1#ifndef _ASM_POWERPC_PAGE_H
2#define _ASM_POWERPC_PAGE_H
3
4/*
5 * Copyright (C) 2001,2005 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#ifndef __ASSEMBLY__
14#include <linux/types.h>
15#else
16#include <asm/types.h>
17#endif
18#include <asm/asm-compat.h>
19#include <asm/kdump.h>
20
21/*
22 * On regular PPC32 page size is 4K (but we support 4K/16K/64K/256K pages
23 * on PPC44x). For PPC64 we support either 4K or 64K software
24 * page size. When using 64K pages however, whether we are really supporting
25 * 64K pages in HW or not is irrelevant to those definitions.
26 */
27#if defined(CONFIG_PPC_256K_PAGES)
28#define PAGE_SHIFT		18
29#elif defined(CONFIG_PPC_64K_PAGES)
30#define PAGE_SHIFT		16
31#elif defined(CONFIG_PPC_16K_PAGES)
32#define PAGE_SHIFT		14
33#else
34#define PAGE_SHIFT		12
35#endif
36
37#define PAGE_SIZE		(ASM_CONST(1) << PAGE_SHIFT)
38
39#ifndef __ASSEMBLY__
40#ifdef CONFIG_HUGETLB_PAGE
41extern unsigned int HPAGE_SHIFT;
42#else
43#define HPAGE_SHIFT PAGE_SHIFT
44#endif
45#define HPAGE_SIZE		((1UL) << HPAGE_SHIFT)
46#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
47#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
48#define HUGE_MAX_HSTATE		(MMU_PAGE_COUNT-1)
49#endif
50
51/*
52 * Subtle: (1 << PAGE_SHIFT) is an int, not an unsigned long. So if we
53 * assign PAGE_MASK to a larger type it gets extended the way we want
54 * (i.e. with 1s in the high bits)
55 */
56#define PAGE_MASK      (~((1 << PAGE_SHIFT) - 1))
57
58/*
59 * KERNELBASE is the virtual address of the start of the kernel, it's often
60 * the same as PAGE_OFFSET, but _might not be_.
61 *
62 * The kdump dump kernel is one example where KERNELBASE != PAGE_OFFSET.
63 *
64 * PAGE_OFFSET is the virtual address of the start of lowmem.
65 *
66 * PHYSICAL_START is the physical address of the start of the kernel.
67 *
68 * MEMORY_START is the physical address of the start of lowmem.
69 *
70 * KERNELBASE, PAGE_OFFSET, and PHYSICAL_START are all configurable on
71 * ppc32 and based on how they are set we determine MEMORY_START.
72 *
73 * For the linear mapping the following equation should be true:
74 * KERNELBASE - PAGE_OFFSET = PHYSICAL_START - MEMORY_START
75 *
76 * Also, KERNELBASE >= PAGE_OFFSET and PHYSICAL_START >= MEMORY_START
77 *
78 * There are two ways to determine a physical address from a virtual one:
79 * va = pa + PAGE_OFFSET - MEMORY_START
80 * va = pa + KERNELBASE - PHYSICAL_START
81 *
82 * If you want to know something's offset from the start of the kernel you
83 * should subtract KERNELBASE.
84 *
85 * If you want to test if something's a kernel address, use is_kernel_addr().
86 */
87
88#define KERNELBASE      ASM_CONST(CONFIG_KERNEL_START)
89#define PAGE_OFFSET	ASM_CONST(CONFIG_PAGE_OFFSET)
90#define LOAD_OFFSET	ASM_CONST((CONFIG_KERNEL_START-CONFIG_PHYSICAL_START))
91
92#if defined(CONFIG_NONSTATIC_KERNEL)
93#ifndef __ASSEMBLY__
94
95extern phys_addr_t memstart_addr;
96extern phys_addr_t kernstart_addr;
97
98#ifdef CONFIG_RELOCATABLE_PPC32
99extern long long virt_phys_offset;
100#endif
101
102#endif /* __ASSEMBLY__ */
103#define PHYSICAL_START	kernstart_addr
104
105#else	/* !CONFIG_NONSTATIC_KERNEL */
106#define PHYSICAL_START	ASM_CONST(CONFIG_PHYSICAL_START)
107#endif
108
109/* See Description below for VIRT_PHYS_OFFSET */
110#ifdef CONFIG_RELOCATABLE_PPC32
111#define VIRT_PHYS_OFFSET virt_phys_offset
112#else
113#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
114#endif
115
116
117#ifdef CONFIG_PPC64
118#define MEMORY_START	0UL
119#elif defined(CONFIG_NONSTATIC_KERNEL)
120#define MEMORY_START	memstart_addr
121#else
122#define MEMORY_START	(PHYSICAL_START + PAGE_OFFSET - KERNELBASE)
123#endif
124
125#ifdef CONFIG_FLATMEM
126#define ARCH_PFN_OFFSET		((unsigned long)(MEMORY_START >> PAGE_SHIFT))
127#define pfn_valid(pfn)		((pfn) >= ARCH_PFN_OFFSET && (pfn) < max_mapnr)
128#endif
129
130#define virt_to_page(kaddr)	pfn_to_page(__pa(kaddr) >> PAGE_SHIFT)
131#define pfn_to_kaddr(pfn)	__va((pfn) << PAGE_SHIFT)
132#define virt_addr_valid(kaddr)	pfn_valid(__pa(kaddr) >> PAGE_SHIFT)
133
134/*
135 * On Book-E parts we need __va to parse the device tree and we can't
136 * determine MEMORY_START until then.  However we can determine PHYSICAL_START
137 * from information at hand (program counter, TLB lookup).
138 *
139 * On BookE with RELOCATABLE (RELOCATABLE_PPC32)
140 *
141 *   With RELOCATABLE_PPC32,  we support loading the kernel at any physical
142 *   address without any restriction on the page alignment.
143 *
144 *   We find the runtime address of _stext and relocate ourselves based on
145 *   the following calculation:
146 *
147 *  	  virtual_base = ALIGN_DOWN(KERNELBASE,256M) +
148 *  				MODULO(_stext.run,256M)
149 *   and create the following mapping:
150 *
151 * 	  ALIGN_DOWN(_stext.run,256M) => ALIGN_DOWN(KERNELBASE,256M)
152 *
153 *   When we process relocations, we cannot depend on the
154 *   existing equation for the __va()/__pa() translations:
155 *
156 * 	   __va(x) = (x)  - PHYSICAL_START + KERNELBASE
157 *
158 *   Where:
159 *   	 PHYSICAL_START = kernstart_addr = Physical address of _stext
160 *  	 KERNELBASE = Compiled virtual address of _stext.
161 *
162 *   This formula holds true iff, kernel load address is TLB page aligned.
163 *
164 *   In our case, we need to also account for the shift in the kernel Virtual
165 *   address.
166 *
167 *   E.g.,
168 *
169 *   Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as PAGE_OFFSET).
170 *   In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
171 *
172 *   Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
173 *                 = 0xbc100000 , which is wrong.
174 *
175 *   Rather, it should be : 0xc0000000 + 0x100000 = 0xc0100000
176 *      	according to our mapping.
177 *
178 *   Hence we use the following formula to get the translations right:
179 *
180 * 	  __va(x) = (x) - [ PHYSICAL_START - Effective KERNELBASE ]
181 *
182 * 	  Where :
183 * 		PHYSICAL_START = dynamic load address.(kernstart_addr variable)
184 * 		Effective KERNELBASE = virtual_base =
185 * 				     = ALIGN_DOWN(KERNELBASE,256M) +
186 * 						MODULO(PHYSICAL_START,256M)
187 *
188 * 	To make the cost of __va() / __pa() more light weight, we introduce
189 * 	a new variable virt_phys_offset, which will hold :
190 *
191 * 	virt_phys_offset = Effective KERNELBASE - PHYSICAL_START
192 * 			 = ALIGN_DOWN(KERNELBASE,256M) -
193 * 			 	ALIGN_DOWN(PHYSICALSTART,256M)
194 *
195 * 	Hence :
196 *
197 * 	__va(x) = x - PHYSICAL_START + Effective KERNELBASE
198 * 		= x + virt_phys_offset
199 *
200 * 		and
201 * 	__pa(x) = x + PHYSICAL_START - Effective KERNELBASE
202 * 		= x - virt_phys_offset
203 *
204 * On non-Book-E PPC64 PAGE_OFFSET and MEMORY_START are constants so use
205 * the other definitions for __va & __pa.
206 */
207#ifdef CONFIG_BOOKE
208#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
209#define __pa(x) ((unsigned long)(x) - VIRT_PHYS_OFFSET)
210#else
211#ifdef CONFIG_PPC64
212/*
213 * gcc miscompiles (unsigned long)(&static_var) - PAGE_OFFSET
214 * with -mcmodel=medium, so we use & and | instead of - and + on 64-bit.
215 */
216#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) | PAGE_OFFSET))
217#define __pa(x) ((unsigned long)(x) & 0x0fffffffffffffffUL)
218
219#else /* 32-bit, non book E */
220#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + PAGE_OFFSET - MEMORY_START))
221#define __pa(x) ((unsigned long)(x) - PAGE_OFFSET + MEMORY_START)
222#endif
223#endif
224
225/*
226 * Unfortunately the PLT is in the BSS in the PPC32 ELF ABI,
227 * and needs to be executable.  This means the whole heap ends
228 * up being executable.
229 */
230#define VM_DATA_DEFAULT_FLAGS32	(VM_READ | VM_WRITE | VM_EXEC | \
231				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
232
233#define VM_DATA_DEFAULT_FLAGS64	(VM_READ | VM_WRITE | \
234				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
235
236#ifdef __powerpc64__
237#include <asm/page_64.h>
238#else
239#include <asm/page_32.h>
240#endif
241
242/* align addr on a size boundary - adjust address up/down if needed */
243#define _ALIGN_UP(addr,size)	(((addr)+((size)-1))&(~((size)-1)))
244#define _ALIGN_DOWN(addr,size)	((addr)&(~((size)-1)))
245
246/* align addr on a size boundary - adjust address up if needed */
247#define _ALIGN(addr,size)     _ALIGN_UP(addr,size)
248
249/*
250 * Don't compare things with KERNELBASE or PAGE_OFFSET to test for
251 * "kernelness", use is_kernel_addr() - it should do what you want.
252 */
253#ifdef CONFIG_PPC_BOOK3E_64
254#define is_kernel_addr(x)	((x) >= 0x8000000000000000ul)
255#else
256#define is_kernel_addr(x)	((x) >= PAGE_OFFSET)
257#endif
258
259#ifndef CONFIG_PPC_BOOK3S_64
260/*
261 * Use the top bit of the higher-level page table entries to indicate whether
262 * the entries we point to contain hugepages.  This works because we know that
263 * the page tables live in kernel space.  If we ever decide to support having
264 * page tables at arbitrary addresses, this breaks and will have to change.
265 */
266#ifdef CONFIG_PPC64
267#define PD_HUGE 0x8000000000000000
268#else
269#define PD_HUGE 0x80000000
270#endif
271#endif /* CONFIG_PPC_BOOK3S_64 */
272
273/*
274 * Some number of bits at the level of the page table that points to
275 * a hugepte are used to encode the size.  This masks those bits.
276 */
277#define HUGEPD_SHIFT_MASK     0x3f
278
279#ifndef __ASSEMBLY__
280
281#undef STRICT_MM_TYPECHECKS
282
283#ifdef STRICT_MM_TYPECHECKS
284/* These are used to make use of C type-checking. */
285
286/* PTE level */
287typedef struct { pte_basic_t pte; } pte_t;
288#define pte_val(x)	((x).pte)
289#define __pte(x)	((pte_t) { (x) })
290
291/* 64k pages additionally define a bigger "real PTE" type that gathers
292 * the "second half" part of the PTE for pseudo 64k pages
293 */
294#if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC_STD_MMU_64)
295typedef struct { pte_t pte; unsigned long hidx; } real_pte_t;
296#else
297typedef struct { pte_t pte; } real_pte_t;
298#endif
299
300/* PMD level */
301#ifdef CONFIG_PPC64
302typedef struct { unsigned long pmd; } pmd_t;
303#define pmd_val(x)	((x).pmd)
304#define __pmd(x)	((pmd_t) { (x) })
305
306/* PUD level exusts only on 4k pages */
307#ifndef CONFIG_PPC_64K_PAGES
308typedef struct { unsigned long pud; } pud_t;
309#define pud_val(x)	((x).pud)
310#define __pud(x)	((pud_t) { (x) })
311#endif /* !CONFIG_PPC_64K_PAGES */
312#endif /* CONFIG_PPC64 */
313
314/* PGD level */
315typedef struct { unsigned long pgd; } pgd_t;
316#define pgd_val(x)	((x).pgd)
317#define __pgd(x)	((pgd_t) { (x) })
318
319/* Page protection bits */
320typedef struct { unsigned long pgprot; } pgprot_t;
321#define pgprot_val(x)	((x).pgprot)
322#define __pgprot(x)	((pgprot_t) { (x) })
323
324#else
325
326/*
327 * .. while these make it easier on the compiler
328 */
329
330typedef pte_basic_t pte_t;
331#define pte_val(x)	(x)
332#define __pte(x)	(x)
333
334#if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC_STD_MMU_64)
335typedef struct { pte_t pte; unsigned long hidx; } real_pte_t;
336#else
337typedef pte_t real_pte_t;
338#endif
339
340
341#ifdef CONFIG_PPC64
342typedef unsigned long pmd_t;
343#define pmd_val(x)	(x)
344#define __pmd(x)	(x)
345
346#ifndef CONFIG_PPC_64K_PAGES
347typedef unsigned long pud_t;
348#define pud_val(x)	(x)
349#define __pud(x)	(x)
350#endif /* !CONFIG_PPC_64K_PAGES */
351#endif /* CONFIG_PPC64 */
352
353typedef unsigned long pgd_t;
354#define pgd_val(x)	(x)
355#define pgprot_val(x)	(x)
356
357typedef unsigned long pgprot_t;
358#define __pgd(x)	(x)
359#define __pgprot(x)	(x)
360
361#endif
362
363typedef struct { signed long pd; } hugepd_t;
364
365#ifdef CONFIG_HUGETLB_PAGE
366#ifdef CONFIG_PPC_BOOK3S_64
367static inline int hugepd_ok(hugepd_t hpd)
368{
369	/*
370	 * hugepd pointer, bottom two bits == 00 and next 4 bits
371	 * indicate size of table
372	 */
373	return (((hpd.pd & 0x3) == 0x0) && ((hpd.pd & HUGEPD_SHIFT_MASK) != 0));
374}
375#else
376static inline int hugepd_ok(hugepd_t hpd)
377{
378	return (hpd.pd > 0);
379}
380#endif
381
382#define is_hugepd(hpd)               (hugepd_ok(hpd))
383#define pgd_huge pgd_huge
384int pgd_huge(pgd_t pgd);
385#else /* CONFIG_HUGETLB_PAGE */
386#define is_hugepd(pdep)			0
387#define pgd_huge(pgd)			0
388#endif /* CONFIG_HUGETLB_PAGE */
389#define __hugepd(x) ((hugepd_t) { (x) })
390
391struct page;
392extern void clear_user_page(void *page, unsigned long vaddr, struct page *pg);
393extern void copy_user_page(void *to, void *from, unsigned long vaddr,
394		struct page *p);
395extern int page_is_ram(unsigned long pfn);
396extern int devmem_is_allowed(unsigned long pfn);
397
398#ifdef CONFIG_PPC_SMLPAR
399void arch_free_page(struct page *page, int order);
400#define HAVE_ARCH_FREE_PAGE
401#endif
402
403struct vm_area_struct;
404
405#if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC64)
406typedef pte_t *pgtable_t;
407#else
408typedef struct page *pgtable_t;
409#endif
410
411#include <asm-generic/memory_model.h>
412#endif /* __ASSEMBLY__ */
413
414#endif /* _ASM_POWERPC_PAGE_H */
415