1/*
2 * PPC64 code to handle Linux booting another kernel.
3 *
4 * Copyright (C) 2004-2005, IBM Corp.
5 *
6 * Created by: Milton D Miller II
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2.  See the file COPYING for more details.
10 */
11
12
13#include <linux/kexec.h>
14#include <linux/smp.h>
15#include <linux/thread_info.h>
16#include <linux/init_task.h>
17#include <linux/errno.h>
18#include <linux/kernel.h>
19#include <linux/cpu.h>
20#include <linux/hardirq.h>
21
22#include <asm/page.h>
23#include <asm/current.h>
24#include <asm/machdep.h>
25#include <asm/cacheflush.h>
26#include <asm/paca.h>
27#include <asm/mmu.h>
28#include <asm/sections.h>	/* _end */
29#include <asm/prom.h>
30#include <asm/smp.h>
31#include <asm/hw_breakpoint.h>
32
33int default_machine_kexec_prepare(struct kimage *image)
34{
35	int i;
36	unsigned long begin, end;	/* limits of segment */
37	unsigned long low, high;	/* limits of blocked memory range */
38	struct device_node *node;
39	const unsigned long *basep;
40	const unsigned int *sizep;
41
42	if (!ppc_md.hpte_clear_all)
43		return -ENOENT;
44
45	/*
46	 * Since we use the kernel fault handlers and paging code to
47	 * handle the virtual mode, we must make sure no destination
48	 * overlaps kernel static data or bss.
49	 */
50	for (i = 0; i < image->nr_segments; i++)
51		if (image->segment[i].mem < __pa(_end))
52			return -ETXTBSY;
53
54	/*
55	 * For non-LPAR, we absolutely can not overwrite the mmu hash
56	 * table, since we are still using the bolted entries in it to
57	 * do the copy.  Check that here.
58	 *
59	 * It is safe if the end is below the start of the blocked
60	 * region (end <= low), or if the beginning is after the
61	 * end of the blocked region (begin >= high).  Use the
62	 * boolean identity !(a || b)  === (!a && !b).
63	 */
64	if (htab_address) {
65		low = __pa(htab_address);
66		high = low + htab_size_bytes;
67
68		for (i = 0; i < image->nr_segments; i++) {
69			begin = image->segment[i].mem;
70			end = begin + image->segment[i].memsz;
71
72			if ((begin < high) && (end > low))
73				return -ETXTBSY;
74		}
75	}
76
77	/* We also should not overwrite the tce tables */
78	for_each_node_by_type(node, "pci") {
79		basep = of_get_property(node, "linux,tce-base", NULL);
80		sizep = of_get_property(node, "linux,tce-size", NULL);
81		if (basep == NULL || sizep == NULL)
82			continue;
83
84		low = *basep;
85		high = low + (*sizep);
86
87		for (i = 0; i < image->nr_segments; i++) {
88			begin = image->segment[i].mem;
89			end = begin + image->segment[i].memsz;
90
91			if ((begin < high) && (end > low))
92				return -ETXTBSY;
93		}
94	}
95
96	return 0;
97}
98
99static void copy_segments(unsigned long ind)
100{
101	unsigned long entry;
102	unsigned long *ptr;
103	void *dest;
104	void *addr;
105
106	/*
107	 * We rely on kexec_load to create a lists that properly
108	 * initializes these pointers before they are used.
109	 * We will still crash if the list is wrong, but at least
110	 * the compiler will be quiet.
111	 */
112	ptr = NULL;
113	dest = NULL;
114
115	for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
116		addr = __va(entry & PAGE_MASK);
117
118		switch (entry & IND_FLAGS) {
119		case IND_DESTINATION:
120			dest = addr;
121			break;
122		case IND_INDIRECTION:
123			ptr = addr;
124			break;
125		case IND_SOURCE:
126			copy_page(dest, addr);
127			dest += PAGE_SIZE;
128		}
129	}
130}
131
132void kexec_copy_flush(struct kimage *image)
133{
134	long i, nr_segments = image->nr_segments;
135	struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
136
137	/* save the ranges on the stack to efficiently flush the icache */
138	memcpy(ranges, image->segment, sizeof(ranges));
139
140	/*
141	 * After this call we may not use anything allocated in dynamic
142	 * memory, including *image.
143	 *
144	 * Only globals and the stack are allowed.
145	 */
146	copy_segments(image->head);
147
148	/*
149	 * we need to clear the icache for all dest pages sometime,
150	 * including ones that were in place on the original copy
151	 */
152	for (i = 0; i < nr_segments; i++)
153		flush_icache_range((unsigned long)__va(ranges[i].mem),
154			(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
155}
156
157#ifdef CONFIG_SMP
158
159static int kexec_all_irq_disabled = 0;
160
161static void kexec_smp_down(void *arg)
162{
163	local_irq_disable();
164	hard_irq_disable();
165
166	mb(); /* make sure our irqs are disabled before we say they are */
167	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
168	while(kexec_all_irq_disabled == 0)
169		cpu_relax();
170	mb(); /* make sure all irqs are disabled before this */
171	hw_breakpoint_disable();
172	/*
173	 * Now every CPU has IRQs off, we can clear out any pending
174	 * IPIs and be sure that no more will come in after this.
175	 */
176	if (ppc_md.kexec_cpu_down)
177		ppc_md.kexec_cpu_down(0, 1);
178
179	kexec_smp_wait();
180	/* NOTREACHED */
181}
182
183static void kexec_prepare_cpus_wait(int wait_state)
184{
185	int my_cpu, i, notified=-1;
186
187	hw_breakpoint_disable();
188	my_cpu = get_cpu();
189	/* Make sure each CPU has at least made it to the state we need.
190	 *
191	 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
192	 * are correctly onlined.  If somehow we start a CPU on boot with RTAS
193	 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
194	 * time, the boot CPU will timeout.  If it does eventually execute
195	 * stuff, the secondary will start up (paca[].cpu_start was written) and
196	 * get into a peculiar state.  If the platform supports
197	 * smp_ops->take_timebase(), the secondary CPU will probably be spinning
198	 * in there.  If not (i.e. pseries), the secondary will continue on and
199	 * try to online itself/idle/etc. If it survives that, we need to find
200	 * these possible-but-not-online-but-should-be CPUs and chaperone them
201	 * into kexec_smp_wait().
202	 */
203	for_each_online_cpu(i) {
204		if (i == my_cpu)
205			continue;
206
207		while (paca[i].kexec_state < wait_state) {
208			barrier();
209			if (i != notified) {
210				printk(KERN_INFO "kexec: waiting for cpu %d "
211				       "(physical %d) to enter %i state\n",
212				       i, paca[i].hw_cpu_id, wait_state);
213				notified = i;
214			}
215		}
216	}
217	mb();
218}
219
220/*
221 * We need to make sure each present CPU is online.  The next kernel will scan
222 * the device tree and assume primary threads are online and query secondary
223 * threads via RTAS to online them if required.  If we don't online primary
224 * threads, they will be stuck.  However, we also online secondary threads as we
225 * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
226 * threads as offline -- and again, these CPUs will be stuck.
227 *
228 * So, we online all CPUs that should be running, including secondary threads.
229 */
230static void wake_offline_cpus(void)
231{
232	int cpu = 0;
233
234	for_each_present_cpu(cpu) {
235		if (!cpu_online(cpu)) {
236			printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
237			       cpu);
238			WARN_ON(cpu_up(cpu));
239		}
240	}
241}
242
243static void kexec_prepare_cpus(void)
244{
245	wake_offline_cpus();
246	smp_call_function(kexec_smp_down, NULL, /* wait */0);
247	local_irq_disable();
248	hard_irq_disable();
249
250	mb(); /* make sure IRQs are disabled before we say they are */
251	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
252
253	kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
254	/* we are sure every CPU has IRQs off at this point */
255	kexec_all_irq_disabled = 1;
256
257	/* after we tell the others to go down */
258	if (ppc_md.kexec_cpu_down)
259		ppc_md.kexec_cpu_down(0, 0);
260
261	/*
262	 * Before removing MMU mappings make sure all CPUs have entered real
263	 * mode:
264	 */
265	kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
266
267	put_cpu();
268}
269
270#else /* ! SMP */
271
272static void kexec_prepare_cpus(void)
273{
274	/*
275	 * move the secondarys to us so that we can copy
276	 * the new kernel 0-0x100 safely
277	 *
278	 * do this if kexec in setup.c ?
279	 *
280	 * We need to release the cpus if we are ever going from an
281	 * UP to an SMP kernel.
282	 */
283	smp_release_cpus();
284	if (ppc_md.kexec_cpu_down)
285		ppc_md.kexec_cpu_down(0, 0);
286	local_irq_disable();
287	hard_irq_disable();
288}
289
290#endif /* SMP */
291
292/*
293 * kexec thread structure and stack.
294 *
295 * We need to make sure that this is 16384-byte aligned due to the
296 * way process stacks are handled.  It also must be statically allocated
297 * or allocated as part of the kimage, because everything else may be
298 * overwritten when we copy the kexec image.  We piggyback on the
299 * "init_task" linker section here to statically allocate a stack.
300 *
301 * We could use a smaller stack if we don't care about anything using
302 * current, but that audit has not been performed.
303 */
304static union thread_union kexec_stack __init_task_data =
305	{ };
306
307/*
308 * For similar reasons to the stack above, the kexecing CPU needs to be on a
309 * static PACA; we switch to kexec_paca.
310 */
311struct paca_struct kexec_paca;
312
313/* Our assembly helper, in misc_64.S */
314extern void kexec_sequence(void *newstack, unsigned long start,
315			   void *image, void *control,
316			   void (*clear_all)(void)) __noreturn;
317
318/* too late to fail here */
319void default_machine_kexec(struct kimage *image)
320{
321	/* prepare control code if any */
322
323	/*
324        * If the kexec boot is the normal one, need to shutdown other cpus
325        * into our wait loop and quiesce interrupts.
326        * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
327        * stopping other CPUs and collecting their pt_regs is done before
328        * using debugger IPI.
329        */
330
331	if (!kdump_in_progress())
332		kexec_prepare_cpus();
333
334	pr_debug("kexec: Starting switchover sequence.\n");
335
336	/* switch to a staticly allocated stack.  Based on irq stack code.
337	 * We setup preempt_count to avoid using VMX in memcpy.
338	 * XXX: the task struct will likely be invalid once we do the copy!
339	 */
340	kexec_stack.thread_info.task = current_thread_info()->task;
341	kexec_stack.thread_info.flags = 0;
342	kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
343	kexec_stack.thread_info.cpu = current_thread_info()->cpu;
344
345	/* We need a static PACA, too; copy this CPU's PACA over and switch to
346	 * it.  Also poison per_cpu_offset to catch anyone using non-static
347	 * data.
348	 */
349	memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
350	kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
351	paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
352		kexec_paca.paca_index;
353	setup_paca(&kexec_paca);
354
355	/* XXX: If anyone does 'dynamic lppacas' this will also need to be
356	 * switched to a static version!
357	 */
358
359	/* Some things are best done in assembly.  Finding globals with
360	 * a toc is easier in C, so pass in what we can.
361	 */
362	kexec_sequence(&kexec_stack, image->start, image,
363			page_address(image->control_code_page),
364			ppc_md.hpte_clear_all);
365	/* NOTREACHED */
366}
367
368/* Values we need to export to the second kernel via the device tree. */
369static unsigned long htab_base;
370static unsigned long htab_size;
371
372static struct property htab_base_prop = {
373	.name = "linux,htab-base",
374	.length = sizeof(unsigned long),
375	.value = &htab_base,
376};
377
378static struct property htab_size_prop = {
379	.name = "linux,htab-size",
380	.length = sizeof(unsigned long),
381	.value = &htab_size,
382};
383
384static int __init export_htab_values(void)
385{
386	struct device_node *node;
387	struct property *prop;
388
389	/* On machines with no htab htab_address is NULL */
390	if (!htab_address)
391		return -ENODEV;
392
393	node = of_find_node_by_path("/chosen");
394	if (!node)
395		return -ENODEV;
396
397	/* remove any stale propertys so ours can be found */
398	prop = of_find_property(node, htab_base_prop.name, NULL);
399	if (prop)
400		of_remove_property(node, prop);
401	prop = of_find_property(node, htab_size_prop.name, NULL);
402	if (prop)
403		of_remove_property(node, prop);
404
405	htab_base = cpu_to_be64(__pa(htab_address));
406	of_add_property(node, &htab_base_prop);
407	htab_size = cpu_to_be64(htab_size_bytes);
408	of_add_property(node, &htab_size_prop);
409
410	of_node_put(node);
411	return 0;
412}
413late_initcall(export_htab_values);
414