1/*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#include <linux/delay.h>
25#include <linux/debugfs.h>
26#include <linux/sched.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/pci.h>
30#include <linux/iommu.h>
31#include <linux/proc_fs.h>
32#include <linux/rbtree.h>
33#include <linux/reboot.h>
34#include <linux/seq_file.h>
35#include <linux/spinlock.h>
36#include <linux/export.h>
37#include <linux/of.h>
38
39#include <linux/atomic.h>
40#include <asm/debug.h>
41#include <asm/eeh.h>
42#include <asm/eeh_event.h>
43#include <asm/io.h>
44#include <asm/iommu.h>
45#include <asm/machdep.h>
46#include <asm/ppc-pci.h>
47#include <asm/rtas.h>
48
49
50/** Overview:
51 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52 *  dealing with PCI bus errors that can't be dealt with within the
53 *  usual PCI framework, except by check-stopping the CPU.  Systems
54 *  that are designed for high-availability/reliability cannot afford
55 *  to crash due to a "mere" PCI error, thus the need for EEH.
56 *  An EEH-capable bridge operates by converting a detected error
57 *  into a "slot freeze", taking the PCI adapter off-line, making
58 *  the slot behave, from the OS'es point of view, as if the slot
59 *  were "empty": all reads return 0xff's and all writes are silently
60 *  ignored.  EEH slot isolation events can be triggered by parity
61 *  errors on the address or data busses (e.g. during posted writes),
62 *  which in turn might be caused by low voltage on the bus, dust,
63 *  vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 *  Note, however, that one of the leading causes of EEH slot
66 *  freeze events are buggy device drivers, buggy device microcode,
67 *  or buggy device hardware.  This is because any attempt by the
68 *  device to bus-master data to a memory address that is not
69 *  assigned to the device will trigger a slot freeze.   (The idea
70 *  is to prevent devices-gone-wild from corrupting system memory).
71 *  Buggy hardware/drivers will have a miserable time co-existing
72 *  with EEH.
73 *
74 *  Ideally, a PCI device driver, when suspecting that an isolation
75 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76 *  whether this is the case, and then take appropriate steps to
77 *  reset the PCI slot, the PCI device, and then resume operations.
78 *  However, until that day,  the checking is done here, with the
79 *  eeh_check_failure() routine embedded in the MMIO macros.  If
80 *  the slot is found to be isolated, an "EEH Event" is synthesized
81 *  and sent out for processing.
82 */
83
84/* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89#define EEH_MAX_FAILS	2100000
90
91/* Time to wait for a PCI slot to report status, in milliseconds */
92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94/*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104int eeh_subsystem_flags;
105EXPORT_SYMBOL(eeh_subsystem_flags);
106
107/*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112int eeh_max_freezes = 5;
113
114/* Platform dependent EEH operations */
115struct eeh_ops *eeh_ops = NULL;
116
117/* Lock to avoid races due to multiple reports of an error */
118DEFINE_RAW_SPINLOCK(confirm_error_lock);
119
120/* Lock to protect passed flags */
121static DEFINE_MUTEX(eeh_dev_mutex);
122
123/* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
126 */
127#define EEH_PCI_REGS_LOG_LEN 8192
128static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129
130/*
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
134 */
135struct eeh_stats {
136	u64 no_device;		/* PCI device not found		*/
137	u64 no_dn;		/* OF node not found		*/
138	u64 no_cfg_addr;	/* Config address not found	*/
139	u64 ignored_check;	/* EEH check skipped		*/
140	u64 total_mmio_ffs;	/* Total EEH checks		*/
141	u64 false_positives;	/* Unnecessary EEH checks	*/
142	u64 slot_resets;	/* PE reset			*/
143};
144
145static struct eeh_stats eeh_stats;
146
147#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
148
149static int __init eeh_setup(char *str)
150{
151	if (!strcmp(str, "off"))
152		eeh_add_flag(EEH_FORCE_DISABLED);
153	else if (!strcmp(str, "early_log"))
154		eeh_add_flag(EEH_EARLY_DUMP_LOG);
155
156	return 1;
157}
158__setup("eeh=", eeh_setup);
159
160/*
161 * This routine captures assorted PCI configuration space data
162 * for the indicated PCI device, and puts them into a buffer
163 * for RTAS error logging.
164 */
165static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
166{
167	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
168	u32 cfg;
169	int cap, i;
170	int n = 0, l = 0;
171	char buffer[128];
172
173	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
174		       edev->phb->global_number, pdn->busno,
175		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
176	pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
177		edev->phb->global_number, pdn->busno,
178		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
179
180	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
181	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
182	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
183
184	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
185	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
186	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
187
188	/* Gather bridge-specific registers */
189	if (edev->mode & EEH_DEV_BRIDGE) {
190		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
191		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
192		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
193
194		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
195		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
196		pr_warn("EEH: Bridge control: %04x\n", cfg);
197	}
198
199	/* Dump out the PCI-X command and status regs */
200	cap = edev->pcix_cap;
201	if (cap) {
202		eeh_ops->read_config(pdn, cap, 4, &cfg);
203		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
204		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
205
206		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
207		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
208		pr_warn("EEH: PCI-X status: %08x\n", cfg);
209	}
210
211	/* If PCI-E capable, dump PCI-E cap 10 */
212	cap = edev->pcie_cap;
213	if (cap) {
214		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
215		pr_warn("EEH: PCI-E capabilities and status follow:\n");
216
217		for (i=0; i<=8; i++) {
218			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
219			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
220
221			if ((i % 4) == 0) {
222				if (i != 0)
223					pr_warn("%s\n", buffer);
224
225				l = scnprintf(buffer, sizeof(buffer),
226					      "EEH: PCI-E %02x: %08x ",
227					      4*i, cfg);
228			} else {
229				l += scnprintf(buffer+l, sizeof(buffer)-l,
230					       "%08x ", cfg);
231			}
232
233		}
234
235		pr_warn("%s\n", buffer);
236	}
237
238	/* If AER capable, dump it */
239	cap = edev->aer_cap;
240	if (cap) {
241		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
242		pr_warn("EEH: PCI-E AER capability register set follows:\n");
243
244		for (i=0; i<=13; i++) {
245			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
246			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
247
248			if ((i % 4) == 0) {
249				if (i != 0)
250					pr_warn("%s\n", buffer);
251
252				l = scnprintf(buffer, sizeof(buffer),
253					      "EEH: PCI-E AER %02x: %08x ",
254					      4*i, cfg);
255			} else {
256				l += scnprintf(buffer+l, sizeof(buffer)-l,
257					       "%08x ", cfg);
258			}
259		}
260
261		pr_warn("%s\n", buffer);
262	}
263
264	return n;
265}
266
267static void *eeh_dump_pe_log(void *data, void *flag)
268{
269	struct eeh_pe *pe = data;
270	struct eeh_dev *edev, *tmp;
271	size_t *plen = flag;
272
273	/* If the PE's config space is blocked, 0xFF's will be
274	 * returned. It's pointless to collect the log in this
275	 * case.
276	 */
277	if (pe->state & EEH_PE_CFG_BLOCKED)
278		return NULL;
279
280	eeh_pe_for_each_dev(pe, edev, tmp)
281		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
282					  EEH_PCI_REGS_LOG_LEN - *plen);
283
284	return NULL;
285}
286
287/**
288 * eeh_slot_error_detail - Generate combined log including driver log and error log
289 * @pe: EEH PE
290 * @severity: temporary or permanent error log
291 *
292 * This routine should be called to generate the combined log, which
293 * is comprised of driver log and error log. The driver log is figured
294 * out from the config space of the corresponding PCI device, while
295 * the error log is fetched through platform dependent function call.
296 */
297void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
298{
299	size_t loglen = 0;
300
301	/*
302	 * When the PHB is fenced or dead, it's pointless to collect
303	 * the data from PCI config space because it should return
304	 * 0xFF's. For ER, we still retrieve the data from the PCI
305	 * config space.
306	 *
307	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
308	 * 0xFF's is always returned from PCI config space.
309	 */
310	if (!(pe->type & EEH_PE_PHB)) {
311		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
312			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313
314		/*
315		 * The config space of some PCI devices can't be accessed
316		 * when their PEs are in frozen state. Otherwise, fenced
317		 * PHB might be seen. Those PEs are identified with flag
318		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
320		 *
321		 * Restoring BARs possibly triggers PCI config access in
322		 * (OPAL) firmware and then causes fenced PHB. If the
323		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324		 * pointless to restore BARs and dump config space.
325		 */
326		eeh_ops->configure_bridge(pe);
327		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328			eeh_pe_restore_bars(pe);
329
330			pci_regs_buf[0] = 0;
331			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
332		}
333	}
334
335	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
336}
337
338/**
339 * eeh_token_to_phys - Convert EEH address token to phys address
340 * @token: I/O token, should be address in the form 0xA....
341 *
342 * This routine should be called to convert virtual I/O address
343 * to physical one.
344 */
345static inline unsigned long eeh_token_to_phys(unsigned long token)
346{
347	pte_t *ptep;
348	unsigned long pa;
349	int hugepage_shift;
350
351	/*
352	 * We won't find hugepages here(this is iomem). Hence we are not
353	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354	 * page table free, because of init_mm.
355	 */
356	ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
357	if (!ptep)
358		return token;
359	WARN_ON(hugepage_shift);
360	pa = pte_pfn(*ptep) << PAGE_SHIFT;
361
362	return pa | (token & (PAGE_SIZE-1));
363}
364
365/*
366 * On PowerNV platform, we might already have fenced PHB there.
367 * For that case, it's meaningless to recover frozen PE. Intead,
368 * We have to handle fenced PHB firstly.
369 */
370static int eeh_phb_check_failure(struct eeh_pe *pe)
371{
372	struct eeh_pe *phb_pe;
373	unsigned long flags;
374	int ret;
375
376	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
377		return -EPERM;
378
379	/* Find the PHB PE */
380	phb_pe = eeh_phb_pe_get(pe->phb);
381	if (!phb_pe) {
382		pr_warn("%s Can't find PE for PHB#%d\n",
383			__func__, pe->phb->global_number);
384		return -EEXIST;
385	}
386
387	/* If the PHB has been in problematic state */
388	eeh_serialize_lock(&flags);
389	if (phb_pe->state & EEH_PE_ISOLATED) {
390		ret = 0;
391		goto out;
392	}
393
394	/* Check PHB state */
395	ret = eeh_ops->get_state(phb_pe, NULL);
396	if ((ret < 0) ||
397	    (ret == EEH_STATE_NOT_SUPPORT) ||
398	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
399	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
400		ret = 0;
401		goto out;
402	}
403
404	/* Isolate the PHB and send event */
405	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
406	eeh_serialize_unlock(flags);
407
408	pr_err("EEH: PHB#%x failure detected, location: %s\n",
409		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
410	dump_stack();
411	eeh_send_failure_event(phb_pe);
412
413	return 1;
414out:
415	eeh_serialize_unlock(flags);
416	return ret;
417}
418
419/**
420 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
421 * @edev: eeh device
422 *
423 * Check for an EEH failure for the given device node.  Call this
424 * routine if the result of a read was all 0xff's and you want to
425 * find out if this is due to an EEH slot freeze.  This routine
426 * will query firmware for the EEH status.
427 *
428 * Returns 0 if there has not been an EEH error; otherwise returns
429 * a non-zero value and queues up a slot isolation event notification.
430 *
431 * It is safe to call this routine in an interrupt context.
432 */
433int eeh_dev_check_failure(struct eeh_dev *edev)
434{
435	int ret;
436	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
437	unsigned long flags;
438	struct pci_dn *pdn;
439	struct pci_dev *dev;
440	struct eeh_pe *pe, *parent_pe, *phb_pe;
441	int rc = 0;
442	const char *location = NULL;
443
444	eeh_stats.total_mmio_ffs++;
445
446	if (!eeh_enabled())
447		return 0;
448
449	if (!edev) {
450		eeh_stats.no_dn++;
451		return 0;
452	}
453	dev = eeh_dev_to_pci_dev(edev);
454	pe = eeh_dev_to_pe(edev);
455
456	/* Access to IO BARs might get this far and still not want checking. */
457	if (!pe) {
458		eeh_stats.ignored_check++;
459		pr_debug("EEH: Ignored check for %s\n",
460			eeh_pci_name(dev));
461		return 0;
462	}
463
464	if (!pe->addr && !pe->config_addr) {
465		eeh_stats.no_cfg_addr++;
466		return 0;
467	}
468
469	/*
470	 * On PowerNV platform, we might already have fenced PHB
471	 * there and we need take care of that firstly.
472	 */
473	ret = eeh_phb_check_failure(pe);
474	if (ret > 0)
475		return ret;
476
477	/*
478	 * If the PE isn't owned by us, we shouldn't check the
479	 * state. Instead, let the owner handle it if the PE has
480	 * been frozen.
481	 */
482	if (eeh_pe_passed(pe))
483		return 0;
484
485	/* If we already have a pending isolation event for this
486	 * slot, we know it's bad already, we don't need to check.
487	 * Do this checking under a lock; as multiple PCI devices
488	 * in one slot might report errors simultaneously, and we
489	 * only want one error recovery routine running.
490	 */
491	eeh_serialize_lock(&flags);
492	rc = 1;
493	if (pe->state & EEH_PE_ISOLATED) {
494		pe->check_count++;
495		if (pe->check_count % EEH_MAX_FAILS == 0) {
496			pdn = eeh_dev_to_pdn(edev);
497			if (pdn->node)
498				location = of_get_property(pdn->node, "ibm,loc-code", NULL);
499			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
500				"location=%s driver=%s pci addr=%s\n",
501				pe->check_count,
502				location ? location : "unknown",
503				eeh_driver_name(dev), eeh_pci_name(dev));
504			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
505				eeh_driver_name(dev));
506			dump_stack();
507		}
508		goto dn_unlock;
509	}
510
511	/*
512	 * Now test for an EEH failure.  This is VERY expensive.
513	 * Note that the eeh_config_addr may be a parent device
514	 * in the case of a device behind a bridge, or it may be
515	 * function zero of a multi-function device.
516	 * In any case they must share a common PHB.
517	 */
518	ret = eeh_ops->get_state(pe, NULL);
519
520	/* Note that config-io to empty slots may fail;
521	 * they are empty when they don't have children.
522	 * We will punt with the following conditions: Failure to get
523	 * PE's state, EEH not support and Permanently unavailable
524	 * state, PE is in good state.
525	 */
526	if ((ret < 0) ||
527	    (ret == EEH_STATE_NOT_SUPPORT) ||
528	    ((ret & active_flags) == active_flags)) {
529		eeh_stats.false_positives++;
530		pe->false_positives++;
531		rc = 0;
532		goto dn_unlock;
533	}
534
535	/*
536	 * It should be corner case that the parent PE has been
537	 * put into frozen state as well. We should take care
538	 * that at first.
539	 */
540	parent_pe = pe->parent;
541	while (parent_pe) {
542		/* Hit the ceiling ? */
543		if (parent_pe->type & EEH_PE_PHB)
544			break;
545
546		/* Frozen parent PE ? */
547		ret = eeh_ops->get_state(parent_pe, NULL);
548		if (ret > 0 &&
549		    (ret & active_flags) != active_flags)
550			pe = parent_pe;
551
552		/* Next parent level */
553		parent_pe = parent_pe->parent;
554	}
555
556	eeh_stats.slot_resets++;
557
558	/* Avoid repeated reports of this failure, including problems
559	 * with other functions on this device, and functions under
560	 * bridges.
561	 */
562	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
563	eeh_serialize_unlock(flags);
564
565	/* Most EEH events are due to device driver bugs.  Having
566	 * a stack trace will help the device-driver authors figure
567	 * out what happened.  So print that out.
568	 */
569	phb_pe = eeh_phb_pe_get(pe->phb);
570	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
571	       pe->phb->global_number, pe->addr);
572	pr_err("EEH: PE location: %s, PHB location: %s\n",
573	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
574	dump_stack();
575
576	eeh_send_failure_event(pe);
577
578	return 1;
579
580dn_unlock:
581	eeh_serialize_unlock(flags);
582	return rc;
583}
584
585EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
586
587/**
588 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
589 * @token: I/O address
590 *
591 * Check for an EEH failure at the given I/O address. Call this
592 * routine if the result of a read was all 0xff's and you want to
593 * find out if this is due to an EEH slot freeze event. This routine
594 * will query firmware for the EEH status.
595 *
596 * Note this routine is safe to call in an interrupt context.
597 */
598int eeh_check_failure(const volatile void __iomem *token)
599{
600	unsigned long addr;
601	struct eeh_dev *edev;
602
603	/* Finding the phys addr + pci device; this is pretty quick. */
604	addr = eeh_token_to_phys((unsigned long __force) token);
605	edev = eeh_addr_cache_get_dev(addr);
606	if (!edev) {
607		eeh_stats.no_device++;
608		return 0;
609	}
610
611	return eeh_dev_check_failure(edev);
612}
613EXPORT_SYMBOL(eeh_check_failure);
614
615
616/**
617 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
618 * @pe: EEH PE
619 *
620 * This routine should be called to reenable frozen MMIO or DMA
621 * so that it would work correctly again. It's useful while doing
622 * recovery or log collection on the indicated device.
623 */
624int eeh_pci_enable(struct eeh_pe *pe, int function)
625{
626	int active_flag, rc;
627
628	/*
629	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
630	 * Also, it's pointless to enable them on unfrozen PE. So
631	 * we have to check before enabling IO or DMA.
632	 */
633	switch (function) {
634	case EEH_OPT_THAW_MMIO:
635		active_flag = EEH_STATE_MMIO_ACTIVE;
636		break;
637	case EEH_OPT_THAW_DMA:
638		active_flag = EEH_STATE_DMA_ACTIVE;
639		break;
640	case EEH_OPT_DISABLE:
641	case EEH_OPT_ENABLE:
642	case EEH_OPT_FREEZE_PE:
643		active_flag = 0;
644		break;
645	default:
646		pr_warn("%s: Invalid function %d\n",
647			__func__, function);
648		return -EINVAL;
649	}
650
651	/*
652	 * Check if IO or DMA has been enabled before
653	 * enabling them.
654	 */
655	if (active_flag) {
656		rc = eeh_ops->get_state(pe, NULL);
657		if (rc < 0)
658			return rc;
659
660		/* Needn't enable it at all */
661		if (rc == EEH_STATE_NOT_SUPPORT)
662			return 0;
663
664		/* It's already enabled */
665		if (rc & active_flag)
666			return 0;
667	}
668
669
670	/* Issue the request */
671	rc = eeh_ops->set_option(pe, function);
672	if (rc)
673		pr_warn("%s: Unexpected state change %d on "
674			"PHB#%d-PE#%x, err=%d\n",
675			__func__, function, pe->phb->global_number,
676			pe->addr, rc);
677
678	/* Check if the request is finished successfully */
679	if (active_flag) {
680		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
681		if (rc <= 0)
682			return rc;
683
684		if (rc & active_flag)
685			return 0;
686
687		return -EIO;
688	}
689
690	return rc;
691}
692
693static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
694{
695	struct eeh_dev *edev = data;
696	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
697	struct pci_dev *dev = userdata;
698
699	/*
700	 * The caller should have disabled and saved the
701	 * state for the specified device
702	 */
703	if (!pdev || pdev == dev)
704		return NULL;
705
706	/* Ensure we have D0 power state */
707	pci_set_power_state(pdev, PCI_D0);
708
709	/* Save device state */
710	pci_save_state(pdev);
711
712	/*
713	 * Disable device to avoid any DMA traffic and
714	 * interrupt from the device
715	 */
716	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
717
718	return NULL;
719}
720
721static void *eeh_restore_dev_state(void *data, void *userdata)
722{
723	struct eeh_dev *edev = data;
724	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
725	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
726	struct pci_dev *dev = userdata;
727
728	if (!pdev)
729		return NULL;
730
731	/* Apply customization from firmware */
732	if (pdn && eeh_ops->restore_config)
733		eeh_ops->restore_config(pdn);
734
735	/* The caller should restore state for the specified device */
736	if (pdev != dev)
737		pci_save_state(pdev);
738
739	return NULL;
740}
741
742/**
743 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
744 * @dev: pci device struct
745 * @state: reset state to enter
746 *
747 * Return value:
748 * 	0 if success
749 */
750int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
751{
752	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
753	struct eeh_pe *pe = eeh_dev_to_pe(edev);
754
755	if (!pe) {
756		pr_err("%s: No PE found on PCI device %s\n",
757			__func__, pci_name(dev));
758		return -EINVAL;
759	}
760
761	switch (state) {
762	case pcie_deassert_reset:
763		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
764		eeh_unfreeze_pe(pe, false);
765		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
766		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
767		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
768		break;
769	case pcie_hot_reset:
770		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
771		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
772		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
773		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
774		eeh_ops->reset(pe, EEH_RESET_HOT);
775		break;
776	case pcie_warm_reset:
777		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
778		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
779		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
780		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
781		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
782		break;
783	default:
784		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
785		return -EINVAL;
786	};
787
788	return 0;
789}
790
791/**
792 * eeh_set_pe_freset - Check the required reset for the indicated device
793 * @data: EEH device
794 * @flag: return value
795 *
796 * Each device might have its preferred reset type: fundamental or
797 * hot reset. The routine is used to collected the information for
798 * the indicated device and its children so that the bunch of the
799 * devices could be reset properly.
800 */
801static void *eeh_set_dev_freset(void *data, void *flag)
802{
803	struct pci_dev *dev;
804	unsigned int *freset = (unsigned int *)flag;
805	struct eeh_dev *edev = (struct eeh_dev *)data;
806
807	dev = eeh_dev_to_pci_dev(edev);
808	if (dev)
809		*freset |= dev->needs_freset;
810
811	return NULL;
812}
813
814/**
815 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
816 * @pe: EEH PE
817 *
818 * Assert the PCI #RST line for 1/4 second.
819 */
820static void eeh_reset_pe_once(struct eeh_pe *pe)
821{
822	unsigned int freset = 0;
823
824	/* Determine type of EEH reset required for
825	 * Partitionable Endpoint, a hot-reset (1)
826	 * or a fundamental reset (3).
827	 * A fundamental reset required by any device under
828	 * Partitionable Endpoint trumps hot-reset.
829	 */
830	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
831
832	if (freset)
833		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
834	else
835		eeh_ops->reset(pe, EEH_RESET_HOT);
836
837	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
838}
839
840/**
841 * eeh_reset_pe - Reset the indicated PE
842 * @pe: EEH PE
843 *
844 * This routine should be called to reset indicated device, including
845 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
846 * might be involved as well.
847 */
848int eeh_reset_pe(struct eeh_pe *pe)
849{
850	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
851	int i, state, ret;
852
853	/* Mark as reset and block config space */
854	eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
855
856	/* Take three shots at resetting the bus */
857	for (i = 0; i < 3; i++) {
858		eeh_reset_pe_once(pe);
859
860		/*
861		 * EEH_PE_ISOLATED is expected to be removed after
862		 * BAR restore.
863		 */
864		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
865		if ((state & flags) == flags) {
866			ret = 0;
867			goto out;
868		}
869
870		if (state < 0) {
871			pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
872				__func__, pe->phb->global_number, pe->addr);
873			ret = -ENOTRECOVERABLE;
874			goto out;
875		}
876
877		/* We might run out of credits */
878		ret = -EIO;
879		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
880			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
881	}
882
883out:
884	eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
885	return ret;
886}
887
888/**
889 * eeh_save_bars - Save device bars
890 * @edev: PCI device associated EEH device
891 *
892 * Save the values of the device bars. Unlike the restore
893 * routine, this routine is *not* recursive. This is because
894 * PCI devices are added individually; but, for the restore,
895 * an entire slot is reset at a time.
896 */
897void eeh_save_bars(struct eeh_dev *edev)
898{
899	struct pci_dn *pdn;
900	int i;
901
902	pdn = eeh_dev_to_pdn(edev);
903	if (!pdn)
904		return;
905
906	for (i = 0; i < 16; i++)
907		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
908
909	/*
910	 * For PCI bridges including root port, we need enable bus
911	 * master explicitly. Otherwise, it can't fetch IODA table
912	 * entries correctly. So we cache the bit in advance so that
913	 * we can restore it after reset, either PHB range or PE range.
914	 */
915	if (edev->mode & EEH_DEV_BRIDGE)
916		edev->config_space[1] |= PCI_COMMAND_MASTER;
917}
918
919/**
920 * eeh_ops_register - Register platform dependent EEH operations
921 * @ops: platform dependent EEH operations
922 *
923 * Register the platform dependent EEH operation callback
924 * functions. The platform should call this function before
925 * any other EEH operations.
926 */
927int __init eeh_ops_register(struct eeh_ops *ops)
928{
929	if (!ops->name) {
930		pr_warn("%s: Invalid EEH ops name for %p\n",
931			__func__, ops);
932		return -EINVAL;
933	}
934
935	if (eeh_ops && eeh_ops != ops) {
936		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
937			__func__, eeh_ops->name, ops->name);
938		return -EEXIST;
939	}
940
941	eeh_ops = ops;
942
943	return 0;
944}
945
946/**
947 * eeh_ops_unregister - Unreigster platform dependent EEH operations
948 * @name: name of EEH platform operations
949 *
950 * Unregister the platform dependent EEH operation callback
951 * functions.
952 */
953int __exit eeh_ops_unregister(const char *name)
954{
955	if (!name || !strlen(name)) {
956		pr_warn("%s: Invalid EEH ops name\n",
957			__func__);
958		return -EINVAL;
959	}
960
961	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
962		eeh_ops = NULL;
963		return 0;
964	}
965
966	return -EEXIST;
967}
968
969static int eeh_reboot_notifier(struct notifier_block *nb,
970			       unsigned long action, void *unused)
971{
972	eeh_clear_flag(EEH_ENABLED);
973	return NOTIFY_DONE;
974}
975
976static struct notifier_block eeh_reboot_nb = {
977	.notifier_call = eeh_reboot_notifier,
978};
979
980/**
981 * eeh_init - EEH initialization
982 *
983 * Initialize EEH by trying to enable it for all of the adapters in the system.
984 * As a side effect we can determine here if eeh is supported at all.
985 * Note that we leave EEH on so failed config cycles won't cause a machine
986 * check.  If a user turns off EEH for a particular adapter they are really
987 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
988 * grant access to a slot if EEH isn't enabled, and so we always enable
989 * EEH for all slots/all devices.
990 *
991 * The eeh-force-off option disables EEH checking globally, for all slots.
992 * Even if force-off is set, the EEH hardware is still enabled, so that
993 * newer systems can boot.
994 */
995int eeh_init(void)
996{
997	struct pci_controller *hose, *tmp;
998	struct pci_dn *pdn;
999	static int cnt = 0;
1000	int ret = 0;
1001
1002	/*
1003	 * We have to delay the initialization on PowerNV after
1004	 * the PCI hierarchy tree has been built because the PEs
1005	 * are figured out based on PCI devices instead of device
1006	 * tree nodes
1007	 */
1008	if (machine_is(powernv) && cnt++ <= 0)
1009		return ret;
1010
1011	/* Register reboot notifier */
1012	ret = register_reboot_notifier(&eeh_reboot_nb);
1013	if (ret) {
1014		pr_warn("%s: Failed to register notifier (%d)\n",
1015			__func__, ret);
1016		return ret;
1017	}
1018
1019	/* call platform initialization function */
1020	if (!eeh_ops) {
1021		pr_warn("%s: Platform EEH operation not found\n",
1022			__func__);
1023		return -EEXIST;
1024	} else if ((ret = eeh_ops->init()))
1025		return ret;
1026
1027	/* Initialize EEH event */
1028	ret = eeh_event_init();
1029	if (ret)
1030		return ret;
1031
1032	/* Enable EEH for all adapters */
1033	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1034		pdn = hose->pci_data;
1035		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1036	}
1037
1038	/*
1039	 * Call platform post-initialization. Actually, It's good chance
1040	 * to inform platform that EEH is ready to supply service if the
1041	 * I/O cache stuff has been built up.
1042	 */
1043	if (eeh_ops->post_init) {
1044		ret = eeh_ops->post_init();
1045		if (ret)
1046			return ret;
1047	}
1048
1049	if (eeh_enabled())
1050		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1051	else
1052		pr_warn("EEH: No capable adapters found\n");
1053
1054	return ret;
1055}
1056
1057core_initcall_sync(eeh_init);
1058
1059/**
1060 * eeh_add_device_early - Enable EEH for the indicated device node
1061 * @pdn: PCI device node for which to set up EEH
1062 *
1063 * This routine must be used to perform EEH initialization for PCI
1064 * devices that were added after system boot (e.g. hotplug, dlpar).
1065 * This routine must be called before any i/o is performed to the
1066 * adapter (inluding any config-space i/o).
1067 * Whether this actually enables EEH or not for this device depends
1068 * on the CEC architecture, type of the device, on earlier boot
1069 * command-line arguments & etc.
1070 */
1071void eeh_add_device_early(struct pci_dn *pdn)
1072{
1073	struct pci_controller *phb;
1074	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1075
1076	if (!edev)
1077		return;
1078
1079	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1080		return;
1081
1082	/* USB Bus children of PCI devices will not have BUID's */
1083	phb = edev->phb;
1084	if (NULL == phb ||
1085	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1086		return;
1087
1088	eeh_ops->probe(pdn, NULL);
1089}
1090
1091/**
1092 * eeh_add_device_tree_early - Enable EEH for the indicated device
1093 * @pdn: PCI device node
1094 *
1095 * This routine must be used to perform EEH initialization for the
1096 * indicated PCI device that was added after system boot (e.g.
1097 * hotplug, dlpar).
1098 */
1099void eeh_add_device_tree_early(struct pci_dn *pdn)
1100{
1101	struct pci_dn *n;
1102
1103	if (!pdn)
1104		return;
1105
1106	list_for_each_entry(n, &pdn->child_list, list)
1107		eeh_add_device_tree_early(n);
1108	eeh_add_device_early(pdn);
1109}
1110EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1111
1112/**
1113 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1114 * @dev: pci device for which to set up EEH
1115 *
1116 * This routine must be used to complete EEH initialization for PCI
1117 * devices that were added after system boot (e.g. hotplug, dlpar).
1118 */
1119void eeh_add_device_late(struct pci_dev *dev)
1120{
1121	struct pci_dn *pdn;
1122	struct eeh_dev *edev;
1123
1124	if (!dev || !eeh_enabled())
1125		return;
1126
1127	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1128
1129	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1130	edev = pdn_to_eeh_dev(pdn);
1131	if (edev->pdev == dev) {
1132		pr_debug("EEH: Already referenced !\n");
1133		return;
1134	}
1135
1136	/*
1137	 * The EEH cache might not be removed correctly because of
1138	 * unbalanced kref to the device during unplug time, which
1139	 * relies on pcibios_release_device(). So we have to remove
1140	 * that here explicitly.
1141	 */
1142	if (edev->pdev) {
1143		eeh_rmv_from_parent_pe(edev);
1144		eeh_addr_cache_rmv_dev(edev->pdev);
1145		eeh_sysfs_remove_device(edev->pdev);
1146		edev->mode &= ~EEH_DEV_SYSFS;
1147
1148		/*
1149		 * We definitely should have the PCI device removed
1150		 * though it wasn't correctly. So we needn't call
1151		 * into error handler afterwards.
1152		 */
1153		edev->mode |= EEH_DEV_NO_HANDLER;
1154
1155		edev->pdev = NULL;
1156		dev->dev.archdata.edev = NULL;
1157	}
1158
1159	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1160		eeh_ops->probe(pdn, NULL);
1161
1162	edev->pdev = dev;
1163	dev->dev.archdata.edev = edev;
1164
1165	eeh_addr_cache_insert_dev(dev);
1166}
1167
1168/**
1169 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1170 * @bus: PCI bus
1171 *
1172 * This routine must be used to perform EEH initialization for PCI
1173 * devices which are attached to the indicated PCI bus. The PCI bus
1174 * is added after system boot through hotplug or dlpar.
1175 */
1176void eeh_add_device_tree_late(struct pci_bus *bus)
1177{
1178	struct pci_dev *dev;
1179
1180	list_for_each_entry(dev, &bus->devices, bus_list) {
1181		eeh_add_device_late(dev);
1182		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1183			struct pci_bus *subbus = dev->subordinate;
1184			if (subbus)
1185				eeh_add_device_tree_late(subbus);
1186		}
1187	}
1188}
1189EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1190
1191/**
1192 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1193 * @bus: PCI bus
1194 *
1195 * This routine must be used to add EEH sysfs files for PCI
1196 * devices which are attached to the indicated PCI bus. The PCI bus
1197 * is added after system boot through hotplug or dlpar.
1198 */
1199void eeh_add_sysfs_files(struct pci_bus *bus)
1200{
1201	struct pci_dev *dev;
1202
1203	list_for_each_entry(dev, &bus->devices, bus_list) {
1204		eeh_sysfs_add_device(dev);
1205		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1206			struct pci_bus *subbus = dev->subordinate;
1207			if (subbus)
1208				eeh_add_sysfs_files(subbus);
1209		}
1210	}
1211}
1212EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1213
1214/**
1215 * eeh_remove_device - Undo EEH setup for the indicated pci device
1216 * @dev: pci device to be removed
1217 *
1218 * This routine should be called when a device is removed from
1219 * a running system (e.g. by hotplug or dlpar).  It unregisters
1220 * the PCI device from the EEH subsystem.  I/O errors affecting
1221 * this device will no longer be detected after this call; thus,
1222 * i/o errors affecting this slot may leave this device unusable.
1223 */
1224void eeh_remove_device(struct pci_dev *dev)
1225{
1226	struct eeh_dev *edev;
1227
1228	if (!dev || !eeh_enabled())
1229		return;
1230	edev = pci_dev_to_eeh_dev(dev);
1231
1232	/* Unregister the device with the EEH/PCI address search system */
1233	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1234
1235	if (!edev || !edev->pdev || !edev->pe) {
1236		pr_debug("EEH: Not referenced !\n");
1237		return;
1238	}
1239
1240	/*
1241	 * During the hotplug for EEH error recovery, we need the EEH
1242	 * device attached to the parent PE in order for BAR restore
1243	 * a bit later. So we keep it for BAR restore and remove it
1244	 * from the parent PE during the BAR resotre.
1245	 */
1246	edev->pdev = NULL;
1247	dev->dev.archdata.edev = NULL;
1248	if (!(edev->pe->state & EEH_PE_KEEP))
1249		eeh_rmv_from_parent_pe(edev);
1250	else
1251		edev->mode |= EEH_DEV_DISCONNECTED;
1252
1253	/*
1254	 * We're removing from the PCI subsystem, that means
1255	 * the PCI device driver can't support EEH or not
1256	 * well. So we rely on hotplug completely to do recovery
1257	 * for the specific PCI device.
1258	 */
1259	edev->mode |= EEH_DEV_NO_HANDLER;
1260
1261	eeh_addr_cache_rmv_dev(dev);
1262	eeh_sysfs_remove_device(dev);
1263	edev->mode &= ~EEH_DEV_SYSFS;
1264}
1265
1266int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1267{
1268	int ret;
1269
1270	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1271	if (ret) {
1272		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1273			__func__, ret, pe->phb->global_number, pe->addr);
1274		return ret;
1275	}
1276
1277	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1278	if (ret) {
1279		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1280			__func__, ret, pe->phb->global_number, pe->addr);
1281		return ret;
1282	}
1283
1284	/* Clear software isolated state */
1285	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1286		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1287
1288	return ret;
1289}
1290
1291
1292static struct pci_device_id eeh_reset_ids[] = {
1293	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1294	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1295	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1296	{ 0 }
1297};
1298
1299static int eeh_pe_change_owner(struct eeh_pe *pe)
1300{
1301	struct eeh_dev *edev, *tmp;
1302	struct pci_dev *pdev;
1303	struct pci_device_id *id;
1304	int flags, ret;
1305
1306	/* Check PE state */
1307	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1308	ret = eeh_ops->get_state(pe, NULL);
1309	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1310		return 0;
1311
1312	/* Unfrozen PE, nothing to do */
1313	if ((ret & flags) == flags)
1314		return 0;
1315
1316	/* Frozen PE, check if it needs PE level reset */
1317	eeh_pe_for_each_dev(pe, edev, tmp) {
1318		pdev = eeh_dev_to_pci_dev(edev);
1319		if (!pdev)
1320			continue;
1321
1322		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1323			if (id->vendor != PCI_ANY_ID &&
1324			    id->vendor != pdev->vendor)
1325				continue;
1326			if (id->device != PCI_ANY_ID &&
1327			    id->device != pdev->device)
1328				continue;
1329			if (id->subvendor != PCI_ANY_ID &&
1330			    id->subvendor != pdev->subsystem_vendor)
1331				continue;
1332			if (id->subdevice != PCI_ANY_ID &&
1333			    id->subdevice != pdev->subsystem_device)
1334				continue;
1335
1336			goto reset;
1337		}
1338	}
1339
1340	return eeh_unfreeze_pe(pe, true);
1341
1342reset:
1343	return eeh_pe_reset_and_recover(pe);
1344}
1345
1346/**
1347 * eeh_dev_open - Increase count of pass through devices for PE
1348 * @pdev: PCI device
1349 *
1350 * Increase count of passed through devices for the indicated
1351 * PE. In the result, the EEH errors detected on the PE won't be
1352 * reported. The PE owner will be responsible for detection
1353 * and recovery.
1354 */
1355int eeh_dev_open(struct pci_dev *pdev)
1356{
1357	struct eeh_dev *edev;
1358	int ret = -ENODEV;
1359
1360	mutex_lock(&eeh_dev_mutex);
1361
1362	/* No PCI device ? */
1363	if (!pdev)
1364		goto out;
1365
1366	/* No EEH device or PE ? */
1367	edev = pci_dev_to_eeh_dev(pdev);
1368	if (!edev || !edev->pe)
1369		goto out;
1370
1371	/*
1372	 * The PE might have been put into frozen state, but we
1373	 * didn't detect that yet. The passed through PCI devices
1374	 * in frozen PE won't work properly. Clear the frozen state
1375	 * in advance.
1376	 */
1377	ret = eeh_pe_change_owner(edev->pe);
1378	if (ret)
1379		goto out;
1380
1381	/* Increase PE's pass through count */
1382	atomic_inc(&edev->pe->pass_dev_cnt);
1383	mutex_unlock(&eeh_dev_mutex);
1384
1385	return 0;
1386out:
1387	mutex_unlock(&eeh_dev_mutex);
1388	return ret;
1389}
1390EXPORT_SYMBOL_GPL(eeh_dev_open);
1391
1392/**
1393 * eeh_dev_release - Decrease count of pass through devices for PE
1394 * @pdev: PCI device
1395 *
1396 * Decrease count of pass through devices for the indicated PE. If
1397 * there is no passed through device in PE, the EEH errors detected
1398 * on the PE will be reported and handled as usual.
1399 */
1400void eeh_dev_release(struct pci_dev *pdev)
1401{
1402	struct eeh_dev *edev;
1403
1404	mutex_lock(&eeh_dev_mutex);
1405
1406	/* No PCI device ? */
1407	if (!pdev)
1408		goto out;
1409
1410	/* No EEH device ? */
1411	edev = pci_dev_to_eeh_dev(pdev);
1412	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1413		goto out;
1414
1415	/* Decrease PE's pass through count */
1416	atomic_dec(&edev->pe->pass_dev_cnt);
1417	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1418	eeh_pe_change_owner(edev->pe);
1419out:
1420	mutex_unlock(&eeh_dev_mutex);
1421}
1422EXPORT_SYMBOL(eeh_dev_release);
1423
1424#ifdef CONFIG_IOMMU_API
1425
1426static int dev_has_iommu_table(struct device *dev, void *data)
1427{
1428	struct pci_dev *pdev = to_pci_dev(dev);
1429	struct pci_dev **ppdev = data;
1430	struct iommu_table *tbl;
1431
1432	if (!dev)
1433		return 0;
1434
1435	tbl = get_iommu_table_base(dev);
1436	if (tbl && tbl->it_group) {
1437		*ppdev = pdev;
1438		return 1;
1439	}
1440
1441	return 0;
1442}
1443
1444/**
1445 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1446 * @group: IOMMU group
1447 *
1448 * The routine is called to convert IOMMU group to EEH PE.
1449 */
1450struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1451{
1452	struct pci_dev *pdev = NULL;
1453	struct eeh_dev *edev;
1454	int ret;
1455
1456	/* No IOMMU group ? */
1457	if (!group)
1458		return NULL;
1459
1460	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1461	if (!ret || !pdev)
1462		return NULL;
1463
1464	/* No EEH device or PE ? */
1465	edev = pci_dev_to_eeh_dev(pdev);
1466	if (!edev || !edev->pe)
1467		return NULL;
1468
1469	return edev->pe;
1470}
1471EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1472
1473#endif /* CONFIG_IOMMU_API */
1474
1475/**
1476 * eeh_pe_set_option - Set options for the indicated PE
1477 * @pe: EEH PE
1478 * @option: requested option
1479 *
1480 * The routine is called to enable or disable EEH functionality
1481 * on the indicated PE, to enable IO or DMA for the frozen PE.
1482 */
1483int eeh_pe_set_option(struct eeh_pe *pe, int option)
1484{
1485	int ret = 0;
1486
1487	/* Invalid PE ? */
1488	if (!pe)
1489		return -ENODEV;
1490
1491	/*
1492	 * EEH functionality could possibly be disabled, just
1493	 * return error for the case. And the EEH functinality
1494	 * isn't expected to be disabled on one specific PE.
1495	 */
1496	switch (option) {
1497	case EEH_OPT_ENABLE:
1498		if (eeh_enabled()) {
1499			ret = eeh_pe_change_owner(pe);
1500			break;
1501		}
1502		ret = -EIO;
1503		break;
1504	case EEH_OPT_DISABLE:
1505		break;
1506	case EEH_OPT_THAW_MMIO:
1507	case EEH_OPT_THAW_DMA:
1508		if (!eeh_ops || !eeh_ops->set_option) {
1509			ret = -ENOENT;
1510			break;
1511		}
1512
1513		ret = eeh_pci_enable(pe, option);
1514		break;
1515	default:
1516		pr_debug("%s: Option %d out of range (%d, %d)\n",
1517			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1518		ret = -EINVAL;
1519	}
1520
1521	return ret;
1522}
1523EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1524
1525/**
1526 * eeh_pe_get_state - Retrieve PE's state
1527 * @pe: EEH PE
1528 *
1529 * Retrieve the PE's state, which includes 3 aspects: enabled
1530 * DMA, enabled IO and asserted reset.
1531 */
1532int eeh_pe_get_state(struct eeh_pe *pe)
1533{
1534	int result, ret = 0;
1535	bool rst_active, dma_en, mmio_en;
1536
1537	/* Existing PE ? */
1538	if (!pe)
1539		return -ENODEV;
1540
1541	if (!eeh_ops || !eeh_ops->get_state)
1542		return -ENOENT;
1543
1544	result = eeh_ops->get_state(pe, NULL);
1545	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1546	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1547	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1548
1549	if (rst_active)
1550		ret = EEH_PE_STATE_RESET;
1551	else if (dma_en && mmio_en)
1552		ret = EEH_PE_STATE_NORMAL;
1553	else if (!dma_en && !mmio_en)
1554		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1555	else if (!dma_en && mmio_en)
1556		ret = EEH_PE_STATE_STOPPED_DMA;
1557	else
1558		ret = EEH_PE_STATE_UNAVAIL;
1559
1560	return ret;
1561}
1562EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1563
1564static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1565{
1566	struct eeh_dev *edev, *tmp;
1567	struct pci_dev *pdev;
1568	int ret = 0;
1569
1570	/* Restore config space */
1571	eeh_pe_restore_bars(pe);
1572
1573	/*
1574	 * Reenable PCI devices as the devices passed
1575	 * through are always enabled before the reset.
1576	 */
1577	eeh_pe_for_each_dev(pe, edev, tmp) {
1578		pdev = eeh_dev_to_pci_dev(edev);
1579		if (!pdev)
1580			continue;
1581
1582		ret = pci_reenable_device(pdev);
1583		if (ret) {
1584			pr_warn("%s: Failure %d reenabling %s\n",
1585				__func__, ret, pci_name(pdev));
1586			return ret;
1587		}
1588	}
1589
1590	/* The PE is still in frozen state */
1591	return eeh_unfreeze_pe(pe, true);
1592}
1593
1594/**
1595 * eeh_pe_reset - Issue PE reset according to specified type
1596 * @pe: EEH PE
1597 * @option: reset type
1598 *
1599 * The routine is called to reset the specified PE with the
1600 * indicated type, either fundamental reset or hot reset.
1601 * PE reset is the most important part for error recovery.
1602 */
1603int eeh_pe_reset(struct eeh_pe *pe, int option)
1604{
1605	int ret = 0;
1606
1607	/* Invalid PE ? */
1608	if (!pe)
1609		return -ENODEV;
1610
1611	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1612		return -ENOENT;
1613
1614	switch (option) {
1615	case EEH_RESET_DEACTIVATE:
1616		ret = eeh_ops->reset(pe, option);
1617		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1618		if (ret)
1619			break;
1620
1621		ret = eeh_pe_reenable_devices(pe);
1622		break;
1623	case EEH_RESET_HOT:
1624	case EEH_RESET_FUNDAMENTAL:
1625		/*
1626		 * Proactively freeze the PE to drop all MMIO access
1627		 * during reset, which should be banned as it's always
1628		 * cause recursive EEH error.
1629		 */
1630		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1631
1632		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1633		ret = eeh_ops->reset(pe, option);
1634		break;
1635	default:
1636		pr_debug("%s: Unsupported option %d\n",
1637			__func__, option);
1638		ret = -EINVAL;
1639	}
1640
1641	return ret;
1642}
1643EXPORT_SYMBOL_GPL(eeh_pe_reset);
1644
1645/**
1646 * eeh_pe_configure - Configure PCI bridges after PE reset
1647 * @pe: EEH PE
1648 *
1649 * The routine is called to restore the PCI config space for
1650 * those PCI devices, especially PCI bridges affected by PE
1651 * reset issued previously.
1652 */
1653int eeh_pe_configure(struct eeh_pe *pe)
1654{
1655	int ret = 0;
1656
1657	/* Invalid PE ? */
1658	if (!pe)
1659		return -ENODEV;
1660
1661	return ret;
1662}
1663EXPORT_SYMBOL_GPL(eeh_pe_configure);
1664
1665static int proc_eeh_show(struct seq_file *m, void *v)
1666{
1667	if (!eeh_enabled()) {
1668		seq_printf(m, "EEH Subsystem is globally disabled\n");
1669		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1670	} else {
1671		seq_printf(m, "EEH Subsystem is enabled\n");
1672		seq_printf(m,
1673				"no device=%llu\n"
1674				"no device node=%llu\n"
1675				"no config address=%llu\n"
1676				"check not wanted=%llu\n"
1677				"eeh_total_mmio_ffs=%llu\n"
1678				"eeh_false_positives=%llu\n"
1679				"eeh_slot_resets=%llu\n",
1680				eeh_stats.no_device,
1681				eeh_stats.no_dn,
1682				eeh_stats.no_cfg_addr,
1683				eeh_stats.ignored_check,
1684				eeh_stats.total_mmio_ffs,
1685				eeh_stats.false_positives,
1686				eeh_stats.slot_resets);
1687	}
1688
1689	return 0;
1690}
1691
1692static int proc_eeh_open(struct inode *inode, struct file *file)
1693{
1694	return single_open(file, proc_eeh_show, NULL);
1695}
1696
1697static const struct file_operations proc_eeh_operations = {
1698	.open      = proc_eeh_open,
1699	.read      = seq_read,
1700	.llseek    = seq_lseek,
1701	.release   = single_release,
1702};
1703
1704#ifdef CONFIG_DEBUG_FS
1705static int eeh_enable_dbgfs_set(void *data, u64 val)
1706{
1707	if (val)
1708		eeh_clear_flag(EEH_FORCE_DISABLED);
1709	else
1710		eeh_add_flag(EEH_FORCE_DISABLED);
1711
1712	/* Notify the backend */
1713	if (eeh_ops->post_init)
1714		eeh_ops->post_init();
1715
1716	return 0;
1717}
1718
1719static int eeh_enable_dbgfs_get(void *data, u64 *val)
1720{
1721	if (eeh_enabled())
1722		*val = 0x1ul;
1723	else
1724		*val = 0x0ul;
1725	return 0;
1726}
1727
1728static int eeh_freeze_dbgfs_set(void *data, u64 val)
1729{
1730	eeh_max_freezes = val;
1731	return 0;
1732}
1733
1734static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1735{
1736	*val = eeh_max_freezes;
1737	return 0;
1738}
1739
1740DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1741			eeh_enable_dbgfs_set, "0x%llx\n");
1742DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1743			eeh_freeze_dbgfs_set, "0x%llx\n");
1744#endif
1745
1746static int __init eeh_init_proc(void)
1747{
1748	if (machine_is(pseries) || machine_is(powernv)) {
1749		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1750#ifdef CONFIG_DEBUG_FS
1751		debugfs_create_file("eeh_enable", 0600,
1752                                    powerpc_debugfs_root, NULL,
1753                                    &eeh_enable_dbgfs_ops);
1754		debugfs_create_file("eeh_max_freezes", 0600,
1755				    powerpc_debugfs_root, NULL,
1756				    &eeh_freeze_dbgfs_ops);
1757#endif
1758	}
1759
1760	return 0;
1761}
1762__initcall(eeh_init_proc);
1763