1/*
2 *  This file contains ioremap and related functions for 64-bit machines.
3 *
4 *  Derived from arch/ppc64/mm/init.c
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 *    Copyright (C) 1996 Paul Mackerras
10 *
11 *  Derived from "arch/i386/mm/init.c"
12 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13 *
14 *  Dave Engebretsen <engebret@us.ibm.com>
15 *      Rework for PPC64 port.
16 *
17 *  This program is free software; you can redistribute it and/or
18 *  modify it under the terms of the GNU General Public License
19 *  as published by the Free Software Foundation; either version
20 *  2 of the License, or (at your option) any later version.
21 *
22 */
23
24#include <linux/signal.h>
25#include <linux/sched.h>
26#include <linux/kernel.h>
27#include <linux/errno.h>
28#include <linux/string.h>
29#include <linux/export.h>
30#include <linux/types.h>
31#include <linux/mman.h>
32#include <linux/mm.h>
33#include <linux/swap.h>
34#include <linux/stddef.h>
35#include <linux/vmalloc.h>
36#include <linux/memblock.h>
37#include <linux/slab.h>
38#include <linux/hugetlb.h>
39
40#include <asm/pgalloc.h>
41#include <asm/page.h>
42#include <asm/prom.h>
43#include <asm/io.h>
44#include <asm/mmu_context.h>
45#include <asm/pgtable.h>
46#include <asm/mmu.h>
47#include <asm/smp.h>
48#include <asm/machdep.h>
49#include <asm/tlb.h>
50#include <asm/processor.h>
51#include <asm/cputable.h>
52#include <asm/sections.h>
53#include <asm/firmware.h>
54#include <asm/dma.h>
55
56#include "mmu_decl.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/thp.h>
60
61/* Some sanity checking */
62#if TASK_SIZE_USER64 > PGTABLE_RANGE
63#error TASK_SIZE_USER64 exceeds pagetable range
64#endif
65
66#ifdef CONFIG_PPC_STD_MMU_64
67#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68#error TASK_SIZE_USER64 exceeds user VSID range
69#endif
70#endif
71
72unsigned long ioremap_bot = IOREMAP_BASE;
73
74#ifdef CONFIG_PPC_MMU_NOHASH
75static __ref void *early_alloc_pgtable(unsigned long size)
76{
77	void *pt;
78
79	pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS)));
80	memset(pt, 0, size);
81
82	return pt;
83}
84#endif /* CONFIG_PPC_MMU_NOHASH */
85
86/*
87 * map_kernel_page currently only called by __ioremap
88 * map_kernel_page adds an entry to the ioremap page table
89 * and adds an entry to the HPT, possibly bolting it
90 */
91int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
92{
93	pgd_t *pgdp;
94	pud_t *pudp;
95	pmd_t *pmdp;
96	pte_t *ptep;
97
98	if (slab_is_available()) {
99		pgdp = pgd_offset_k(ea);
100		pudp = pud_alloc(&init_mm, pgdp, ea);
101		if (!pudp)
102			return -ENOMEM;
103		pmdp = pmd_alloc(&init_mm, pudp, ea);
104		if (!pmdp)
105			return -ENOMEM;
106		ptep = pte_alloc_kernel(pmdp, ea);
107		if (!ptep)
108			return -ENOMEM;
109		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
110							  __pgprot(flags)));
111	} else {
112#ifdef CONFIG_PPC_MMU_NOHASH
113		pgdp = pgd_offset_k(ea);
114#ifdef PUD_TABLE_SIZE
115		if (pgd_none(*pgdp)) {
116			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
117			BUG_ON(pudp == NULL);
118			pgd_populate(&init_mm, pgdp, pudp);
119		}
120#endif /* PUD_TABLE_SIZE */
121		pudp = pud_offset(pgdp, ea);
122		if (pud_none(*pudp)) {
123			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
124			BUG_ON(pmdp == NULL);
125			pud_populate(&init_mm, pudp, pmdp);
126		}
127		pmdp = pmd_offset(pudp, ea);
128		if (!pmd_present(*pmdp)) {
129			ptep = early_alloc_pgtable(PAGE_SIZE);
130			BUG_ON(ptep == NULL);
131			pmd_populate_kernel(&init_mm, pmdp, ptep);
132		}
133		ptep = pte_offset_kernel(pmdp, ea);
134		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
135							  __pgprot(flags)));
136#else /* CONFIG_PPC_MMU_NOHASH */
137		/*
138		 * If the mm subsystem is not fully up, we cannot create a
139		 * linux page table entry for this mapping.  Simply bolt an
140		 * entry in the hardware page table.
141		 *
142		 */
143		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
144				      mmu_io_psize, mmu_kernel_ssize)) {
145			printk(KERN_ERR "Failed to do bolted mapping IO "
146			       "memory at %016lx !\n", pa);
147			return -ENOMEM;
148		}
149#endif /* !CONFIG_PPC_MMU_NOHASH */
150	}
151
152#ifdef CONFIG_PPC_BOOK3E_64
153	/*
154	 * With hardware tablewalk, a sync is needed to ensure that
155	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
156	 * mappings, we can't tolerate spurious faults, so make sure
157	 * the new PTE will be seen the first time.
158	 */
159	mb();
160#else
161	smp_wmb();
162#endif
163	return 0;
164}
165
166
167/**
168 * __ioremap_at - Low level function to establish the page tables
169 *                for an IO mapping
170 */
171void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
172			    unsigned long flags)
173{
174	unsigned long i;
175
176	/* Make sure we have the base flags */
177	if ((flags & _PAGE_PRESENT) == 0)
178		flags |= pgprot_val(PAGE_KERNEL);
179
180	/* Non-cacheable page cannot be coherent */
181	if (flags & _PAGE_NO_CACHE)
182		flags &= ~_PAGE_COHERENT;
183
184	/* We don't support the 4K PFN hack with ioremap */
185	if (flags & _PAGE_4K_PFN)
186		return NULL;
187
188	WARN_ON(pa & ~PAGE_MASK);
189	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
190	WARN_ON(size & ~PAGE_MASK);
191
192	for (i = 0; i < size; i += PAGE_SIZE)
193		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
194			return NULL;
195
196	return (void __iomem *)ea;
197}
198
199/**
200 * __iounmap_from - Low level function to tear down the page tables
201 *                  for an IO mapping. This is used for mappings that
202 *                  are manipulated manually, like partial unmapping of
203 *                  PCI IOs or ISA space.
204 */
205void __iounmap_at(void *ea, unsigned long size)
206{
207	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
208	WARN_ON(size & ~PAGE_MASK);
209
210	unmap_kernel_range((unsigned long)ea, size);
211}
212
213void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
214				unsigned long flags, void *caller)
215{
216	phys_addr_t paligned;
217	void __iomem *ret;
218
219	/*
220	 * Choose an address to map it to.
221	 * Once the imalloc system is running, we use it.
222	 * Before that, we map using addresses going
223	 * up from ioremap_bot.  imalloc will use
224	 * the addresses from ioremap_bot through
225	 * IMALLOC_END
226	 *
227	 */
228	paligned = addr & PAGE_MASK;
229	size = PAGE_ALIGN(addr + size) - paligned;
230
231	if ((size == 0) || (paligned == 0))
232		return NULL;
233
234	if (slab_is_available()) {
235		struct vm_struct *area;
236
237		area = __get_vm_area_caller(size, VM_IOREMAP,
238					    ioremap_bot, IOREMAP_END,
239					    caller);
240		if (area == NULL)
241			return NULL;
242
243		area->phys_addr = paligned;
244		ret = __ioremap_at(paligned, area->addr, size, flags);
245		if (!ret)
246			vunmap(area->addr);
247	} else {
248		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
249		if (ret)
250			ioremap_bot += size;
251	}
252
253	if (ret)
254		ret += addr & ~PAGE_MASK;
255	return ret;
256}
257
258void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
259			 unsigned long flags)
260{
261	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
262}
263
264void __iomem * ioremap(phys_addr_t addr, unsigned long size)
265{
266	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
267	void *caller = __builtin_return_address(0);
268
269	if (ppc_md.ioremap)
270		return ppc_md.ioremap(addr, size, flags, caller);
271	return __ioremap_caller(addr, size, flags, caller);
272}
273
274void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
275{
276	unsigned long flags = _PAGE_NO_CACHE;
277	void *caller = __builtin_return_address(0);
278
279	if (ppc_md.ioremap)
280		return ppc_md.ioremap(addr, size, flags, caller);
281	return __ioremap_caller(addr, size, flags, caller);
282}
283
284void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
285			     unsigned long flags)
286{
287	void *caller = __builtin_return_address(0);
288
289	/* writeable implies dirty for kernel addresses */
290	if (flags & _PAGE_RW)
291		flags |= _PAGE_DIRTY;
292
293	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
294	flags &= ~(_PAGE_USER | _PAGE_EXEC);
295
296#ifdef _PAGE_BAP_SR
297	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
298	 * which means that we just cleared supervisor access... oops ;-) This
299	 * restores it
300	 */
301	flags |= _PAGE_BAP_SR;
302#endif
303
304	if (ppc_md.ioremap)
305		return ppc_md.ioremap(addr, size, flags, caller);
306	return __ioremap_caller(addr, size, flags, caller);
307}
308
309
310/*
311 * Unmap an IO region and remove it from imalloc'd list.
312 * Access to IO memory should be serialized by driver.
313 */
314void __iounmap(volatile void __iomem *token)
315{
316	void *addr;
317
318	if (!slab_is_available())
319		return;
320
321	addr = (void *) ((unsigned long __force)
322			 PCI_FIX_ADDR(token) & PAGE_MASK);
323	if ((unsigned long)addr < ioremap_bot) {
324		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
325		       " at 0x%p\n", addr);
326		return;
327	}
328	vunmap(addr);
329}
330
331void iounmap(volatile void __iomem *token)
332{
333	if (ppc_md.iounmap)
334		ppc_md.iounmap(token);
335	else
336		__iounmap(token);
337}
338
339EXPORT_SYMBOL(ioremap);
340EXPORT_SYMBOL(ioremap_wc);
341EXPORT_SYMBOL(ioremap_prot);
342EXPORT_SYMBOL(__ioremap);
343EXPORT_SYMBOL(__ioremap_at);
344EXPORT_SYMBOL(iounmap);
345EXPORT_SYMBOL(__iounmap);
346EXPORT_SYMBOL(__iounmap_at);
347
348#ifndef __PAGETABLE_PUD_FOLDED
349/* 4 level page table */
350struct page *pgd_page(pgd_t pgd)
351{
352	if (pgd_huge(pgd))
353		return pte_page(pgd_pte(pgd));
354	return virt_to_page(pgd_page_vaddr(pgd));
355}
356#endif
357
358struct page *pud_page(pud_t pud)
359{
360	if (pud_huge(pud))
361		return pte_page(pud_pte(pud));
362	return virt_to_page(pud_page_vaddr(pud));
363}
364
365/*
366 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
367 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
368 */
369struct page *pmd_page(pmd_t pmd)
370{
371	if (pmd_trans_huge(pmd) || pmd_huge(pmd))
372		return pfn_to_page(pmd_pfn(pmd));
373	return virt_to_page(pmd_page_vaddr(pmd));
374}
375
376#ifdef CONFIG_PPC_64K_PAGES
377static pte_t *get_from_cache(struct mm_struct *mm)
378{
379	void *pte_frag, *ret;
380
381	spin_lock(&mm->page_table_lock);
382	ret = mm->context.pte_frag;
383	if (ret) {
384		pte_frag = ret + PTE_FRAG_SIZE;
385		/*
386		 * If we have taken up all the fragments mark PTE page NULL
387		 */
388		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
389			pte_frag = NULL;
390		mm->context.pte_frag = pte_frag;
391	}
392	spin_unlock(&mm->page_table_lock);
393	return (pte_t *)ret;
394}
395
396static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
397{
398	void *ret = NULL;
399	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
400				       __GFP_REPEAT | __GFP_ZERO);
401	if (!page)
402		return NULL;
403	if (!kernel && !pgtable_page_ctor(page)) {
404		__free_page(page);
405		return NULL;
406	}
407
408	ret = page_address(page);
409	spin_lock(&mm->page_table_lock);
410	/*
411	 * If we find pgtable_page set, we return
412	 * the allocated page with single fragement
413	 * count.
414	 */
415	if (likely(!mm->context.pte_frag)) {
416		atomic_set(&page->_count, PTE_FRAG_NR);
417		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
418	}
419	spin_unlock(&mm->page_table_lock);
420
421	return (pte_t *)ret;
422}
423
424pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
425{
426	pte_t *pte;
427
428	pte = get_from_cache(mm);
429	if (pte)
430		return pte;
431
432	return __alloc_for_cache(mm, kernel);
433}
434
435void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
436{
437	struct page *page = virt_to_page(table);
438	if (put_page_testzero(page)) {
439		if (!kernel)
440			pgtable_page_dtor(page);
441		free_hot_cold_page(page, 0);
442	}
443}
444
445#ifdef CONFIG_SMP
446static void page_table_free_rcu(void *table)
447{
448	struct page *page = virt_to_page(table);
449	if (put_page_testzero(page)) {
450		pgtable_page_dtor(page);
451		free_hot_cold_page(page, 0);
452	}
453}
454
455void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
456{
457	unsigned long pgf = (unsigned long)table;
458
459	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
460	pgf |= shift;
461	tlb_remove_table(tlb, (void *)pgf);
462}
463
464void __tlb_remove_table(void *_table)
465{
466	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
467	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
468
469	if (!shift)
470		/* PTE page needs special handling */
471		page_table_free_rcu(table);
472	else {
473		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
474		kmem_cache_free(PGT_CACHE(shift), table);
475	}
476}
477#else
478void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
479{
480	if (!shift) {
481		/* PTE page needs special handling */
482		struct page *page = virt_to_page(table);
483		if (put_page_testzero(page)) {
484			pgtable_page_dtor(page);
485			free_hot_cold_page(page, 0);
486		}
487	} else {
488		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
489		kmem_cache_free(PGT_CACHE(shift), table);
490	}
491}
492#endif
493#endif /* CONFIG_PPC_64K_PAGES */
494
495#ifdef CONFIG_TRANSPARENT_HUGEPAGE
496
497/*
498 * This is called when relaxing access to a hugepage. It's also called in the page
499 * fault path when we don't hit any of the major fault cases, ie, a minor
500 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
501 * handled those two for us, we additionally deal with missing execute
502 * permission here on some processors
503 */
504int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
505			  pmd_t *pmdp, pmd_t entry, int dirty)
506{
507	int changed;
508#ifdef CONFIG_DEBUG_VM
509	WARN_ON(!pmd_trans_huge(*pmdp));
510	assert_spin_locked(&vma->vm_mm->page_table_lock);
511#endif
512	changed = !pmd_same(*(pmdp), entry);
513	if (changed) {
514		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
515		/*
516		 * Since we are not supporting SW TLB systems, we don't
517		 * have any thing similar to flush_tlb_page_nohash()
518		 */
519	}
520	return changed;
521}
522
523unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
524				  pmd_t *pmdp, unsigned long clr,
525				  unsigned long set)
526{
527
528	unsigned long old, tmp;
529
530#ifdef CONFIG_DEBUG_VM
531	WARN_ON(!pmd_trans_huge(*pmdp));
532	assert_spin_locked(&mm->page_table_lock);
533#endif
534
535#ifdef PTE_ATOMIC_UPDATES
536	__asm__ __volatile__(
537	"1:	ldarx	%0,0,%3\n\
538		andi.	%1,%0,%6\n\
539		bne-	1b \n\
540		andc	%1,%0,%4 \n\
541		or	%1,%1,%7\n\
542		stdcx.	%1,0,%3 \n\
543		bne-	1b"
544	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
545	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
546	: "cc" );
547#else
548	old = pmd_val(*pmdp);
549	*pmdp = __pmd((old & ~clr) | set);
550#endif
551	trace_hugepage_update(addr, old, clr, set);
552	if (old & _PAGE_HASHPTE)
553		hpte_do_hugepage_flush(mm, addr, pmdp, old);
554	return old;
555}
556
557pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
558		       pmd_t *pmdp)
559{
560	pmd_t pmd;
561
562	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
563	if (pmd_trans_huge(*pmdp)) {
564		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
565	} else {
566		/*
567		 * khugepaged calls this for normal pmd
568		 */
569		pmd = *pmdp;
570		pmd_clear(pmdp);
571		/*
572		 * Wait for all pending hash_page to finish. This is needed
573		 * in case of subpage collapse. When we collapse normal pages
574		 * to hugepage, we first clear the pmd, then invalidate all
575		 * the PTE entries. The assumption here is that any low level
576		 * page fault will see a none pmd and take the slow path that
577		 * will wait on mmap_sem. But we could very well be in a
578		 * hash_page with local ptep pointer value. Such a hash page
579		 * can result in adding new HPTE entries for normal subpages.
580		 * That means we could be modifying the page content as we
581		 * copy them to a huge page. So wait for parallel hash_page
582		 * to finish before invalidating HPTE entries. We can do this
583		 * by sending an IPI to all the cpus and executing a dummy
584		 * function there.
585		 */
586		kick_all_cpus_sync();
587		/*
588		 * Now invalidate the hpte entries in the range
589		 * covered by pmd. This make sure we take a
590		 * fault and will find the pmd as none, which will
591		 * result in a major fault which takes mmap_sem and
592		 * hence wait for collapse to complete. Without this
593		 * the __collapse_huge_page_copy can result in copying
594		 * the old content.
595		 */
596		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
597	}
598	return pmd;
599}
600
601int pmdp_test_and_clear_young(struct vm_area_struct *vma,
602			      unsigned long address, pmd_t *pmdp)
603{
604	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
605}
606
607/*
608 * We currently remove entries from the hashtable regardless of whether
609 * the entry was young or dirty. The generic routines only flush if the
610 * entry was young or dirty which is not good enough.
611 *
612 * We should be more intelligent about this but for the moment we override
613 * these functions and force a tlb flush unconditionally
614 */
615int pmdp_clear_flush_young(struct vm_area_struct *vma,
616				  unsigned long address, pmd_t *pmdp)
617{
618	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
619}
620
621/*
622 * We mark the pmd splitting and invalidate all the hpte
623 * entries for this hugepage.
624 */
625void pmdp_splitting_flush(struct vm_area_struct *vma,
626			  unsigned long address, pmd_t *pmdp)
627{
628	unsigned long old, tmp;
629
630	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
631
632#ifdef CONFIG_DEBUG_VM
633	WARN_ON(!pmd_trans_huge(*pmdp));
634	assert_spin_locked(&vma->vm_mm->page_table_lock);
635#endif
636
637#ifdef PTE_ATOMIC_UPDATES
638
639	__asm__ __volatile__(
640	"1:	ldarx	%0,0,%3\n\
641		andi.	%1,%0,%6\n\
642		bne-	1b \n\
643		ori	%1,%0,%4 \n\
644		stdcx.	%1,0,%3 \n\
645		bne-	1b"
646	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
647	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
648	: "cc" );
649#else
650	old = pmd_val(*pmdp);
651	*pmdp = __pmd(old | _PAGE_SPLITTING);
652#endif
653	/*
654	 * If we didn't had the splitting flag set, go and flush the
655	 * HPTE entries.
656	 */
657	trace_hugepage_splitting(address, old);
658	if (!(old & _PAGE_SPLITTING)) {
659		/* We need to flush the hpte */
660		if (old & _PAGE_HASHPTE)
661			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
662	}
663	/*
664	 * This ensures that generic code that rely on IRQ disabling
665	 * to prevent a parallel THP split work as expected.
666	 */
667	kick_all_cpus_sync();
668}
669
670/*
671 * We want to put the pgtable in pmd and use pgtable for tracking
672 * the base page size hptes
673 */
674void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
675				pgtable_t pgtable)
676{
677	pgtable_t *pgtable_slot;
678	assert_spin_locked(&mm->page_table_lock);
679	/*
680	 * we store the pgtable in the second half of PMD
681	 */
682	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
683	*pgtable_slot = pgtable;
684	/*
685	 * expose the deposited pgtable to other cpus.
686	 * before we set the hugepage PTE at pmd level
687	 * hash fault code looks at the deposted pgtable
688	 * to store hash index values.
689	 */
690	smp_wmb();
691}
692
693pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
694{
695	pgtable_t pgtable;
696	pgtable_t *pgtable_slot;
697
698	assert_spin_locked(&mm->page_table_lock);
699	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
700	pgtable = *pgtable_slot;
701	/*
702	 * Once we withdraw, mark the entry NULL.
703	 */
704	*pgtable_slot = NULL;
705	/*
706	 * We store HPTE information in the deposited PTE fragment.
707	 * zero out the content on withdraw.
708	 */
709	memset(pgtable, 0, PTE_FRAG_SIZE);
710	return pgtable;
711}
712
713/*
714 * set a new huge pmd. We should not be called for updating
715 * an existing pmd entry. That should go via pmd_hugepage_update.
716 */
717void set_pmd_at(struct mm_struct *mm, unsigned long addr,
718		pmd_t *pmdp, pmd_t pmd)
719{
720#ifdef CONFIG_DEBUG_VM
721	WARN_ON((pmd_val(*pmdp) & (_PAGE_PRESENT | _PAGE_USER)) ==
722		(_PAGE_PRESENT | _PAGE_USER));
723	assert_spin_locked(&mm->page_table_lock);
724	WARN_ON(!pmd_trans_huge(pmd));
725#endif
726	trace_hugepage_set_pmd(addr, pmd_val(pmd));
727	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
728}
729
730void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
731		     pmd_t *pmdp)
732{
733	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
734}
735
736/*
737 * A linux hugepage PMD was changed and the corresponding hash table entries
738 * neesd to be flushed.
739 */
740void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
741			    pmd_t *pmdp, unsigned long old_pmd)
742{
743	int ssize;
744	unsigned int psize;
745	unsigned long vsid;
746	unsigned long flags = 0;
747	const struct cpumask *tmp;
748
749	/* get the base page size,vsid and segment size */
750#ifdef CONFIG_DEBUG_VM
751	psize = get_slice_psize(mm, addr);
752	BUG_ON(psize == MMU_PAGE_16M);
753#endif
754	if (old_pmd & _PAGE_COMBO)
755		psize = MMU_PAGE_4K;
756	else
757		psize = MMU_PAGE_64K;
758
759	if (!is_kernel_addr(addr)) {
760		ssize = user_segment_size(addr);
761		vsid = get_vsid(mm->context.id, addr, ssize);
762		WARN_ON(vsid == 0);
763	} else {
764		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
765		ssize = mmu_kernel_ssize;
766	}
767
768	tmp = cpumask_of(smp_processor_id());
769	if (cpumask_equal(mm_cpumask(mm), tmp))
770		flags |= HPTE_LOCAL_UPDATE;
771
772	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
773}
774
775static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
776{
777	pmd_val(pmd) |= pgprot_val(pgprot);
778	return pmd;
779}
780
781pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
782{
783	pmd_t pmd;
784	/*
785	 * For a valid pte, we would have _PAGE_PRESENT always
786	 * set. We use this to check THP page at pmd level.
787	 * leaf pte for huge page, bottom two bits != 00
788	 */
789	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
790	pmd_val(pmd) |= _PAGE_THP_HUGE;
791	pmd = pmd_set_protbits(pmd, pgprot);
792	return pmd;
793}
794
795pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
796{
797	return pfn_pmd(page_to_pfn(page), pgprot);
798}
799
800pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
801{
802
803	pmd_val(pmd) &= _HPAGE_CHG_MASK;
804	pmd = pmd_set_protbits(pmd, newprot);
805	return pmd;
806}
807
808/*
809 * This is called at the end of handling a user page fault, when the
810 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
811 * We use it to preload an HPTE into the hash table corresponding to
812 * the updated linux HUGE PMD entry.
813 */
814void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
815			  pmd_t *pmd)
816{
817	return;
818}
819
820pmd_t pmdp_get_and_clear(struct mm_struct *mm,
821			 unsigned long addr, pmd_t *pmdp)
822{
823	pmd_t old_pmd;
824	pgtable_t pgtable;
825	unsigned long old;
826	pgtable_t *pgtable_slot;
827
828	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
829	old_pmd = __pmd(old);
830	/*
831	 * We have pmd == none and we are holding page_table_lock.
832	 * So we can safely go and clear the pgtable hash
833	 * index info.
834	 */
835	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
836	pgtable = *pgtable_slot;
837	/*
838	 * Let's zero out old valid and hash index details
839	 * hash fault look at them.
840	 */
841	memset(pgtable, 0, PTE_FRAG_SIZE);
842	/*
843	 * Serialize against find_linux_pte_or_hugepte which does lock-less
844	 * lookup in page tables with local interrupts disabled. For huge pages
845	 * it casts pmd_t to pte_t. Since format of pte_t is different from
846	 * pmd_t we want to prevent transit from pmd pointing to page table
847	 * to pmd pointing to huge page (and back) while interrupts are disabled.
848	 * We clear pmd to possibly replace it with page table pointer in
849	 * different code paths. So make sure we wait for the parallel
850	 * find_linux_pte_or_hugepage to finish.
851	 */
852	kick_all_cpus_sync();
853	return old_pmd;
854}
855
856int has_transparent_hugepage(void)
857{
858	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
859		return 0;
860	/*
861	 * We support THP only if PMD_SIZE is 16MB.
862	 */
863	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
864		return 0;
865	/*
866	 * We need to make sure that we support 16MB hugepage in a segement
867	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
868	 * of 64K.
869	 */
870	/*
871	 * If we have 64K HPTE, we will be using that by default
872	 */
873	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
874	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
875		return 0;
876	/*
877	 * Ok we only have 4K HPTE
878	 */
879	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
880		return 0;
881
882	return 1;
883}
884#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
885