (size) {
311	case 4:
312		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
313		return PCIBIOS_SUCCESSFUL;
314	case 2:
315		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
316		return PCIBIOS_SUCCESSFUL;
317	case 1:
318		cvmx_write64_uint8(pci_addr.u64, val);
319		return PCIBIOS_SUCCESSFUL;
320	}
321	return PCIBIOS_FUNC_NOT_SUPPORTED;
322}
323
324
325static struct pci_ops octeon_pci_ops = {
326	.read	= octeon_read_config,
327	.write	= octeon_write_config,
328};
329
330static struct resource octeon_pci_mem_resource = {
331	.start = 0,
332	.end = 0,
333	.name = "Octeon PCI MEM",
334	.flags = IORESOURCE_MEM,
335};
336
337/*
338 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
339 * bridge
340 */
341static struct resource octeon_pci_io_resource = {
342	.start = 0x4000,
343	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
344	.name = "Octeon PCI IO",
345	.flags = IORESOURCE_IO,
346};
347
348static struct pci_controller octeon_pci_controller = {
349	.pci_ops = &octeon_pci_ops,
350	.mem_resource = &octeon_pci_mem_resource,
351	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
352	.io_resource = &octeon_pci_io_resource,
353	.io_offset = 0,
354	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
355};
356
357
358/*
359 * Low level initialize the Octeon PCI controller
360 */
361static void octeon_pci_initialize(void)
362{
363	union cvmx_pci_cfg01 cfg01;
364	union cvmx_npi_ctl_status ctl_status;
365	union cvmx_pci_ctl_status_2 ctl_status_2;
366	union cvmx_pci_cfg19 cfg19;
367	union cvmx_pci_cfg16 cfg16;
368	union cvmx_pci_cfg22 cfg22;
369	union cvmx_pci_cfg56 cfg56;
370
371	/* Reset the PCI Bus */
372	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
373	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
374
375	udelay(2000);		/* Hold PCI reset for 2 ms */
376
377	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
378	ctl_status.s.max_word = 1;
379	ctl_status.s.timer = 1;
380	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
381
382	/* Deassert PCI reset and advertize PCX Host Mode Device Capability
383	   (64b) */
384	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
385	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
386
387	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
388
389	ctl_status_2.u32 = 0;
390	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
391					   before any PCI reads. */
392	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
393	ctl_status_2.s.bar2_enb = 1;
394	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
395	ctl_status_2.s.bar2_esx = 1;
396	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
397	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
398		/* BAR1 hole */
399		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
400		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
401		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
402		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
403		ctl_status_2.s.bb1 = 1;	     /* BAR1 is big */
404		ctl_status_2.s.bb0 = 1;	     /* BAR0 is big */
405	}
406
407	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
408	udelay(2000);		/* Wait 2 ms before doing PCI reads */
409
410	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
411	pr_notice("PCI Status: %s %s-bit\n",
412		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
413		  ctl_status_2.s.ap_64ad ? "64" : "32");
414
415	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
416		union cvmx_pci_cnt_reg cnt_reg_start;
417		union cvmx_pci_cnt_reg cnt_reg_end;
418		unsigned long cycles, pci_clock;
419
420		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
421		cycles = read_c0_cvmcount();
422		udelay(1000);
423		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
424		cycles = read_c0_cvmcount() - cycles;
425		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
426			    (cycles / (mips_hpt_frequency / 1000000));
427		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
428	}
429
430	/*
431	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
432	 * in PCI-X mode to allow four outstanding splits. Otherwise,
433	 * should not change from its reset value. Don't write PCI_CFG19
434	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
435	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
436	 * MRBCM -> must be one.
437	 */
438	if (ctl_status_2.s.ap_pcix) {
439		cfg19.u32 = 0;
440		/*
441		 * Target Delayed/Split request outstanding maximum
442		 * count. [1..31] and 0=32.  NOTE: If the user
443		 * programs these bits beyond the Designed Maximum
444		 * outstanding count, then the designed maximum table
445		 * depth will be used instead.	No additional
446		 * Deferred/Split transactions will be accepted if
447		 * this outstanding maximum count is
448		 * reached. Furthermore, no additional deferred/split
449		 * transactions will be accepted if the I/O delay/ I/O
450		 * Split Request outstanding maximum is reached.
451		 */
452		cfg19.s.tdomc = 4;
453		/*
454		 * Master Deferred Read Request Outstanding Max Count
455		 * (PCI only).	CR4C[26:24] Max SAC cycles MAX DAC
456		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
457		 * 5 2 110 6 3 111 7 3 For example, if these bits are
458		 * programmed to 100, the core can support 2 DAC
459		 * cycles, 4 SAC cycles or a combination of 1 DAC and
460		 * 2 SAC cycles. NOTE: For the PCI-X maximum
461		 * outstanding split transactions, refer to
462		 * CRE0[22:20].
463		 */
464		cfg19.s.mdrrmc = 2;
465		/*
466		 * Master Request (Memory Read) Byte Count/Byte Enable
467		 * select. 0 = Byte Enables valid. In PCI mode, a
468		 * burst transaction cannot be performed using Memory
469		 * Read command=4?h6. 1 = DWORD Byte Count valid
470		 * (default). In PCI Mode, the memory read byte
471		 * enables are automatically generated by the
472		 * core. Note: N3 Master Request transaction sizes are
473		 * always determined through the
474		 * am_attr[<35:32>|<7:0>] field.
475		 */
476		cfg19.s.mrbcm = 1;
477		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
478	}
479
480
481	cfg01.u32 = 0;
482	cfg01.s.msae = 1;	/* Memory Space Access Enable */
483	cfg01.s.me = 1;		/* Master Enable */
484	cfg01.s.pee = 1;	/* PERR# Enable */
485	cfg01.s.see = 1;	/* System Error Enable */
486	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
487
488	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
489
490#ifdef USE_OCTEON_INTERNAL_ARBITER
491	/*
492	 * When OCTEON is a PCI host, most systems will use OCTEON's
493	 * internal arbiter, so must enable it before any PCI/PCI-X
494	 * traffic can occur.
495	 */
496	{
497		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
498
499		pci_int_arb_cfg.u64 = 0;
500		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
501		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
502	}
503#endif	/* USE_OCTEON_INTERNAL_ARBITER */
504
505	/*
506	 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
507	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
508	 * 1..7.
509	 */
510	cfg16.u32 = 0;
511	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
512	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
513
514	/*
515	 * Should be written to 0x4ff00. MTTV -> must be zero.
516	 * FLUSH -> must be 1. MRV -> should be 0xFF.
517	 */
518	cfg22.u32 = 0;
519	/* Master Retry Value [1..255] and 0=infinite */
520	cfg22.s.mrv = 0xff;
521	/*
522	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
523	 * N3K operation.
524	 */
525	cfg22.s.flush = 1;
526	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
527
528	/*
529	 * MOST Indicates the maximum number of outstanding splits (in -1
530	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
531	 * affected by the MOST selection.  Should generally be written
532	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
533	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
534	 */
535	cfg56.u32 = 0;
536	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
537	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
538	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
539	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
540	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
541				   [0=512B,1=1024B,2=2048B,3=4096B] */
542	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
543				   .. 7=32] */
544
545	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
546
547	/*
548	 * Affects PCI performance when OCTEON services reads to its
549	 * BAR1/BAR2. Refer to Section 10.6.1.	The recommended values are
550	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
551	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
552	 * these values need to be changed so they won't possibly prefetch off
553	 * of the end of memory if PCI is DMAing a buffer at the end of
554	 * memory. Note that these values differ from their reset values.
555	 */
556	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
557	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
558	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
559}
560
561
562/*
563 * Initialize the Octeon PCI controller
564 */
565static int __init octeon_pci_setup(void)
566{
567	union cvmx_npi_mem_access_subidx mem_access;
568	int index;
569
570	/* Only these chips have PCI */
571	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
572		return 0;
573
574	/* Point pcibios_map_irq() to the PCI version of it */
575	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
576
577	/* Only use the big bars on chips that support it */
578	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
579	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
580	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
581		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
582	else
583		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
584
585	if (!octeon_is_pci_host()) {
586		pr_notice("Not in host mode, PCI Controller not initialized\n");
587		return 0;
588	}
589
590	/* PCI I/O and PCI MEM values */
591	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
592	ioport_resource.start = 0;
593	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
594
595	pr_notice("%s Octeon big bar support\n",
596		  (octeon_dma_bar_type ==
597		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
598
599	octeon_pci_initialize();
600
601	mem_access.u64 = 0;
602	mem_access.s.esr = 1;	/* Endian-Swap on read. */
603	mem_access.s.esw = 1;	/* Endian-Swap on write. */
604	mem_access.s.nsr = 0;	/* No-Snoop on read. */
605	mem_access.s.nsw = 0;	/* No-Snoop on write. */
606	mem_access.s.ror = 0;	/* Relax Read on read. */
607	mem_access.s.row = 0;	/* Relax Order on write. */
608	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
609	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
610
611	/*
612	 * Remap the Octeon BAR 2 above all 32 bit devices
613	 * (0x8000000000ul).  This is done here so it is remapped
614	 * before the readl()'s below. We don't want BAR2 overlapping
615	 * with BAR0/BAR1 during these reads.
616	 */
617	octeon_npi_write32(CVMX_NPI_PCI_CFG08,
618			   (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
619	octeon_npi_write32(CVMX_NPI_PCI_CFG09,
620			   (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
621
622	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
623		/* Remap the Octeon BAR 0 to 0-2GB */
624		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
625		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
626
627		/*
628		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
629		 * BAR 1 hole).
630		 */
631		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
632		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
633
634		/* BAR1 movable mappings set for identity mapping */
635		octeon_bar1_pci_phys = 0x80000000ull;
636		for (index = 0; index < 32; index++) {
637			union cvmx_pci_bar1_indexx bar1_index;
638
639			bar1_index.u32 = 0;
640			/* Address bits[35:22] sent to L2C */
641			bar1_index.s.addr_idx =
642				(octeon_bar1_pci_phys >> 22) + index;
643			/* Don't put PCI accesses in L2. */
644			bar1_index.s.ca = 1;
645			/* Endian Swap Mode */
646			bar1_index.s.end_swp = 1;
647			/* Set '1' when the selected address range is valid. */
648			bar1_index.s.addr_v = 1;
649			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
650					   bar1_index.u32);
651		}
652
653		/* Devices go after BAR1 */
654		octeon_pci_mem_resource.start =
655			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
656			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
657		octeon_pci_mem_resource.end =
658			octeon_pci_mem_resource.start + (1ul << 30);
659	} else {
660		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
661		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
662		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
663
664		/* Remap the Octeon BAR 1 to map 0-128MB */
665		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
666		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
667
668		/* BAR1 movable regions contiguous to cover the swiotlb */
669		octeon_bar1_pci_phys =
670			virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
671
672		for (index = 0; index < 32; index++) {
673			union cvmx_pci_bar1_indexx bar1_index;
674
675			bar1_index.u32 = 0;
676			/* Address bits[35:22] sent to L2C */
677			bar1_index.s.addr_idx =
678				(octeon_bar1_pci_phys >> 22) + index;
679			/* Don't put PCI accesses in L2. */
680			bar1_index.s.ca = 1;
681			/* Endian Swap Mode */
682			bar1_index.s.end_swp = 1;
683			/* Set '1' when the selected address range is valid. */
684			bar1_index.s.addr_v = 1;
685			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
686					   bar1_index.u32);
687		}
688
689		/* Devices go after BAR0 */
690		octeon_pci_mem_resource.start =
691			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
692			(4ul << 10);
693		octeon_pci_mem_resource.end =
694			octeon_pci_mem_resource.start + (1ul << 30);
695	}
696
697	register_pci_controller(&octeon_pci_controller);
698
699	/*
700	 * Clear any errors that might be pending from before the bus
701	 * was setup properly.
702	 */
703	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
704
705	if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
706						   -1, NULL, 0)))
707		pr_err("Registration of co_pci_edac failed!\n");
708
709	octeon_pci_dma_init();
710
711	return 0;
712}
713
714arch_initcall(octeon_pci_setup);
715