1/* 2 * Copyright IBM Corp. 2012 3 * 4 * Author(s): 5 * Jan Glauber <jang@linux.vnet.ibm.com> 6 */ 7 8#include <linux/kernel.h> 9#include <linux/slab.h> 10#include <linux/export.h> 11#include <linux/iommu-helper.h> 12#include <linux/dma-mapping.h> 13#include <linux/vmalloc.h> 14#include <linux/pci.h> 15#include <asm/pci_dma.h> 16 17static struct kmem_cache *dma_region_table_cache; 18static struct kmem_cache *dma_page_table_cache; 19static int s390_iommu_strict; 20 21static int zpci_refresh_global(struct zpci_dev *zdev) 22{ 23 return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma, 24 zdev->iommu_pages * PAGE_SIZE); 25} 26 27static unsigned long *dma_alloc_cpu_table(void) 28{ 29 unsigned long *table, *entry; 30 31 table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC); 32 if (!table) 33 return NULL; 34 35 for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++) 36 *entry = ZPCI_TABLE_INVALID | ZPCI_TABLE_PROTECTED; 37 return table; 38} 39 40static void dma_free_cpu_table(void *table) 41{ 42 kmem_cache_free(dma_region_table_cache, table); 43} 44 45static unsigned long *dma_alloc_page_table(void) 46{ 47 unsigned long *table, *entry; 48 49 table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC); 50 if (!table) 51 return NULL; 52 53 for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++) 54 *entry = ZPCI_PTE_INVALID | ZPCI_TABLE_PROTECTED; 55 return table; 56} 57 58static void dma_free_page_table(void *table) 59{ 60 kmem_cache_free(dma_page_table_cache, table); 61} 62 63static unsigned long *dma_get_seg_table_origin(unsigned long *entry) 64{ 65 unsigned long *sto; 66 67 if (reg_entry_isvalid(*entry)) 68 sto = get_rt_sto(*entry); 69 else { 70 sto = dma_alloc_cpu_table(); 71 if (!sto) 72 return NULL; 73 74 set_rt_sto(entry, sto); 75 validate_rt_entry(entry); 76 entry_clr_protected(entry); 77 } 78 return sto; 79} 80 81static unsigned long *dma_get_page_table_origin(unsigned long *entry) 82{ 83 unsigned long *pto; 84 85 if (reg_entry_isvalid(*entry)) 86 pto = get_st_pto(*entry); 87 else { 88 pto = dma_alloc_page_table(); 89 if (!pto) 90 return NULL; 91 set_st_pto(entry, pto); 92 validate_st_entry(entry); 93 entry_clr_protected(entry); 94 } 95 return pto; 96} 97 98static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr) 99{ 100 unsigned long *sto, *pto; 101 unsigned int rtx, sx, px; 102 103 rtx = calc_rtx(dma_addr); 104 sto = dma_get_seg_table_origin(&rto[rtx]); 105 if (!sto) 106 return NULL; 107 108 sx = calc_sx(dma_addr); 109 pto = dma_get_page_table_origin(&sto[sx]); 110 if (!pto) 111 return NULL; 112 113 px = calc_px(dma_addr); 114 return &pto[px]; 115} 116 117static void dma_update_cpu_trans(struct zpci_dev *zdev, void *page_addr, 118 dma_addr_t dma_addr, int flags) 119{ 120 unsigned long *entry; 121 122 entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr); 123 if (!entry) { 124 WARN_ON_ONCE(1); 125 return; 126 } 127 128 if (flags & ZPCI_PTE_INVALID) { 129 invalidate_pt_entry(entry); 130 return; 131 } else { 132 set_pt_pfaa(entry, page_addr); 133 validate_pt_entry(entry); 134 } 135 136 if (flags & ZPCI_TABLE_PROTECTED) 137 entry_set_protected(entry); 138 else 139 entry_clr_protected(entry); 140} 141 142static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa, 143 dma_addr_t dma_addr, size_t size, int flags) 144{ 145 unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 146 u8 *page_addr = (u8 *) (pa & PAGE_MASK); 147 dma_addr_t start_dma_addr = dma_addr; 148 unsigned long irq_flags; 149 int i, rc = 0; 150 151 if (!nr_pages) 152 return -EINVAL; 153 154 spin_lock_irqsave(&zdev->dma_table_lock, irq_flags); 155 if (!zdev->dma_table) 156 goto no_refresh; 157 158 for (i = 0; i < nr_pages; i++) { 159 dma_update_cpu_trans(zdev, page_addr, dma_addr, flags); 160 page_addr += PAGE_SIZE; 161 dma_addr += PAGE_SIZE; 162 } 163 164 /* 165 * With zdev->tlb_refresh == 0, rpcit is not required to establish new 166 * translations when previously invalid translation-table entries are 167 * validated. With lazy unmap, it also is skipped for previously valid 168 * entries, but a global rpcit is then required before any address can 169 * be re-used, i.e. after each iommu bitmap wrap-around. 170 */ 171 if (!zdev->tlb_refresh && 172 (!s390_iommu_strict || 173 ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))) 174 goto no_refresh; 175 176 rc = zpci_refresh_trans((u64) zdev->fh << 32, start_dma_addr, 177 nr_pages * PAGE_SIZE); 178 179no_refresh: 180 spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags); 181 return rc; 182} 183 184static void dma_free_seg_table(unsigned long entry) 185{ 186 unsigned long *sto = get_rt_sto(entry); 187 int sx; 188 189 for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++) 190 if (reg_entry_isvalid(sto[sx])) 191 dma_free_page_table(get_st_pto(sto[sx])); 192 193 dma_free_cpu_table(sto); 194} 195 196static void dma_cleanup_tables(struct zpci_dev *zdev) 197{ 198 unsigned long *table; 199 int rtx; 200 201 if (!zdev || !zdev->dma_table) 202 return; 203 204 table = zdev->dma_table; 205 for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++) 206 if (reg_entry_isvalid(table[rtx])) 207 dma_free_seg_table(table[rtx]); 208 209 dma_free_cpu_table(table); 210 zdev->dma_table = NULL; 211} 212 213static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev, 214 unsigned long start, int size) 215{ 216 unsigned long boundary_size; 217 218 boundary_size = ALIGN(dma_get_seg_boundary(&zdev->pdev->dev) + 1, 219 PAGE_SIZE) >> PAGE_SHIFT; 220 return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages, 221 start, size, 0, boundary_size, 0); 222} 223 224static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size) 225{ 226 unsigned long offset, flags; 227 int wrap = 0; 228 229 spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); 230 offset = __dma_alloc_iommu(zdev, zdev->next_bit, size); 231 if (offset == -1) { 232 /* wrap-around */ 233 offset = __dma_alloc_iommu(zdev, 0, size); 234 wrap = 1; 235 } 236 237 if (offset != -1) { 238 zdev->next_bit = offset + size; 239 if (!zdev->tlb_refresh && !s390_iommu_strict && wrap) 240 /* global flush after wrap-around with lazy unmap */ 241 zpci_refresh_global(zdev); 242 } 243 spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); 244 return offset; 245} 246 247static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size) 248{ 249 unsigned long flags; 250 251 spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); 252 if (!zdev->iommu_bitmap) 253 goto out; 254 bitmap_clear(zdev->iommu_bitmap, offset, size); 255 /* 256 * Lazy flush for unmap: need to move next_bit to avoid address re-use 257 * until wrap-around. 258 */ 259 if (!s390_iommu_strict && offset >= zdev->next_bit) 260 zdev->next_bit = offset + size; 261out: 262 spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); 263} 264 265int dma_set_mask(struct device *dev, u64 mask) 266{ 267 if (!dev->dma_mask || !dma_supported(dev, mask)) 268 return -EIO; 269 270 *dev->dma_mask = mask; 271 return 0; 272} 273EXPORT_SYMBOL_GPL(dma_set_mask); 274 275static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page, 276 unsigned long offset, size_t size, 277 enum dma_data_direction direction, 278 struct dma_attrs *attrs) 279{ 280 struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); 281 unsigned long nr_pages, iommu_page_index; 282 unsigned long pa = page_to_phys(page) + offset; 283 int flags = ZPCI_PTE_VALID; 284 dma_addr_t dma_addr; 285 286 /* This rounds up number of pages based on size and offset */ 287 nr_pages = iommu_num_pages(pa, size, PAGE_SIZE); 288 iommu_page_index = dma_alloc_iommu(zdev, nr_pages); 289 if (iommu_page_index == -1) 290 goto out_err; 291 292 /* Use rounded up size */ 293 size = nr_pages * PAGE_SIZE; 294 295 dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE; 296 if (dma_addr + size > zdev->end_dma) 297 goto out_free; 298 299 if (direction == DMA_NONE || direction == DMA_TO_DEVICE) 300 flags |= ZPCI_TABLE_PROTECTED; 301 302 if (!dma_update_trans(zdev, pa, dma_addr, size, flags)) { 303 atomic64_add(nr_pages, &zdev->mapped_pages); 304 return dma_addr + (offset & ~PAGE_MASK); 305 } 306 307out_free: 308 dma_free_iommu(zdev, iommu_page_index, nr_pages); 309out_err: 310 zpci_err("map error:\n"); 311 zpci_err_hex(&pa, sizeof(pa)); 312 return DMA_ERROR_CODE; 313} 314 315static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr, 316 size_t size, enum dma_data_direction direction, 317 struct dma_attrs *attrs) 318{ 319 struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); 320 unsigned long iommu_page_index; 321 int npages; 322 323 npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); 324 dma_addr = dma_addr & PAGE_MASK; 325 if (dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE, 326 ZPCI_TABLE_PROTECTED | ZPCI_PTE_INVALID)) { 327 zpci_err("unmap error:\n"); 328 zpci_err_hex(&dma_addr, sizeof(dma_addr)); 329 } 330 331 atomic64_add(npages, &zdev->unmapped_pages); 332 iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT; 333 dma_free_iommu(zdev, iommu_page_index, npages); 334} 335 336static void *s390_dma_alloc(struct device *dev, size_t size, 337 dma_addr_t *dma_handle, gfp_t flag, 338 struct dma_attrs *attrs) 339{ 340 struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); 341 struct page *page; 342 unsigned long pa; 343 dma_addr_t map; 344 345 size = PAGE_ALIGN(size); 346 page = alloc_pages(flag, get_order(size)); 347 if (!page) 348 return NULL; 349 350 pa = page_to_phys(page); 351 memset((void *) pa, 0, size); 352 353 map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE, 354 size, DMA_BIDIRECTIONAL, NULL); 355 if (dma_mapping_error(dev, map)) { 356 free_pages(pa, get_order(size)); 357 return NULL; 358 } 359 360 atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages); 361 if (dma_handle) 362 *dma_handle = map; 363 return (void *) pa; 364} 365 366static void s390_dma_free(struct device *dev, size_t size, 367 void *pa, dma_addr_t dma_handle, 368 struct dma_attrs *attrs) 369{ 370 struct zpci_dev *zdev = get_zdev(to_pci_dev(dev)); 371 372 size = PAGE_ALIGN(size); 373 atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages); 374 s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL); 375 free_pages((unsigned long) pa, get_order(size)); 376} 377 378static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg, 379 int nr_elements, enum dma_data_direction dir, 380 struct dma_attrs *attrs) 381{ 382 int mapped_elements = 0; 383 struct scatterlist *s; 384 int i; 385 386 for_each_sg(sg, s, nr_elements, i) { 387 struct page *page = sg_page(s); 388 s->dma_address = s390_dma_map_pages(dev, page, s->offset, 389 s->length, dir, NULL); 390 if (!dma_mapping_error(dev, s->dma_address)) { 391 s->dma_length = s->length; 392 mapped_elements++; 393 } else 394 goto unmap; 395 } 396out: 397 return mapped_elements; 398 399unmap: 400 for_each_sg(sg, s, mapped_elements, i) { 401 if (s->dma_address) 402 s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, 403 dir, NULL); 404 s->dma_address = 0; 405 s->dma_length = 0; 406 } 407 mapped_elements = 0; 408 goto out; 409} 410 411static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 412 int nr_elements, enum dma_data_direction dir, 413 struct dma_attrs *attrs) 414{ 415 struct scatterlist *s; 416 int i; 417 418 for_each_sg(sg, s, nr_elements, i) { 419 s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL); 420 s->dma_address = 0; 421 s->dma_length = 0; 422 } 423} 424 425int zpci_dma_init_device(struct zpci_dev *zdev) 426{ 427 int rc; 428 429 spin_lock_init(&zdev->iommu_bitmap_lock); 430 spin_lock_init(&zdev->dma_table_lock); 431 432 zdev->dma_table = dma_alloc_cpu_table(); 433 if (!zdev->dma_table) { 434 rc = -ENOMEM; 435 goto out_clean; 436 } 437 438 zdev->iommu_size = (unsigned long) high_memory - PAGE_OFFSET; 439 zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT; 440 zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8); 441 if (!zdev->iommu_bitmap) { 442 rc = -ENOMEM; 443 goto out_reg; 444 } 445 446 rc = zpci_register_ioat(zdev, 447 0, 448 zdev->start_dma + PAGE_OFFSET, 449 zdev->start_dma + zdev->iommu_size - 1, 450 (u64) zdev->dma_table); 451 if (rc) 452 goto out_reg; 453 return 0; 454 455out_reg: 456 dma_free_cpu_table(zdev->dma_table); 457out_clean: 458 return rc; 459} 460 461void zpci_dma_exit_device(struct zpci_dev *zdev) 462{ 463 zpci_unregister_ioat(zdev, 0); 464 dma_cleanup_tables(zdev); 465 vfree(zdev->iommu_bitmap); 466 zdev->iommu_bitmap = NULL; 467 zdev->next_bit = 0; 468} 469 470static int __init dma_alloc_cpu_table_caches(void) 471{ 472 dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables", 473 ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN, 474 0, NULL); 475 if (!dma_region_table_cache) 476 return -ENOMEM; 477 478 dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables", 479 ZPCI_PT_SIZE, ZPCI_PT_ALIGN, 480 0, NULL); 481 if (!dma_page_table_cache) { 482 kmem_cache_destroy(dma_region_table_cache); 483 return -ENOMEM; 484 } 485 return 0; 486} 487 488int __init zpci_dma_init(void) 489{ 490 return dma_alloc_cpu_table_caches(); 491} 492 493void zpci_dma_exit(void) 494{ 495 kmem_cache_destroy(dma_page_table_cache); 496 kmem_cache_destroy(dma_region_table_cache); 497} 498 499#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) 500 501static int __init dma_debug_do_init(void) 502{ 503 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 504 return 0; 505} 506fs_initcall(dma_debug_do_init); 507 508struct dma_map_ops s390_dma_ops = { 509 .alloc = s390_dma_alloc, 510 .free = s390_dma_free, 511 .map_sg = s390_dma_map_sg, 512 .unmap_sg = s390_dma_unmap_sg, 513 .map_page = s390_dma_map_pages, 514 .unmap_page = s390_dma_unmap_pages, 515 /* if we support direct DMA this must be conditional */ 516 .is_phys = 0, 517 /* dma_supported is unconditionally true without a callback */ 518}; 519EXPORT_SYMBOL_GPL(s390_dma_ops); 520 521static int __init s390_iommu_setup(char *str) 522{ 523 if (!strncmp(str, "strict", 6)) 524 s390_iommu_strict = 1; 525 return 0; 526} 527 528__setup("s390_iommu=", s390_iommu_setup); 529