1/*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time.
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 *      This program is free software; you can redistribute it and/or
29 *      modify it under the terms of the GNU General Public License
30 *      as published by the Free Software Foundation; either version
31 *      2 of the License, or (at your option) any later version.
32 */
33
34#include <linux/errno.h>
35#include <linux/export.h>
36#include <linux/sched.h>
37#include <linux/kernel.h>
38#include <linux/param.h>
39#include <linux/string.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/timex.h>
43#include <linux/kernel_stat.h>
44#include <linux/time.h>
45#include <linux/clockchips.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
50#include <linux/percpu.h>
51#include <linux/rtc.h>
52#include <linux/jiffies.h>
53#include <linux/posix-timers.h>
54#include <linux/irq.h>
55#include <linux/delay.h>
56#include <linux/irq_work.h>
57#include <linux/clk-provider.h>
58#include <asm/trace.h>
59
60#include <asm/io.h>
61#include <asm/processor.h>
62#include <asm/nvram.h>
63#include <asm/cache.h>
64#include <asm/machdep.h>
65#include <asm/uaccess.h>
66#include <asm/time.h>
67#include <asm/prom.h>
68#include <asm/irq.h>
69#include <asm/div64.h>
70#include <asm/smp.h>
71#include <asm/vdso_datapage.h>
72#include <asm/firmware.h>
73#include <asm/cputime.h>
74
75/* powerpc clocksource/clockevent code */
76
77#include <linux/clockchips.h>
78#include <linux/timekeeper_internal.h>
79
80static cycle_t rtc_read(struct clocksource *);
81static struct clocksource clocksource_rtc = {
82	.name         = "rtc",
83	.rating       = 400,
84	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
85	.mask         = CLOCKSOURCE_MASK(64),
86	.read         = rtc_read,
87};
88
89static cycle_t timebase_read(struct clocksource *);
90static struct clocksource clocksource_timebase = {
91	.name         = "timebase",
92	.rating       = 400,
93	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
94	.mask         = CLOCKSOURCE_MASK(64),
95	.read         = timebase_read,
96};
97
98#define DECREMENTER_MAX	0x7fffffff
99
100static int decrementer_set_next_event(unsigned long evt,
101				      struct clock_event_device *dev);
102static void decrementer_set_mode(enum clock_event_mode mode,
103				 struct clock_event_device *dev);
104
105struct clock_event_device decrementer_clockevent = {
106	.name           = "decrementer",
107	.rating         = 200,
108	.irq            = 0,
109	.set_next_event = decrementer_set_next_event,
110	.set_mode       = decrementer_set_mode,
111	.features       = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP,
112};
113EXPORT_SYMBOL(decrementer_clockevent);
114
115DEFINE_PER_CPU(u64, decrementers_next_tb);
116static DEFINE_PER_CPU(struct clock_event_device, decrementers);
117
118#define XSEC_PER_SEC (1024*1024)
119
120#ifdef CONFIG_PPC64
121#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
122#else
123/* compute ((xsec << 12) * max) >> 32 */
124#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
125#endif
126
127unsigned long tb_ticks_per_jiffy;
128unsigned long tb_ticks_per_usec = 100; /* sane default */
129EXPORT_SYMBOL(tb_ticks_per_usec);
130unsigned long tb_ticks_per_sec;
131EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
132
133DEFINE_SPINLOCK(rtc_lock);
134EXPORT_SYMBOL_GPL(rtc_lock);
135
136static u64 tb_to_ns_scale __read_mostly;
137static unsigned tb_to_ns_shift __read_mostly;
138static u64 boot_tb __read_mostly;
139
140extern struct timezone sys_tz;
141static long timezone_offset;
142
143unsigned long ppc_proc_freq;
144EXPORT_SYMBOL_GPL(ppc_proc_freq);
145unsigned long ppc_tb_freq;
146EXPORT_SYMBOL_GPL(ppc_tb_freq);
147
148#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
149/*
150 * Factors for converting from cputime_t (timebase ticks) to
151 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
152 * These are all stored as 0.64 fixed-point binary fractions.
153 */
154u64 __cputime_jiffies_factor;
155EXPORT_SYMBOL(__cputime_jiffies_factor);
156u64 __cputime_usec_factor;
157EXPORT_SYMBOL(__cputime_usec_factor);
158u64 __cputime_sec_factor;
159EXPORT_SYMBOL(__cputime_sec_factor);
160u64 __cputime_clockt_factor;
161EXPORT_SYMBOL(__cputime_clockt_factor);
162DEFINE_PER_CPU(unsigned long, cputime_last_delta);
163DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
164
165cputime_t cputime_one_jiffy;
166
167void (*dtl_consumer)(struct dtl_entry *, u64);
168
169static void calc_cputime_factors(void)
170{
171	struct div_result res;
172
173	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
174	__cputime_jiffies_factor = res.result_low;
175	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
176	__cputime_usec_factor = res.result_low;
177	div128_by_32(1, 0, tb_ticks_per_sec, &res);
178	__cputime_sec_factor = res.result_low;
179	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
180	__cputime_clockt_factor = res.result_low;
181}
182
183/*
184 * Read the SPURR on systems that have it, otherwise the PURR,
185 * or if that doesn't exist return the timebase value passed in.
186 */
187static u64 read_spurr(u64 tb)
188{
189	if (cpu_has_feature(CPU_FTR_SPURR))
190		return mfspr(SPRN_SPURR);
191	if (cpu_has_feature(CPU_FTR_PURR))
192		return mfspr(SPRN_PURR);
193	return tb;
194}
195
196#ifdef CONFIG_PPC_SPLPAR
197
198/*
199 * Scan the dispatch trace log and count up the stolen time.
200 * Should be called with interrupts disabled.
201 */
202static u64 scan_dispatch_log(u64 stop_tb)
203{
204	u64 i = local_paca->dtl_ridx;
205	struct dtl_entry *dtl = local_paca->dtl_curr;
206	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
207	struct lppaca *vpa = local_paca->lppaca_ptr;
208	u64 tb_delta;
209	u64 stolen = 0;
210	u64 dtb;
211
212	if (!dtl)
213		return 0;
214
215	if (i == be64_to_cpu(vpa->dtl_idx))
216		return 0;
217	while (i < be64_to_cpu(vpa->dtl_idx)) {
218		dtb = be64_to_cpu(dtl->timebase);
219		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
220			be32_to_cpu(dtl->ready_to_enqueue_time);
221		barrier();
222		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
223			/* buffer has overflowed */
224			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
225			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
226			continue;
227		}
228		if (dtb > stop_tb)
229			break;
230		if (dtl_consumer)
231			dtl_consumer(dtl, i);
232		stolen += tb_delta;
233		++i;
234		++dtl;
235		if (dtl == dtl_end)
236			dtl = local_paca->dispatch_log;
237	}
238	local_paca->dtl_ridx = i;
239	local_paca->dtl_curr = dtl;
240	return stolen;
241}
242
243/*
244 * Accumulate stolen time by scanning the dispatch trace log.
245 * Called on entry from user mode.
246 */
247void accumulate_stolen_time(void)
248{
249	u64 sst, ust;
250
251	u8 save_soft_enabled = local_paca->soft_enabled;
252
253	/* We are called early in the exception entry, before
254	 * soft/hard_enabled are sync'ed to the expected state
255	 * for the exception. We are hard disabled but the PACA
256	 * needs to reflect that so various debug stuff doesn't
257	 * complain
258	 */
259	local_paca->soft_enabled = 0;
260
261	sst = scan_dispatch_log(local_paca->starttime_user);
262	ust = scan_dispatch_log(local_paca->starttime);
263	local_paca->system_time -= sst;
264	local_paca->user_time -= ust;
265	local_paca->stolen_time += ust + sst;
266
267	local_paca->soft_enabled = save_soft_enabled;
268}
269
270static inline u64 calculate_stolen_time(u64 stop_tb)
271{
272	u64 stolen = 0;
273
274	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
275		stolen = scan_dispatch_log(stop_tb);
276		get_paca()->system_time -= stolen;
277	}
278
279	stolen += get_paca()->stolen_time;
280	get_paca()->stolen_time = 0;
281	return stolen;
282}
283
284#else /* CONFIG_PPC_SPLPAR */
285static inline u64 calculate_stolen_time(u64 stop_tb)
286{
287	return 0;
288}
289
290#endif /* CONFIG_PPC_SPLPAR */
291
292/*
293 * Account time for a transition between system, hard irq
294 * or soft irq state.
295 */
296static u64 vtime_delta(struct task_struct *tsk,
297			u64 *sys_scaled, u64 *stolen)
298{
299	u64 now, nowscaled, deltascaled;
300	u64 udelta, delta, user_scaled;
301
302	WARN_ON_ONCE(!irqs_disabled());
303
304	now = mftb();
305	nowscaled = read_spurr(now);
306	get_paca()->system_time += now - get_paca()->starttime;
307	get_paca()->starttime = now;
308	deltascaled = nowscaled - get_paca()->startspurr;
309	get_paca()->startspurr = nowscaled;
310
311	*stolen = calculate_stolen_time(now);
312
313	delta = get_paca()->system_time;
314	get_paca()->system_time = 0;
315	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
316	get_paca()->utime_sspurr = get_paca()->user_time;
317
318	/*
319	 * Because we don't read the SPURR on every kernel entry/exit,
320	 * deltascaled includes both user and system SPURR ticks.
321	 * Apportion these ticks to system SPURR ticks and user
322	 * SPURR ticks in the same ratio as the system time (delta)
323	 * and user time (udelta) values obtained from the timebase
324	 * over the same interval.  The system ticks get accounted here;
325	 * the user ticks get saved up in paca->user_time_scaled to be
326	 * used by account_process_tick.
327	 */
328	*sys_scaled = delta;
329	user_scaled = udelta;
330	if (deltascaled != delta + udelta) {
331		if (udelta) {
332			*sys_scaled = deltascaled * delta / (delta + udelta);
333			user_scaled = deltascaled - *sys_scaled;
334		} else {
335			*sys_scaled = deltascaled;
336		}
337	}
338	get_paca()->user_time_scaled += user_scaled;
339
340	return delta;
341}
342
343void vtime_account_system(struct task_struct *tsk)
344{
345	u64 delta, sys_scaled, stolen;
346
347	delta = vtime_delta(tsk, &sys_scaled, &stolen);
348	account_system_time(tsk, 0, delta, sys_scaled);
349	if (stolen)
350		account_steal_time(stolen);
351}
352EXPORT_SYMBOL_GPL(vtime_account_system);
353
354void vtime_account_idle(struct task_struct *tsk)
355{
356	u64 delta, sys_scaled, stolen;
357
358	delta = vtime_delta(tsk, &sys_scaled, &stolen);
359	account_idle_time(delta + stolen);
360}
361
362/*
363 * Transfer the user time accumulated in the paca
364 * by the exception entry and exit code to the generic
365 * process user time records.
366 * Must be called with interrupts disabled.
367 * Assumes that vtime_account_system/idle() has been called
368 * recently (i.e. since the last entry from usermode) so that
369 * get_paca()->user_time_scaled is up to date.
370 */
371void vtime_account_user(struct task_struct *tsk)
372{
373	cputime_t utime, utimescaled;
374
375	utime = get_paca()->user_time;
376	utimescaled = get_paca()->user_time_scaled;
377	get_paca()->user_time = 0;
378	get_paca()->user_time_scaled = 0;
379	get_paca()->utime_sspurr = 0;
380	account_user_time(tsk, utime, utimescaled);
381}
382
383#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
384#define calc_cputime_factors()
385#endif
386
387void __delay(unsigned long loops)
388{
389	unsigned long start;
390	int diff;
391
392	if (__USE_RTC()) {
393		start = get_rtcl();
394		do {
395			/* the RTCL register wraps at 1000000000 */
396			diff = get_rtcl() - start;
397			if (diff < 0)
398				diff += 1000000000;
399		} while (diff < loops);
400	} else {
401		start = get_tbl();
402		while (get_tbl() - start < loops)
403			HMT_low();
404		HMT_medium();
405	}
406}
407EXPORT_SYMBOL(__delay);
408
409void udelay(unsigned long usecs)
410{
411	__delay(tb_ticks_per_usec * usecs);
412}
413EXPORT_SYMBOL(udelay);
414
415#ifdef CONFIG_SMP
416unsigned long profile_pc(struct pt_regs *regs)
417{
418	unsigned long pc = instruction_pointer(regs);
419
420	if (in_lock_functions(pc))
421		return regs->link;
422
423	return pc;
424}
425EXPORT_SYMBOL(profile_pc);
426#endif
427
428#ifdef CONFIG_IRQ_WORK
429
430/*
431 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
432 */
433#ifdef CONFIG_PPC64
434static inline unsigned long test_irq_work_pending(void)
435{
436	unsigned long x;
437
438	asm volatile("lbz %0,%1(13)"
439		: "=r" (x)
440		: "i" (offsetof(struct paca_struct, irq_work_pending)));
441	return x;
442}
443
444static inline void set_irq_work_pending_flag(void)
445{
446	asm volatile("stb %0,%1(13)" : :
447		"r" (1),
448		"i" (offsetof(struct paca_struct, irq_work_pending)));
449}
450
451static inline void clear_irq_work_pending(void)
452{
453	asm volatile("stb %0,%1(13)" : :
454		"r" (0),
455		"i" (offsetof(struct paca_struct, irq_work_pending)));
456}
457
458#else /* 32-bit */
459
460DEFINE_PER_CPU(u8, irq_work_pending);
461
462#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
463#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
464#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
465
466#endif /* 32 vs 64 bit */
467
468void arch_irq_work_raise(void)
469{
470	preempt_disable();
471	set_irq_work_pending_flag();
472	set_dec(1);
473	preempt_enable();
474}
475
476#else  /* CONFIG_IRQ_WORK */
477
478#define test_irq_work_pending()	0
479#define clear_irq_work_pending()
480
481#endif /* CONFIG_IRQ_WORK */
482
483static void __timer_interrupt(void)
484{
485	struct pt_regs *regs = get_irq_regs();
486	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
487	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
488	u64 now;
489
490	trace_timer_interrupt_entry(regs);
491
492	if (test_irq_work_pending()) {
493		clear_irq_work_pending();
494		irq_work_run();
495	}
496
497	now = get_tb_or_rtc();
498	if (now >= *next_tb) {
499		*next_tb = ~(u64)0;
500		if (evt->event_handler)
501			evt->event_handler(evt);
502		__this_cpu_inc(irq_stat.timer_irqs_event);
503	} else {
504		now = *next_tb - now;
505		if (now <= DECREMENTER_MAX)
506			set_dec((int)now);
507		/* We may have raced with new irq work */
508		if (test_irq_work_pending())
509			set_dec(1);
510		__this_cpu_inc(irq_stat.timer_irqs_others);
511	}
512
513#ifdef CONFIG_PPC64
514	/* collect purr register values often, for accurate calculations */
515	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
516		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
517		cu->current_tb = mfspr(SPRN_PURR);
518	}
519#endif
520
521	trace_timer_interrupt_exit(regs);
522}
523
524/*
525 * timer_interrupt - gets called when the decrementer overflows,
526 * with interrupts disabled.
527 */
528void timer_interrupt(struct pt_regs * regs)
529{
530	struct pt_regs *old_regs;
531	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
532
533	/* Ensure a positive value is written to the decrementer, or else
534	 * some CPUs will continue to take decrementer exceptions.
535	 */
536	set_dec(DECREMENTER_MAX);
537
538	/* Some implementations of hotplug will get timer interrupts while
539	 * offline, just ignore these and we also need to set
540	 * decrementers_next_tb as MAX to make sure __check_irq_replay
541	 * don't replay timer interrupt when return, otherwise we'll trap
542	 * here infinitely :(
543	 */
544	if (!cpu_online(smp_processor_id())) {
545		*next_tb = ~(u64)0;
546		return;
547	}
548
549	/* Conditionally hard-enable interrupts now that the DEC has been
550	 * bumped to its maximum value
551	 */
552	may_hard_irq_enable();
553
554
555#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
556	if (atomic_read(&ppc_n_lost_interrupts) != 0)
557		do_IRQ(regs);
558#endif
559
560	old_regs = set_irq_regs(regs);
561	irq_enter();
562
563	__timer_interrupt();
564	irq_exit();
565	set_irq_regs(old_regs);
566}
567
568/*
569 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
570 * left pending on exit from a KVM guest.  We don't need to do anything
571 * to clear them, as they are edge-triggered.
572 */
573void hdec_interrupt(struct pt_regs *regs)
574{
575}
576
577#ifdef CONFIG_SUSPEND
578static void generic_suspend_disable_irqs(void)
579{
580	/* Disable the decrementer, so that it doesn't interfere
581	 * with suspending.
582	 */
583
584	set_dec(DECREMENTER_MAX);
585	local_irq_disable();
586	set_dec(DECREMENTER_MAX);
587}
588
589static void generic_suspend_enable_irqs(void)
590{
591	local_irq_enable();
592}
593
594/* Overrides the weak version in kernel/power/main.c */
595void arch_suspend_disable_irqs(void)
596{
597	if (ppc_md.suspend_disable_irqs)
598		ppc_md.suspend_disable_irqs();
599	generic_suspend_disable_irqs();
600}
601
602/* Overrides the weak version in kernel/power/main.c */
603void arch_suspend_enable_irqs(void)
604{
605	generic_suspend_enable_irqs();
606	if (ppc_md.suspend_enable_irqs)
607		ppc_md.suspend_enable_irqs();
608}
609#endif
610
611unsigned long long tb_to_ns(unsigned long long ticks)
612{
613	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
614}
615EXPORT_SYMBOL_GPL(tb_to_ns);
616
617/*
618 * Scheduler clock - returns current time in nanosec units.
619 *
620 * Note: mulhdu(a, b) (multiply high double unsigned) returns
621 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
622 * are 64-bit unsigned numbers.
623 */
624unsigned long long sched_clock(void)
625{
626	if (__USE_RTC())
627		return get_rtc();
628	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
629}
630
631
632#ifdef CONFIG_PPC_PSERIES
633
634/*
635 * Running clock - attempts to give a view of time passing for a virtualised
636 * kernels.
637 * Uses the VTB register if available otherwise a next best guess.
638 */
639unsigned long long running_clock(void)
640{
641	/*
642	 * Don't read the VTB as a host since KVM does not switch in host
643	 * timebase into the VTB when it takes a guest off the CPU, reading the
644	 * VTB would result in reading 'last switched out' guest VTB.
645	 *
646	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
647	 * would be unsafe to rely only on the #ifdef above.
648	 */
649	if (firmware_has_feature(FW_FEATURE_LPAR) &&
650	    cpu_has_feature(CPU_FTR_ARCH_207S))
651		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
652
653	/*
654	 * This is a next best approximation without a VTB.
655	 * On a host which is running bare metal there should never be any stolen
656	 * time and on a host which doesn't do any virtualisation TB *should* equal
657	 * VTB so it makes no difference anyway.
658	 */
659	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
660}
661#endif
662
663static int __init get_freq(char *name, int cells, unsigned long *val)
664{
665	struct device_node *cpu;
666	const __be32 *fp;
667	int found = 0;
668
669	/* The cpu node should have timebase and clock frequency properties */
670	cpu = of_find_node_by_type(NULL, "cpu");
671
672	if (cpu) {
673		fp = of_get_property(cpu, name, NULL);
674		if (fp) {
675			found = 1;
676			*val = of_read_ulong(fp, cells);
677		}
678
679		of_node_put(cpu);
680	}
681
682	return found;
683}
684
685static void start_cpu_decrementer(void)
686{
687#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
688	/* Clear any pending timer interrupts */
689	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
690
691	/* Enable decrementer interrupt */
692	mtspr(SPRN_TCR, TCR_DIE);
693#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
694}
695
696void __init generic_calibrate_decr(void)
697{
698	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
699
700	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
701	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
702
703		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
704				"(not found)\n");
705	}
706
707	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
708
709	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
710	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
711
712		printk(KERN_ERR "WARNING: Estimating processor frequency "
713				"(not found)\n");
714	}
715}
716
717int update_persistent_clock(struct timespec now)
718{
719	struct rtc_time tm;
720
721	if (!ppc_md.set_rtc_time)
722		return -ENODEV;
723
724	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
725	tm.tm_year -= 1900;
726	tm.tm_mon -= 1;
727
728	return ppc_md.set_rtc_time(&tm);
729}
730
731static void __read_persistent_clock(struct timespec *ts)
732{
733	struct rtc_time tm;
734	static int first = 1;
735
736	ts->tv_nsec = 0;
737	/* XXX this is a litle fragile but will work okay in the short term */
738	if (first) {
739		first = 0;
740		if (ppc_md.time_init)
741			timezone_offset = ppc_md.time_init();
742
743		/* get_boot_time() isn't guaranteed to be safe to call late */
744		if (ppc_md.get_boot_time) {
745			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
746			return;
747		}
748	}
749	if (!ppc_md.get_rtc_time) {
750		ts->tv_sec = 0;
751		return;
752	}
753	ppc_md.get_rtc_time(&tm);
754
755	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
756			    tm.tm_hour, tm.tm_min, tm.tm_sec);
757}
758
759void read_persistent_clock(struct timespec *ts)
760{
761	__read_persistent_clock(ts);
762
763	/* Sanitize it in case real time clock is set below EPOCH */
764	if (ts->tv_sec < 0) {
765		ts->tv_sec = 0;
766		ts->tv_nsec = 0;
767	}
768
769}
770
771/* clocksource code */
772static cycle_t rtc_read(struct clocksource *cs)
773{
774	return (cycle_t)get_rtc();
775}
776
777static cycle_t timebase_read(struct clocksource *cs)
778{
779	return (cycle_t)get_tb();
780}
781
782void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
783			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
784{
785	u64 new_tb_to_xs, new_stamp_xsec;
786	u32 frac_sec;
787
788	if (clock != &clocksource_timebase)
789		return;
790
791	/* Make userspace gettimeofday spin until we're done. */
792	++vdso_data->tb_update_count;
793	smp_mb();
794
795	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
796	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
797	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
798	do_div(new_stamp_xsec, 1000000000);
799	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
800
801	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
802	/* this is tv_nsec / 1e9 as a 0.32 fraction */
803	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
804
805	/*
806	 * tb_update_count is used to allow the userspace gettimeofday code
807	 * to assure itself that it sees a consistent view of the tb_to_xs and
808	 * stamp_xsec variables.  It reads the tb_update_count, then reads
809	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
810	 * the two values of tb_update_count match and are even then the
811	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
812	 * loops back and reads them again until this criteria is met.
813	 * We expect the caller to have done the first increment of
814	 * vdso_data->tb_update_count already.
815	 */
816	vdso_data->tb_orig_stamp = cycle_last;
817	vdso_data->stamp_xsec = new_stamp_xsec;
818	vdso_data->tb_to_xs = new_tb_to_xs;
819	vdso_data->wtom_clock_sec = wtm->tv_sec;
820	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
821	vdso_data->stamp_xtime = *wall_time;
822	vdso_data->stamp_sec_fraction = frac_sec;
823	smp_wmb();
824	++(vdso_data->tb_update_count);
825}
826
827void update_vsyscall_tz(void)
828{
829	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
830	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
831}
832
833static void __init clocksource_init(void)
834{
835	struct clocksource *clock;
836
837	if (__USE_RTC())
838		clock = &clocksource_rtc;
839	else
840		clock = &clocksource_timebase;
841
842	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
843		printk(KERN_ERR "clocksource: %s is already registered\n",
844		       clock->name);
845		return;
846	}
847
848	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
849	       clock->name, clock->mult, clock->shift);
850}
851
852static int decrementer_set_next_event(unsigned long evt,
853				      struct clock_event_device *dev)
854{
855	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
856	set_dec(evt);
857
858	/* We may have raced with new irq work */
859	if (test_irq_work_pending())
860		set_dec(1);
861
862	return 0;
863}
864
865static void decrementer_set_mode(enum clock_event_mode mode,
866				 struct clock_event_device *dev)
867{
868	if (mode != CLOCK_EVT_MODE_ONESHOT)
869		decrementer_set_next_event(DECREMENTER_MAX, dev);
870}
871
872/* Interrupt handler for the timer broadcast IPI */
873void tick_broadcast_ipi_handler(void)
874{
875	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
876
877	*next_tb = get_tb_or_rtc();
878	__timer_interrupt();
879}
880
881static void register_decrementer_clockevent(int cpu)
882{
883	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
884
885	*dec = decrementer_clockevent;
886	dec->cpumask = cpumask_of(cpu);
887
888	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
889		    dec->name, dec->mult, dec->shift, cpu);
890
891	clockevents_register_device(dec);
892}
893
894static void __init init_decrementer_clockevent(void)
895{
896	int cpu = smp_processor_id();
897
898	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
899
900	decrementer_clockevent.max_delta_ns =
901		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
902	decrementer_clockevent.min_delta_ns =
903		clockevent_delta2ns(2, &decrementer_clockevent);
904
905	register_decrementer_clockevent(cpu);
906}
907
908void secondary_cpu_time_init(void)
909{
910	/* Start the decrementer on CPUs that have manual control
911	 * such as BookE
912	 */
913	start_cpu_decrementer();
914
915	/* FIME: Should make unrelatred change to move snapshot_timebase
916	 * call here ! */
917	register_decrementer_clockevent(smp_processor_id());
918}
919
920/* This function is only called on the boot processor */
921void __init time_init(void)
922{
923	struct div_result res;
924	u64 scale;
925	unsigned shift;
926
927	if (__USE_RTC()) {
928		/* 601 processor: dec counts down by 128 every 128ns */
929		ppc_tb_freq = 1000000000;
930	} else {
931		/* Normal PowerPC with timebase register */
932		ppc_md.calibrate_decr();
933		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
934		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
935		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
936		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
937	}
938
939	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
940	tb_ticks_per_sec = ppc_tb_freq;
941	tb_ticks_per_usec = ppc_tb_freq / 1000000;
942	calc_cputime_factors();
943	setup_cputime_one_jiffy();
944
945	/*
946	 * Compute scale factor for sched_clock.
947	 * The calibrate_decr() function has set tb_ticks_per_sec,
948	 * which is the timebase frequency.
949	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
950	 * the 128-bit result as a 64.64 fixed-point number.
951	 * We then shift that number right until it is less than 1.0,
952	 * giving us the scale factor and shift count to use in
953	 * sched_clock().
954	 */
955	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
956	scale = res.result_low;
957	for (shift = 0; res.result_high != 0; ++shift) {
958		scale = (scale >> 1) | (res.result_high << 63);
959		res.result_high >>= 1;
960	}
961	tb_to_ns_scale = scale;
962	tb_to_ns_shift = shift;
963	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
964	boot_tb = get_tb_or_rtc();
965
966	/* If platform provided a timezone (pmac), we correct the time */
967	if (timezone_offset) {
968		sys_tz.tz_minuteswest = -timezone_offset / 60;
969		sys_tz.tz_dsttime = 0;
970	}
971
972	vdso_data->tb_update_count = 0;
973	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
974
975	/* Start the decrementer on CPUs that have manual control
976	 * such as BookE
977	 */
978	start_cpu_decrementer();
979
980	/* Register the clocksource */
981	clocksource_init();
982
983	init_decrementer_clockevent();
984	tick_setup_hrtimer_broadcast();
985
986#ifdef CONFIG_COMMON_CLK
987	of_clk_init(NULL);
988#endif
989}
990
991
992#define FEBRUARY	2
993#define	STARTOFTIME	1970
994#define SECDAY		86400L
995#define SECYR		(SECDAY * 365)
996#define	leapyear(year)		((year) % 4 == 0 && \
997				 ((year) % 100 != 0 || (year) % 400 == 0))
998#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
999#define	days_in_month(a) 	(month_days[(a) - 1])
1000
1001static int month_days[12] = {
1002	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1003};
1004
1005/*
1006 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1007 */
1008void GregorianDay(struct rtc_time * tm)
1009{
1010	int leapsToDate;
1011	int lastYear;
1012	int day;
1013	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1014
1015	lastYear = tm->tm_year - 1;
1016
1017	/*
1018	 * Number of leap corrections to apply up to end of last year
1019	 */
1020	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1021
1022	/*
1023	 * This year is a leap year if it is divisible by 4 except when it is
1024	 * divisible by 100 unless it is divisible by 400
1025	 *
1026	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1027	 */
1028	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1029
1030	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1031		   tm->tm_mday;
1032
1033	tm->tm_wday = day % 7;
1034}
1035EXPORT_SYMBOL_GPL(GregorianDay);
1036
1037void to_tm(int tim, struct rtc_time * tm)
1038{
1039	register int    i;
1040	register long   hms, day;
1041
1042	day = tim / SECDAY;
1043	hms = tim % SECDAY;
1044
1045	/* Hours, minutes, seconds are easy */
1046	tm->tm_hour = hms / 3600;
1047	tm->tm_min = (hms % 3600) / 60;
1048	tm->tm_sec = (hms % 3600) % 60;
1049
1050	/* Number of years in days */
1051	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1052		day -= days_in_year(i);
1053	tm->tm_year = i;
1054
1055	/* Number of months in days left */
1056	if (leapyear(tm->tm_year))
1057		days_in_month(FEBRUARY) = 29;
1058	for (i = 1; day >= days_in_month(i); i++)
1059		day -= days_in_month(i);
1060	days_in_month(FEBRUARY) = 28;
1061	tm->tm_mon = i;
1062
1063	/* Days are what is left over (+1) from all that. */
1064	tm->tm_mday = day + 1;
1065
1066	/*
1067	 * Determine the day of week
1068	 */
1069	GregorianDay(tm);
1070}
1071EXPORT_SYMBOL(to_tm);
1072
1073/*
1074 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1075 * result.
1076 */
1077void div128_by_32(u64 dividend_high, u64 dividend_low,
1078		  unsigned divisor, struct div_result *dr)
1079{
1080	unsigned long a, b, c, d;
1081	unsigned long w, x, y, z;
1082	u64 ra, rb, rc;
1083
1084	a = dividend_high >> 32;
1085	b = dividend_high & 0xffffffff;
1086	c = dividend_low >> 32;
1087	d = dividend_low & 0xffffffff;
1088
1089	w = a / divisor;
1090	ra = ((u64)(a - (w * divisor)) << 32) + b;
1091
1092	rb = ((u64) do_div(ra, divisor) << 32) + c;
1093	x = ra;
1094
1095	rc = ((u64) do_div(rb, divisor) << 32) + d;
1096	y = rb;
1097
1098	do_div(rc, divisor);
1099	z = rc;
1100
1101	dr->result_high = ((u64)w << 32) + x;
1102	dr->result_low  = ((u64)y << 32) + z;
1103
1104}
1105
1106/* We don't need to calibrate delay, we use the CPU timebase for that */
1107void calibrate_delay(void)
1108{
1109	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1110	 * as the number of __delay(1) in a jiffy, so make it so
1111	 */
1112	loops_per_jiffy = tb_ticks_per_jiffy;
1113}
1114
1115static int __init rtc_init(void)
1116{
1117	struct platform_device *pdev;
1118
1119	if (!ppc_md.get_rtc_time)
1120		return -ENODEV;
1121
1122	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1123
1124	return PTR_ERR_OR_ZERO(pdev);
1125}
1126
1127module_init(rtc_init);
1128