1/*
2 *  Derived from "arch/i386/kernel/process.c"
3 *    Copyright (C) 1995  Linus Torvalds
4 *
5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 *  Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 *  PowerPC version
9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 *  This program is free software; you can redistribute it and/or
12 *  modify it under the terms of the GNU General Public License
13 *  as published by the Free Software Foundation; either version
14 *  2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/prctl.h>
29#include <linux/init_task.h>
30#include <linux/export.h>
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
34#include <linux/utsname.h>
35#include <linux/ftrace.h>
36#include <linux/kernel_stat.h>
37#include <linux/personality.h>
38#include <linux/random.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/uaccess.h>
41
42#include <asm/pgtable.h>
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
47#include <asm/machdep.h>
48#include <asm/time.h>
49#include <asm/runlatch.h>
50#include <asm/syscalls.h>
51#include <asm/switch_to.h>
52#include <asm/tm.h>
53#include <asm/debug.h>
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
56#endif
57#include <asm/code-patching.h>
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
60
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
73struct task_struct *last_task_used_vsx = NULL;
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79{
80	/*
81	 * If we are saving the current thread's registers, and the
82	 * thread is in a transactional state, set the TIF_RESTORE_TM
83	 * bit so that we know to restore the registers before
84	 * returning to userspace.
85	 */
86	if (tsk == current && tsk->thread.regs &&
87	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88	    !test_thread_flag(TIF_RESTORE_TM)) {
89		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90		set_thread_flag(TIF_RESTORE_TM);
91	}
92
93	giveup_fpu(tsk);
94}
95
96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97{
98	/*
99	 * If we are saving the current thread's registers, and the
100	 * thread is in a transactional state, set the TIF_RESTORE_TM
101	 * bit so that we know to restore the registers before
102	 * returning to userspace.
103	 */
104	if (tsk == current && tsk->thread.regs &&
105	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106	    !test_thread_flag(TIF_RESTORE_TM)) {
107		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108		set_thread_flag(TIF_RESTORE_TM);
109	}
110
111	giveup_altivec(tsk);
112}
113
114#else
115#define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
116#define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119#ifdef CONFIG_PPC_FPU
120/*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
124void flush_fp_to_thread(struct task_struct *tsk)
125{
126	if (tsk->thread.regs) {
127		/*
128		 * We need to disable preemption here because if we didn't,
129		 * another process could get scheduled after the regs->msr
130		 * test but before we have finished saving the FP registers
131		 * to the thread_struct.  That process could take over the
132		 * FPU, and then when we get scheduled again we would store
133		 * bogus values for the remaining FP registers.
134		 */
135		preempt_disable();
136		if (tsk->thread.regs->msr & MSR_FP) {
137#ifdef CONFIG_SMP
138			/*
139			 * This should only ever be called for current or
140			 * for a stopped child process.  Since we save away
141			 * the FP register state on context switch on SMP,
142			 * there is something wrong if a stopped child appears
143			 * to still have its FP state in the CPU registers.
144			 */
145			BUG_ON(tsk != current);
146#endif
147			giveup_fpu_maybe_transactional(tsk);
148		}
149		preempt_enable();
150	}
151}
152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153#endif /* CONFIG_PPC_FPU */
154
155void enable_kernel_fp(void)
156{
157	WARN_ON(preemptible());
158
159#ifdef CONFIG_SMP
160	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161		giveup_fpu_maybe_transactional(current);
162	else
163		giveup_fpu(NULL);	/* just enables FP for kernel */
164#else
165	giveup_fpu_maybe_transactional(last_task_used_math);
166#endif /* CONFIG_SMP */
167}
168EXPORT_SYMBOL(enable_kernel_fp);
169
170#ifdef CONFIG_ALTIVEC
171void enable_kernel_altivec(void)
172{
173	WARN_ON(preemptible());
174
175#ifdef CONFIG_SMP
176	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177		giveup_altivec_maybe_transactional(current);
178	else
179		giveup_altivec_notask();
180#else
181	giveup_altivec_maybe_transactional(last_task_used_altivec);
182#endif /* CONFIG_SMP */
183}
184EXPORT_SYMBOL(enable_kernel_altivec);
185
186/*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
190void flush_altivec_to_thread(struct task_struct *tsk)
191{
192	if (tsk->thread.regs) {
193		preempt_disable();
194		if (tsk->thread.regs->msr & MSR_VEC) {
195#ifdef CONFIG_SMP
196			BUG_ON(tsk != current);
197#endif
198			giveup_altivec_maybe_transactional(tsk);
199		}
200		preempt_enable();
201	}
202}
203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204#endif /* CONFIG_ALTIVEC */
205
206#ifdef CONFIG_VSX
207void enable_kernel_vsx(void)
208{
209	WARN_ON(preemptible());
210
211#ifdef CONFIG_SMP
212	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
213		giveup_vsx(current);
214	else
215		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
216#else
217	giveup_vsx(last_task_used_vsx);
218#endif /* CONFIG_SMP */
219}
220EXPORT_SYMBOL(enable_kernel_vsx);
221
222void giveup_vsx(struct task_struct *tsk)
223{
224	giveup_fpu_maybe_transactional(tsk);
225	giveup_altivec_maybe_transactional(tsk);
226	__giveup_vsx(tsk);
227}
228EXPORT_SYMBOL(giveup_vsx);
229
230void flush_vsx_to_thread(struct task_struct *tsk)
231{
232	if (tsk->thread.regs) {
233		preempt_disable();
234		if (tsk->thread.regs->msr & MSR_VSX) {
235#ifdef CONFIG_SMP
236			BUG_ON(tsk != current);
237#endif
238			giveup_vsx(tsk);
239		}
240		preempt_enable();
241	}
242}
243EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
244#endif /* CONFIG_VSX */
245
246#ifdef CONFIG_SPE
247
248void enable_kernel_spe(void)
249{
250	WARN_ON(preemptible());
251
252#ifdef CONFIG_SMP
253	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
254		giveup_spe(current);
255	else
256		giveup_spe(NULL);	/* just enable SPE for kernel - force */
257#else
258	giveup_spe(last_task_used_spe);
259#endif /* __SMP __ */
260}
261EXPORT_SYMBOL(enable_kernel_spe);
262
263void flush_spe_to_thread(struct task_struct *tsk)
264{
265	if (tsk->thread.regs) {
266		preempt_disable();
267		if (tsk->thread.regs->msr & MSR_SPE) {
268#ifdef CONFIG_SMP
269			BUG_ON(tsk != current);
270#endif
271			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
272			giveup_spe(tsk);
273		}
274		preempt_enable();
275	}
276}
277#endif /* CONFIG_SPE */
278
279#ifndef CONFIG_SMP
280/*
281 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282 * and the current task has some state, discard it.
283 */
284void discard_lazy_cpu_state(void)
285{
286	preempt_disable();
287	if (last_task_used_math == current)
288		last_task_used_math = NULL;
289#ifdef CONFIG_ALTIVEC
290	if (last_task_used_altivec == current)
291		last_task_used_altivec = NULL;
292#endif /* CONFIG_ALTIVEC */
293#ifdef CONFIG_VSX
294	if (last_task_used_vsx == current)
295		last_task_used_vsx = NULL;
296#endif /* CONFIG_VSX */
297#ifdef CONFIG_SPE
298	if (last_task_used_spe == current)
299		last_task_used_spe = NULL;
300#endif
301	preempt_enable();
302}
303#endif /* CONFIG_SMP */
304
305#ifdef CONFIG_PPC_ADV_DEBUG_REGS
306void do_send_trap(struct pt_regs *regs, unsigned long address,
307		  unsigned long error_code, int signal_code, int breakpt)
308{
309	siginfo_t info;
310
311	current->thread.trap_nr = signal_code;
312	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
313			11, SIGSEGV) == NOTIFY_STOP)
314		return;
315
316	/* Deliver the signal to userspace */
317	info.si_signo = SIGTRAP;
318	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
319	info.si_code = signal_code;
320	info.si_addr = (void __user *)address;
321	force_sig_info(SIGTRAP, &info, current);
322}
323#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
324void do_break (struct pt_regs *regs, unsigned long address,
325		    unsigned long error_code)
326{
327	siginfo_t info;
328
329	current->thread.trap_nr = TRAP_HWBKPT;
330	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
331			11, SIGSEGV) == NOTIFY_STOP)
332		return;
333
334	if (debugger_break_match(regs))
335		return;
336
337	/* Clear the breakpoint */
338	hw_breakpoint_disable();
339
340	/* Deliver the signal to userspace */
341	info.si_signo = SIGTRAP;
342	info.si_errno = 0;
343	info.si_code = TRAP_HWBKPT;
344	info.si_addr = (void __user *)address;
345	force_sig_info(SIGTRAP, &info, current);
346}
347#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
348
349static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
350
351#ifdef CONFIG_PPC_ADV_DEBUG_REGS
352/*
353 * Set the debug registers back to their default "safe" values.
354 */
355static void set_debug_reg_defaults(struct thread_struct *thread)
356{
357	thread->debug.iac1 = thread->debug.iac2 = 0;
358#if CONFIG_PPC_ADV_DEBUG_IACS > 2
359	thread->debug.iac3 = thread->debug.iac4 = 0;
360#endif
361	thread->debug.dac1 = thread->debug.dac2 = 0;
362#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363	thread->debug.dvc1 = thread->debug.dvc2 = 0;
364#endif
365	thread->debug.dbcr0 = 0;
366#ifdef CONFIG_BOOKE
367	/*
368	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
369	 */
370	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
371			DBCR1_IAC3US | DBCR1_IAC4US;
372	/*
373	 * Force Data Address Compare User/Supervisor bits to be User-only
374	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
375	 */
376	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
377#else
378	thread->debug.dbcr1 = 0;
379#endif
380}
381
382static void prime_debug_regs(struct debug_reg *debug)
383{
384	/*
385	 * We could have inherited MSR_DE from userspace, since
386	 * it doesn't get cleared on exception entry.  Make sure
387	 * MSR_DE is clear before we enable any debug events.
388	 */
389	mtmsr(mfmsr() & ~MSR_DE);
390
391	mtspr(SPRN_IAC1, debug->iac1);
392	mtspr(SPRN_IAC2, debug->iac2);
393#if CONFIG_PPC_ADV_DEBUG_IACS > 2
394	mtspr(SPRN_IAC3, debug->iac3);
395	mtspr(SPRN_IAC4, debug->iac4);
396#endif
397	mtspr(SPRN_DAC1, debug->dac1);
398	mtspr(SPRN_DAC2, debug->dac2);
399#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400	mtspr(SPRN_DVC1, debug->dvc1);
401	mtspr(SPRN_DVC2, debug->dvc2);
402#endif
403	mtspr(SPRN_DBCR0, debug->dbcr0);
404	mtspr(SPRN_DBCR1, debug->dbcr1);
405#ifdef CONFIG_BOOKE
406	mtspr(SPRN_DBCR2, debug->dbcr2);
407#endif
408}
409/*
410 * Unless neither the old or new thread are making use of the
411 * debug registers, set the debug registers from the values
412 * stored in the new thread.
413 */
414void switch_booke_debug_regs(struct debug_reg *new_debug)
415{
416	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
417		|| (new_debug->dbcr0 & DBCR0_IDM))
418			prime_debug_regs(new_debug);
419}
420EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
421#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
422#ifndef CONFIG_HAVE_HW_BREAKPOINT
423static void set_debug_reg_defaults(struct thread_struct *thread)
424{
425	thread->hw_brk.address = 0;
426	thread->hw_brk.type = 0;
427	set_breakpoint(&thread->hw_brk);
428}
429#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
431
432#ifdef CONFIG_PPC_ADV_DEBUG_REGS
433static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
434{
435	mtspr(SPRN_DAC1, dabr);
436#ifdef CONFIG_PPC_47x
437	isync();
438#endif
439	return 0;
440}
441#elif defined(CONFIG_PPC_BOOK3S)
442static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
443{
444	mtspr(SPRN_DABR, dabr);
445	if (cpu_has_feature(CPU_FTR_DABRX))
446		mtspr(SPRN_DABRX, dabrx);
447	return 0;
448}
449#else
450static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
451{
452	return -EINVAL;
453}
454#endif
455
456static inline int set_dabr(struct arch_hw_breakpoint *brk)
457{
458	unsigned long dabr, dabrx;
459
460	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
461	dabrx = ((brk->type >> 3) & 0x7);
462
463	if (ppc_md.set_dabr)
464		return ppc_md.set_dabr(dabr, dabrx);
465
466	return __set_dabr(dabr, dabrx);
467}
468
469static inline int set_dawr(struct arch_hw_breakpoint *brk)
470{
471	unsigned long dawr, dawrx, mrd;
472
473	dawr = brk->address;
474
475	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
476		                   << (63 - 58); //* read/write bits */
477	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
478		                   << (63 - 59); //* translate */
479	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
480		                   >> 3; //* PRIM bits */
481	/* dawr length is stored in field MDR bits 48:53.  Matches range in
482	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
483	   0b111111=64DW.
484	   brk->len is in bytes.
485	   This aligns up to double word size, shifts and does the bias.
486	*/
487	mrd = ((brk->len + 7) >> 3) - 1;
488	dawrx |= (mrd & 0x3f) << (63 - 53);
489
490	if (ppc_md.set_dawr)
491		return ppc_md.set_dawr(dawr, dawrx);
492	mtspr(SPRN_DAWR, dawr);
493	mtspr(SPRN_DAWRX, dawrx);
494	return 0;
495}
496
497void __set_breakpoint(struct arch_hw_breakpoint *brk)
498{
499	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
500
501	if (cpu_has_feature(CPU_FTR_DAWR))
502		set_dawr(brk);
503	else
504		set_dabr(brk);
505}
506
507void set_breakpoint(struct arch_hw_breakpoint *brk)
508{
509	preempt_disable();
510	__set_breakpoint(brk);
511	preempt_enable();
512}
513
514#ifdef CONFIG_PPC64
515DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
516#endif
517
518static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
519			      struct arch_hw_breakpoint *b)
520{
521	if (a->address != b->address)
522		return false;
523	if (a->type != b->type)
524		return false;
525	if (a->len != b->len)
526		return false;
527	return true;
528}
529
530#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531static void tm_reclaim_thread(struct thread_struct *thr,
532			      struct thread_info *ti, uint8_t cause)
533{
534	unsigned long msr_diff = 0;
535
536	/*
537	 * If FP/VSX registers have been already saved to the
538	 * thread_struct, move them to the transact_fp array.
539	 * We clear the TIF_RESTORE_TM bit since after the reclaim
540	 * the thread will no longer be transactional.
541	 */
542	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
543		msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
544		if (msr_diff & MSR_FP)
545			memcpy(&thr->transact_fp, &thr->fp_state,
546			       sizeof(struct thread_fp_state));
547		if (msr_diff & MSR_VEC)
548			memcpy(&thr->transact_vr, &thr->vr_state,
549			       sizeof(struct thread_vr_state));
550		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
551		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
552	}
553
554	/*
555	 * Use the current MSR TM suspended bit to track if we have
556	 * checkpointed state outstanding.
557	 * On signal delivery, we'd normally reclaim the checkpointed
558	 * state to obtain stack pointer (see:get_tm_stackpointer()).
559	 * This will then directly return to userspace without going
560	 * through __switch_to(). However, if the stack frame is bad,
561	 * we need to exit this thread which calls __switch_to() which
562	 * will again attempt to reclaim the already saved tm state.
563	 * Hence we need to check that we've not already reclaimed
564	 * this state.
565	 * We do this using the current MSR, rather tracking it in
566	 * some specific thread_struct bit, as it has the additional
567	 * benifit of checking for a potential TM bad thing exception.
568	 */
569	if (!MSR_TM_SUSPENDED(mfmsr()))
570		return;
571
572	tm_reclaim(thr, thr->regs->msr, cause);
573
574	/* Having done the reclaim, we now have the checkpointed
575	 * FP/VSX values in the registers.  These might be valid
576	 * even if we have previously called enable_kernel_fp() or
577	 * flush_fp_to_thread(), so update thr->regs->msr to
578	 * indicate their current validity.
579	 */
580	thr->regs->msr |= msr_diff;
581}
582
583void tm_reclaim_current(uint8_t cause)
584{
585	tm_enable();
586	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
587}
588
589static inline void tm_reclaim_task(struct task_struct *tsk)
590{
591	/* We have to work out if we're switching from/to a task that's in the
592	 * middle of a transaction.
593	 *
594	 * In switching we need to maintain a 2nd register state as
595	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
596	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
597	 * (current) FPRs into oldtask->thread.transact_fpr[].
598	 *
599	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
600	 */
601	struct thread_struct *thr = &tsk->thread;
602
603	if (!thr->regs)
604		return;
605
606	if (!MSR_TM_ACTIVE(thr->regs->msr))
607		goto out_and_saveregs;
608
609	/* Stash the original thread MSR, as giveup_fpu et al will
610	 * modify it.  We hold onto it to see whether the task used
611	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
612	 * tm_orig_msr is already set.
613	 */
614	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
615		thr->tm_orig_msr = thr->regs->msr;
616
617	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
618		 "ccr=%lx, msr=%lx, trap=%lx)\n",
619		 tsk->pid, thr->regs->nip,
620		 thr->regs->ccr, thr->regs->msr,
621		 thr->regs->trap);
622
623	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
624
625	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
626		 tsk->pid);
627
628out_and_saveregs:
629	/* Always save the regs here, even if a transaction's not active.
630	 * This context-switches a thread's TM info SPRs.  We do it here to
631	 * be consistent with the restore path (in recheckpoint) which
632	 * cannot happen later in _switch().
633	 */
634	tm_save_sprs(thr);
635}
636
637extern void __tm_recheckpoint(struct thread_struct *thread,
638			      unsigned long orig_msr);
639
640void tm_recheckpoint(struct thread_struct *thread,
641		     unsigned long orig_msr)
642{
643	unsigned long flags;
644
645	/* We really can't be interrupted here as the TEXASR registers can't
646	 * change and later in the trecheckpoint code, we have a userspace R1.
647	 * So let's hard disable over this region.
648	 */
649	local_irq_save(flags);
650	hard_irq_disable();
651
652	/* The TM SPRs are restored here, so that TEXASR.FS can be set
653	 * before the trecheckpoint and no explosion occurs.
654	 */
655	tm_restore_sprs(thread);
656
657	__tm_recheckpoint(thread, orig_msr);
658
659	local_irq_restore(flags);
660}
661
662static inline void tm_recheckpoint_new_task(struct task_struct *new)
663{
664	unsigned long msr;
665
666	if (!cpu_has_feature(CPU_FTR_TM))
667		return;
668
669	/* Recheckpoint the registers of the thread we're about to switch to.
670	 *
671	 * If the task was using FP, we non-lazily reload both the original and
672	 * the speculative FP register states.  This is because the kernel
673	 * doesn't see if/when a TM rollback occurs, so if we take an FP
674	 * unavoidable later, we are unable to determine which set of FP regs
675	 * need to be restored.
676	 */
677	if (!new->thread.regs)
678		return;
679
680	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
681		tm_restore_sprs(&new->thread);
682		return;
683	}
684	msr = new->thread.tm_orig_msr;
685	/* Recheckpoint to restore original checkpointed register state. */
686	TM_DEBUG("*** tm_recheckpoint of pid %d "
687		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
688		 new->pid, new->thread.regs->msr, msr);
689
690	/* This loads the checkpointed FP/VEC state, if used */
691	tm_recheckpoint(&new->thread, msr);
692
693	/* This loads the speculative FP/VEC state, if used */
694	if (msr & MSR_FP) {
695		do_load_up_transact_fpu(&new->thread);
696		new->thread.regs->msr |=
697			(MSR_FP | new->thread.fpexc_mode);
698	}
699#ifdef CONFIG_ALTIVEC
700	if (msr & MSR_VEC) {
701		do_load_up_transact_altivec(&new->thread);
702		new->thread.regs->msr |= MSR_VEC;
703	}
704#endif
705	/* We may as well turn on VSX too since all the state is restored now */
706	if (msr & MSR_VSX)
707		new->thread.regs->msr |= MSR_VSX;
708
709	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
710		 "(kernel msr 0x%lx)\n",
711		 new->pid, mfmsr());
712}
713
714static inline void __switch_to_tm(struct task_struct *prev)
715{
716	if (cpu_has_feature(CPU_FTR_TM)) {
717		tm_enable();
718		tm_reclaim_task(prev);
719	}
720}
721
722/*
723 * This is called if we are on the way out to userspace and the
724 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
725 * FP and/or vector state and does so if necessary.
726 * If userspace is inside a transaction (whether active or
727 * suspended) and FP/VMX/VSX instructions have ever been enabled
728 * inside that transaction, then we have to keep them enabled
729 * and keep the FP/VMX/VSX state loaded while ever the transaction
730 * continues.  The reason is that if we didn't, and subsequently
731 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
732 * we don't know whether it's the same transaction, and thus we
733 * don't know which of the checkpointed state and the transactional
734 * state to use.
735 */
736void restore_tm_state(struct pt_regs *regs)
737{
738	unsigned long msr_diff;
739
740	clear_thread_flag(TIF_RESTORE_TM);
741	if (!MSR_TM_ACTIVE(regs->msr))
742		return;
743
744	msr_diff = current->thread.tm_orig_msr & ~regs->msr;
745	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
746	if (msr_diff & MSR_FP) {
747		fp_enable();
748		load_fp_state(&current->thread.fp_state);
749		regs->msr |= current->thread.fpexc_mode;
750	}
751	if (msr_diff & MSR_VEC) {
752		vec_enable();
753		load_vr_state(&current->thread.vr_state);
754	}
755	regs->msr |= msr_diff;
756}
757
758#else
759#define tm_recheckpoint_new_task(new)
760#define __switch_to_tm(prev)
761#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
762
763struct task_struct *__switch_to(struct task_struct *prev,
764	struct task_struct *new)
765{
766	struct thread_struct *new_thread, *old_thread;
767	struct task_struct *last;
768#ifdef CONFIG_PPC_BOOK3S_64
769	struct ppc64_tlb_batch *batch;
770#endif
771
772	WARN_ON(!irqs_disabled());
773
774	/* Back up the TAR and DSCR across context switches.
775	 * Note that the TAR is not available for use in the kernel.  (To
776	 * provide this, the TAR should be backed up/restored on exception
777	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
778	 * pt_regs anyway (for debug).)
779	 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
780	 * these will change them.
781	 */
782	save_early_sprs(&prev->thread);
783
784	__switch_to_tm(prev);
785
786#ifdef CONFIG_SMP
787	/* avoid complexity of lazy save/restore of fpu
788	 * by just saving it every time we switch out if
789	 * this task used the fpu during the last quantum.
790	 *
791	 * If it tries to use the fpu again, it'll trap and
792	 * reload its fp regs.  So we don't have to do a restore
793	 * every switch, just a save.
794	 *  -- Cort
795	 */
796	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
797		giveup_fpu(prev);
798#ifdef CONFIG_ALTIVEC
799	/*
800	 * If the previous thread used altivec in the last quantum
801	 * (thus changing altivec regs) then save them.
802	 * We used to check the VRSAVE register but not all apps
803	 * set it, so we don't rely on it now (and in fact we need
804	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
805	 *
806	 * On SMP we always save/restore altivec regs just to avoid the
807	 * complexity of changing processors.
808	 *  -- Cort
809	 */
810	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
811		giveup_altivec(prev);
812#endif /* CONFIG_ALTIVEC */
813#ifdef CONFIG_VSX
814	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
815		/* VMX and FPU registers are already save here */
816		__giveup_vsx(prev);
817#endif /* CONFIG_VSX */
818#ifdef CONFIG_SPE
819	/*
820	 * If the previous thread used spe in the last quantum
821	 * (thus changing spe regs) then save them.
822	 *
823	 * On SMP we always save/restore spe regs just to avoid the
824	 * complexity of changing processors.
825	 */
826	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
827		giveup_spe(prev);
828#endif /* CONFIG_SPE */
829
830#else  /* CONFIG_SMP */
831#ifdef CONFIG_ALTIVEC
832	/* Avoid the trap.  On smp this this never happens since
833	 * we don't set last_task_used_altivec -- Cort
834	 */
835	if (new->thread.regs && last_task_used_altivec == new)
836		new->thread.regs->msr |= MSR_VEC;
837#endif /* CONFIG_ALTIVEC */
838#ifdef CONFIG_VSX
839	if (new->thread.regs && last_task_used_vsx == new)
840		new->thread.regs->msr |= MSR_VSX;
841#endif /* CONFIG_VSX */
842#ifdef CONFIG_SPE
843	/* Avoid the trap.  On smp this this never happens since
844	 * we don't set last_task_used_spe
845	 */
846	if (new->thread.regs && last_task_used_spe == new)
847		new->thread.regs->msr |= MSR_SPE;
848#endif /* CONFIG_SPE */
849
850#endif /* CONFIG_SMP */
851
852#ifdef CONFIG_PPC_ADV_DEBUG_REGS
853	switch_booke_debug_regs(&new->thread.debug);
854#else
855/*
856 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
857 * schedule DABR
858 */
859#ifndef CONFIG_HAVE_HW_BREAKPOINT
860	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
861		__set_breakpoint(&new->thread.hw_brk);
862#endif /* CONFIG_HAVE_HW_BREAKPOINT */
863#endif
864
865
866	new_thread = &new->thread;
867	old_thread = &current->thread;
868
869#ifdef CONFIG_PPC64
870	/*
871	 * Collect processor utilization data per process
872	 */
873	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
874		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
875		long unsigned start_tb, current_tb;
876		start_tb = old_thread->start_tb;
877		cu->current_tb = current_tb = mfspr(SPRN_PURR);
878		old_thread->accum_tb += (current_tb - start_tb);
879		new_thread->start_tb = current_tb;
880	}
881#endif /* CONFIG_PPC64 */
882
883#ifdef CONFIG_PPC_BOOK3S_64
884	batch = this_cpu_ptr(&ppc64_tlb_batch);
885	if (batch->active) {
886		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
887		if (batch->index)
888			__flush_tlb_pending(batch);
889		batch->active = 0;
890	}
891#endif /* CONFIG_PPC_BOOK3S_64 */
892
893	/*
894	 * We can't take a PMU exception inside _switch() since there is a
895	 * window where the kernel stack SLB and the kernel stack are out
896	 * of sync. Hard disable here.
897	 */
898	hard_irq_disable();
899
900	tm_recheckpoint_new_task(new);
901
902	last = _switch(old_thread, new_thread);
903
904#ifdef CONFIG_PPC_BOOK3S_64
905	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
906		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
907		batch = this_cpu_ptr(&ppc64_tlb_batch);
908		batch->active = 1;
909	}
910#endif /* CONFIG_PPC_BOOK3S_64 */
911
912	return last;
913}
914
915static int instructions_to_print = 16;
916
917static void show_instructions(struct pt_regs *regs)
918{
919	int i;
920	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
921			sizeof(int));
922
923	printk("Instruction dump:");
924
925	for (i = 0; i < instructions_to_print; i++) {
926		int instr;
927
928		if (!(i % 8))
929			printk("\n");
930
931#if !defined(CONFIG_BOOKE)
932		/* If executing with the IMMU off, adjust pc rather
933		 * than print XXXXXXXX.
934		 */
935		if (!(regs->msr & MSR_IR))
936			pc = (unsigned long)phys_to_virt(pc);
937#endif
938
939		if (!__kernel_text_address(pc) ||
940		     probe_kernel_address((unsigned int __user *)pc, instr)) {
941			printk(KERN_CONT "XXXXXXXX ");
942		} else {
943			if (regs->nip == pc)
944				printk(KERN_CONT "<%08x> ", instr);
945			else
946				printk(KERN_CONT "%08x ", instr);
947		}
948
949		pc += sizeof(int);
950	}
951
952	printk("\n");
953}
954
955static struct regbit {
956	unsigned long bit;
957	const char *name;
958} msr_bits[] = {
959#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
960	{MSR_SF,	"SF"},
961	{MSR_HV,	"HV"},
962#endif
963	{MSR_VEC,	"VEC"},
964	{MSR_VSX,	"VSX"},
965#ifdef CONFIG_BOOKE
966	{MSR_CE,	"CE"},
967#endif
968	{MSR_EE,	"EE"},
969	{MSR_PR,	"PR"},
970	{MSR_FP,	"FP"},
971	{MSR_ME,	"ME"},
972#ifdef CONFIG_BOOKE
973	{MSR_DE,	"DE"},
974#else
975	{MSR_SE,	"SE"},
976	{MSR_BE,	"BE"},
977#endif
978	{MSR_IR,	"IR"},
979	{MSR_DR,	"DR"},
980	{MSR_PMM,	"PMM"},
981#ifndef CONFIG_BOOKE
982	{MSR_RI,	"RI"},
983	{MSR_LE,	"LE"},
984#endif
985	{0,		NULL}
986};
987
988static void printbits(unsigned long val, struct regbit *bits)
989{
990	const char *sep = "";
991
992	printk("<");
993	for (; bits->bit; ++bits)
994		if (val & bits->bit) {
995			printk("%s%s", sep, bits->name);
996			sep = ",";
997		}
998	printk(">");
999}
1000
1001#ifdef CONFIG_PPC64
1002#define REG		"%016lx"
1003#define REGS_PER_LINE	4
1004#define LAST_VOLATILE	13
1005#else
1006#define REG		"%08lx"
1007#define REGS_PER_LINE	8
1008#define LAST_VOLATILE	12
1009#endif
1010
1011void show_regs(struct pt_regs * regs)
1012{
1013	int i, trap;
1014
1015	show_regs_print_info(KERN_DEFAULT);
1016
1017	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1018	       regs->nip, regs->link, regs->ctr);
1019	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1020	       regs, regs->trap, print_tainted(), init_utsname()->release);
1021	printk("MSR: "REG" ", regs->msr);
1022	printbits(regs->msr, msr_bits);
1023	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1024	trap = TRAP(regs);
1025	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1026		printk("CFAR: "REG" ", regs->orig_gpr3);
1027	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1028#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1029		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1030#else
1031		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1032#endif
1033#ifdef CONFIG_PPC64
1034	printk("SOFTE: %ld ", regs->softe);
1035#endif
1036#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1037	if (MSR_TM_ACTIVE(regs->msr))
1038		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1039#endif
1040
1041	for (i = 0;  i < 32;  i++) {
1042		if ((i % REGS_PER_LINE) == 0)
1043			printk("\nGPR%02d: ", i);
1044		printk(REG " ", regs->gpr[i]);
1045		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1046			break;
1047	}
1048	printk("\n");
1049#ifdef CONFIG_KALLSYMS
1050	/*
1051	 * Lookup NIP late so we have the best change of getting the
1052	 * above info out without failing
1053	 */
1054	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1055	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1056#endif
1057	show_stack(current, (unsigned long *) regs->gpr[1]);
1058	if (!user_mode(regs))
1059		show_instructions(regs);
1060}
1061
1062void exit_thread(void)
1063{
1064	discard_lazy_cpu_state();
1065}
1066
1067void flush_thread(void)
1068{
1069	discard_lazy_cpu_state();
1070
1071#ifdef CONFIG_HAVE_HW_BREAKPOINT
1072	flush_ptrace_hw_breakpoint(current);
1073#else /* CONFIG_HAVE_HW_BREAKPOINT */
1074	set_debug_reg_defaults(&current->thread);
1075#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1076}
1077
1078void
1079release_thread(struct task_struct *t)
1080{
1081}
1082
1083/*
1084 * this gets called so that we can store coprocessor state into memory and
1085 * copy the current task into the new thread.
1086 */
1087int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1088{
1089	flush_fp_to_thread(src);
1090	flush_altivec_to_thread(src);
1091	flush_vsx_to_thread(src);
1092	flush_spe_to_thread(src);
1093	/*
1094	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1095	 * flush but it removes the checkpointed state from the current CPU and
1096	 * transitions the CPU out of TM mode.  Hence we need to call
1097	 * tm_recheckpoint_new_task() (on the same task) to restore the
1098	 * checkpointed state back and the TM mode.
1099	 */
1100	__switch_to_tm(src);
1101	tm_recheckpoint_new_task(src);
1102
1103	*dst = *src;
1104
1105	clear_task_ebb(dst);
1106
1107	return 0;
1108}
1109
1110static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1111{
1112#ifdef CONFIG_PPC_STD_MMU_64
1113	unsigned long sp_vsid;
1114	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1115
1116	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1117		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1118			<< SLB_VSID_SHIFT_1T;
1119	else
1120		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1121			<< SLB_VSID_SHIFT;
1122	sp_vsid |= SLB_VSID_KERNEL | llp;
1123	p->thread.ksp_vsid = sp_vsid;
1124#endif
1125}
1126
1127/*
1128 * Copy a thread..
1129 */
1130extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1131
1132/*
1133 * Copy architecture-specific thread state
1134 */
1135int copy_thread(unsigned long clone_flags, unsigned long usp,
1136		unsigned long kthread_arg, struct task_struct *p)
1137{
1138	struct pt_regs *childregs, *kregs;
1139	extern void ret_from_fork(void);
1140	extern void ret_from_kernel_thread(void);
1141	void (*f)(void);
1142	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1143
1144	/* Copy registers */
1145	sp -= sizeof(struct pt_regs);
1146	childregs = (struct pt_regs *) sp;
1147	if (unlikely(p->flags & PF_KTHREAD)) {
1148		/* kernel thread */
1149		struct thread_info *ti = (void *)task_stack_page(p);
1150		memset(childregs, 0, sizeof(struct pt_regs));
1151		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1152		/* function */
1153		if (usp)
1154			childregs->gpr[14] = ppc_function_entry((void *)usp);
1155#ifdef CONFIG_PPC64
1156		clear_tsk_thread_flag(p, TIF_32BIT);
1157		childregs->softe = 1;
1158#endif
1159		childregs->gpr[15] = kthread_arg;
1160		p->thread.regs = NULL;	/* no user register state */
1161		ti->flags |= _TIF_RESTOREALL;
1162		f = ret_from_kernel_thread;
1163	} else {
1164		/* user thread */
1165		struct pt_regs *regs = current_pt_regs();
1166		CHECK_FULL_REGS(regs);
1167		*childregs = *regs;
1168		if (usp)
1169			childregs->gpr[1] = usp;
1170		p->thread.regs = childregs;
1171		childregs->gpr[3] = 0;  /* Result from fork() */
1172		if (clone_flags & CLONE_SETTLS) {
1173#ifdef CONFIG_PPC64
1174			if (!is_32bit_task())
1175				childregs->gpr[13] = childregs->gpr[6];
1176			else
1177#endif
1178				childregs->gpr[2] = childregs->gpr[6];
1179		}
1180
1181		f = ret_from_fork;
1182	}
1183	sp -= STACK_FRAME_OVERHEAD;
1184
1185	/*
1186	 * The way this works is that at some point in the future
1187	 * some task will call _switch to switch to the new task.
1188	 * That will pop off the stack frame created below and start
1189	 * the new task running at ret_from_fork.  The new task will
1190	 * do some house keeping and then return from the fork or clone
1191	 * system call, using the stack frame created above.
1192	 */
1193	((unsigned long *)sp)[0] = 0;
1194	sp -= sizeof(struct pt_regs);
1195	kregs = (struct pt_regs *) sp;
1196	sp -= STACK_FRAME_OVERHEAD;
1197	p->thread.ksp = sp;
1198#ifdef CONFIG_PPC32
1199	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1200				_ALIGN_UP(sizeof(struct thread_info), 16);
1201#endif
1202#ifdef CONFIG_HAVE_HW_BREAKPOINT
1203	p->thread.ptrace_bps[0] = NULL;
1204#endif
1205
1206	p->thread.fp_save_area = NULL;
1207#ifdef CONFIG_ALTIVEC
1208	p->thread.vr_save_area = NULL;
1209#endif
1210
1211	setup_ksp_vsid(p, sp);
1212
1213#ifdef CONFIG_PPC64
1214	if (cpu_has_feature(CPU_FTR_DSCR)) {
1215		p->thread.dscr_inherit = current->thread.dscr_inherit;
1216		p->thread.dscr = current->thread.dscr;
1217	}
1218	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1219		p->thread.ppr = INIT_PPR;
1220#endif
1221	kregs->nip = ppc_function_entry(f);
1222	return 0;
1223}
1224
1225/*
1226 * Set up a thread for executing a new program
1227 */
1228void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1229{
1230#ifdef CONFIG_PPC64
1231	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1232#endif
1233
1234	/*
1235	 * If we exec out of a kernel thread then thread.regs will not be
1236	 * set.  Do it now.
1237	 */
1238	if (!current->thread.regs) {
1239		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1240		current->thread.regs = regs - 1;
1241	}
1242
1243	memset(regs->gpr, 0, sizeof(regs->gpr));
1244	regs->ctr = 0;
1245	regs->link = 0;
1246	regs->xer = 0;
1247	regs->ccr = 0;
1248	regs->gpr[1] = sp;
1249
1250	/*
1251	 * We have just cleared all the nonvolatile GPRs, so make
1252	 * FULL_REGS(regs) return true.  This is necessary to allow
1253	 * ptrace to examine the thread immediately after exec.
1254	 */
1255	regs->trap &= ~1UL;
1256
1257#ifdef CONFIG_PPC32
1258	regs->mq = 0;
1259	regs->nip = start;
1260	regs->msr = MSR_USER;
1261#else
1262	if (!is_32bit_task()) {
1263		unsigned long entry;
1264
1265		if (is_elf2_task()) {
1266			/* Look ma, no function descriptors! */
1267			entry = start;
1268
1269			/*
1270			 * Ulrich says:
1271			 *   The latest iteration of the ABI requires that when
1272			 *   calling a function (at its global entry point),
1273			 *   the caller must ensure r12 holds the entry point
1274			 *   address (so that the function can quickly
1275			 *   establish addressability).
1276			 */
1277			regs->gpr[12] = start;
1278			/* Make sure that's restored on entry to userspace. */
1279			set_thread_flag(TIF_RESTOREALL);
1280		} else {
1281			unsigned long toc;
1282
1283			/* start is a relocated pointer to the function
1284			 * descriptor for the elf _start routine.  The first
1285			 * entry in the function descriptor is the entry
1286			 * address of _start and the second entry is the TOC
1287			 * value we need to use.
1288			 */
1289			__get_user(entry, (unsigned long __user *)start);
1290			__get_user(toc, (unsigned long __user *)start+1);
1291
1292			/* Check whether the e_entry function descriptor entries
1293			 * need to be relocated before we can use them.
1294			 */
1295			if (load_addr != 0) {
1296				entry += load_addr;
1297				toc   += load_addr;
1298			}
1299			regs->gpr[2] = toc;
1300		}
1301		regs->nip = entry;
1302		regs->msr = MSR_USER64;
1303	} else {
1304		regs->nip = start;
1305		regs->gpr[2] = 0;
1306		regs->msr = MSR_USER32;
1307	}
1308#endif
1309	discard_lazy_cpu_state();
1310#ifdef CONFIG_VSX
1311	current->thread.used_vsr = 0;
1312#endif
1313	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1314	current->thread.fp_save_area = NULL;
1315#ifdef CONFIG_ALTIVEC
1316	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1317	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1318	current->thread.vr_save_area = NULL;
1319	current->thread.vrsave = 0;
1320	current->thread.used_vr = 0;
1321#endif /* CONFIG_ALTIVEC */
1322#ifdef CONFIG_SPE
1323	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1324	current->thread.acc = 0;
1325	current->thread.spefscr = 0;
1326	current->thread.used_spe = 0;
1327#endif /* CONFIG_SPE */
1328#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1329	if (cpu_has_feature(CPU_FTR_TM))
1330		regs->msr |= MSR_TM;
1331	current->thread.tm_tfhar = 0;
1332	current->thread.tm_texasr = 0;
1333	current->thread.tm_tfiar = 0;
1334#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1335}
1336EXPORT_SYMBOL(start_thread);
1337
1338#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1339		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1340
1341int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1342{
1343	struct pt_regs *regs = tsk->thread.regs;
1344
1345	/* This is a bit hairy.  If we are an SPE enabled  processor
1346	 * (have embedded fp) we store the IEEE exception enable flags in
1347	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1348	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1349	if (val & PR_FP_EXC_SW_ENABLE) {
1350#ifdef CONFIG_SPE
1351		if (cpu_has_feature(CPU_FTR_SPE)) {
1352			/*
1353			 * When the sticky exception bits are set
1354			 * directly by userspace, it must call prctl
1355			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1356			 * in the existing prctl settings) or
1357			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1358			 * the bits being set).  <fenv.h> functions
1359			 * saving and restoring the whole
1360			 * floating-point environment need to do so
1361			 * anyway to restore the prctl settings from
1362			 * the saved environment.
1363			 */
1364			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1365			tsk->thread.fpexc_mode = val &
1366				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1367			return 0;
1368		} else {
1369			return -EINVAL;
1370		}
1371#else
1372		return -EINVAL;
1373#endif
1374	}
1375
1376	/* on a CONFIG_SPE this does not hurt us.  The bits that
1377	 * __pack_fe01 use do not overlap with bits used for
1378	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1379	 * on CONFIG_SPE implementations are reserved so writing to
1380	 * them does not change anything */
1381	if (val > PR_FP_EXC_PRECISE)
1382		return -EINVAL;
1383	tsk->thread.fpexc_mode = __pack_fe01(val);
1384	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1385		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1386			| tsk->thread.fpexc_mode;
1387	return 0;
1388}
1389
1390int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1391{
1392	unsigned int val;
1393
1394	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1395#ifdef CONFIG_SPE
1396		if (cpu_has_feature(CPU_FTR_SPE)) {
1397			/*
1398			 * When the sticky exception bits are set
1399			 * directly by userspace, it must call prctl
1400			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1401			 * in the existing prctl settings) or
1402			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1403			 * the bits being set).  <fenv.h> functions
1404			 * saving and restoring the whole
1405			 * floating-point environment need to do so
1406			 * anyway to restore the prctl settings from
1407			 * the saved environment.
1408			 */
1409			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1410			val = tsk->thread.fpexc_mode;
1411		} else
1412			return -EINVAL;
1413#else
1414		return -EINVAL;
1415#endif
1416	else
1417		val = __unpack_fe01(tsk->thread.fpexc_mode);
1418	return put_user(val, (unsigned int __user *) adr);
1419}
1420
1421int set_endian(struct task_struct *tsk, unsigned int val)
1422{
1423	struct pt_regs *regs = tsk->thread.regs;
1424
1425	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1426	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1427		return -EINVAL;
1428
1429	if (regs == NULL)
1430		return -EINVAL;
1431
1432	if (val == PR_ENDIAN_BIG)
1433		regs->msr &= ~MSR_LE;
1434	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1435		regs->msr |= MSR_LE;
1436	else
1437		return -EINVAL;
1438
1439	return 0;
1440}
1441
1442int get_endian(struct task_struct *tsk, unsigned long adr)
1443{
1444	struct pt_regs *regs = tsk->thread.regs;
1445	unsigned int val;
1446
1447	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1448	    !cpu_has_feature(CPU_FTR_REAL_LE))
1449		return -EINVAL;
1450
1451	if (regs == NULL)
1452		return -EINVAL;
1453
1454	if (regs->msr & MSR_LE) {
1455		if (cpu_has_feature(CPU_FTR_REAL_LE))
1456			val = PR_ENDIAN_LITTLE;
1457		else
1458			val = PR_ENDIAN_PPC_LITTLE;
1459	} else
1460		val = PR_ENDIAN_BIG;
1461
1462	return put_user(val, (unsigned int __user *)adr);
1463}
1464
1465int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1466{
1467	tsk->thread.align_ctl = val;
1468	return 0;
1469}
1470
1471int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1472{
1473	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1474}
1475
1476static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1477				  unsigned long nbytes)
1478{
1479	unsigned long stack_page;
1480	unsigned long cpu = task_cpu(p);
1481
1482	/*
1483	 * Avoid crashing if the stack has overflowed and corrupted
1484	 * task_cpu(p), which is in the thread_info struct.
1485	 */
1486	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1487		stack_page = (unsigned long) hardirq_ctx[cpu];
1488		if (sp >= stack_page + sizeof(struct thread_struct)
1489		    && sp <= stack_page + THREAD_SIZE - nbytes)
1490			return 1;
1491
1492		stack_page = (unsigned long) softirq_ctx[cpu];
1493		if (sp >= stack_page + sizeof(struct thread_struct)
1494		    && sp <= stack_page + THREAD_SIZE - nbytes)
1495			return 1;
1496	}
1497	return 0;
1498}
1499
1500int validate_sp(unsigned long sp, struct task_struct *p,
1501		       unsigned long nbytes)
1502{
1503	unsigned long stack_page = (unsigned long)task_stack_page(p);
1504
1505	if (sp >= stack_page + sizeof(struct thread_struct)
1506	    && sp <= stack_page + THREAD_SIZE - nbytes)
1507		return 1;
1508
1509	return valid_irq_stack(sp, p, nbytes);
1510}
1511
1512EXPORT_SYMBOL(validate_sp);
1513
1514unsigned long get_wchan(struct task_struct *p)
1515{
1516	unsigned long ip, sp;
1517	int count = 0;
1518
1519	if (!p || p == current || p->state == TASK_RUNNING)
1520		return 0;
1521
1522	sp = p->thread.ksp;
1523	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1524		return 0;
1525
1526	do {
1527		sp = *(unsigned long *)sp;
1528		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1529			return 0;
1530		if (count > 0) {
1531			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1532			if (!in_sched_functions(ip))
1533				return ip;
1534		}
1535	} while (count++ < 16);
1536	return 0;
1537}
1538
1539static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1540
1541void show_stack(struct task_struct *tsk, unsigned long *stack)
1542{
1543	unsigned long sp, ip, lr, newsp;
1544	int count = 0;
1545	int firstframe = 1;
1546#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1547	int curr_frame = current->curr_ret_stack;
1548	extern void return_to_handler(void);
1549	unsigned long rth = (unsigned long)return_to_handler;
1550#endif
1551
1552	sp = (unsigned long) stack;
1553	if (tsk == NULL)
1554		tsk = current;
1555	if (sp == 0) {
1556		if (tsk == current)
1557			sp = current_stack_pointer();
1558		else
1559			sp = tsk->thread.ksp;
1560	}
1561
1562	lr = 0;
1563	printk("Call Trace:\n");
1564	do {
1565		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1566			return;
1567
1568		stack = (unsigned long *) sp;
1569		newsp = stack[0];
1570		ip = stack[STACK_FRAME_LR_SAVE];
1571		if (!firstframe || ip != lr) {
1572			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1573#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1574			if ((ip == rth) && curr_frame >= 0) {
1575				printk(" (%pS)",
1576				       (void *)current->ret_stack[curr_frame].ret);
1577				curr_frame--;
1578			}
1579#endif
1580			if (firstframe)
1581				printk(" (unreliable)");
1582			printk("\n");
1583		}
1584		firstframe = 0;
1585
1586		/*
1587		 * See if this is an exception frame.
1588		 * We look for the "regshere" marker in the current frame.
1589		 */
1590		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1591		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1592			struct pt_regs *regs = (struct pt_regs *)
1593				(sp + STACK_FRAME_OVERHEAD);
1594			lr = regs->link;
1595			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1596			       regs->trap, (void *)regs->nip, (void *)lr);
1597			firstframe = 1;
1598		}
1599
1600		sp = newsp;
1601	} while (count++ < kstack_depth_to_print);
1602}
1603
1604#ifdef CONFIG_PPC64
1605/* Called with hard IRQs off */
1606void notrace __ppc64_runlatch_on(void)
1607{
1608	struct thread_info *ti = current_thread_info();
1609	unsigned long ctrl;
1610
1611	ctrl = mfspr(SPRN_CTRLF);
1612	ctrl |= CTRL_RUNLATCH;
1613	mtspr(SPRN_CTRLT, ctrl);
1614
1615	ti->local_flags |= _TLF_RUNLATCH;
1616}
1617
1618/* Called with hard IRQs off */
1619void notrace __ppc64_runlatch_off(void)
1620{
1621	struct thread_info *ti = current_thread_info();
1622	unsigned long ctrl;
1623
1624	ti->local_flags &= ~_TLF_RUNLATCH;
1625
1626	ctrl = mfspr(SPRN_CTRLF);
1627	ctrl &= ~CTRL_RUNLATCH;
1628	mtspr(SPRN_CTRLT, ctrl);
1629}
1630#endif /* CONFIG_PPC64 */
1631
1632unsigned long arch_align_stack(unsigned long sp)
1633{
1634	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1635		sp -= get_random_int() & ~PAGE_MASK;
1636	return sp & ~0xf;
1637}
1638
1639static inline unsigned long brk_rnd(void)
1640{
1641        unsigned long rnd = 0;
1642
1643	/* 8MB for 32bit, 1GB for 64bit */
1644	if (is_32bit_task())
1645		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1646	else
1647		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1648
1649	return rnd << PAGE_SHIFT;
1650}
1651
1652unsigned long arch_randomize_brk(struct mm_struct *mm)
1653{
1654	unsigned long base = mm->brk;
1655	unsigned long ret;
1656
1657#ifdef CONFIG_PPC_STD_MMU_64
1658	/*
1659	 * If we are using 1TB segments and we are allowed to randomise
1660	 * the heap, we can put it above 1TB so it is backed by a 1TB
1661	 * segment. Otherwise the heap will be in the bottom 1TB
1662	 * which always uses 256MB segments and this may result in a
1663	 * performance penalty.
1664	 */
1665	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1666		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1667#endif
1668
1669	ret = PAGE_ALIGN(base + brk_rnd());
1670
1671	if (ret < mm->brk)
1672		return mm->brk;
1673
1674	return ret;
1675}
1676
1677