1#ifndef __ASM_SH_BITOPS_OP32_H 2#define __ASM_SH_BITOPS_OP32_H 3 4/* 5 * The bit modifying instructions on SH-2A are only capable of working 6 * with a 3-bit immediate, which signifies the shift position for the bit 7 * being worked on. 8 */ 9#if defined(__BIG_ENDIAN) 10#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) 11#define BYTE_NUMBER(nr) ((nr ^ BITOP_LE_SWIZZLE) / BITS_PER_BYTE) 12#define BYTE_OFFSET(nr) ((nr ^ BITOP_LE_SWIZZLE) % BITS_PER_BYTE) 13#else 14#define BYTE_NUMBER(nr) ((nr) / BITS_PER_BYTE) 15#define BYTE_OFFSET(nr) ((nr) % BITS_PER_BYTE) 16#endif 17 18#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) 19 20static inline void __set_bit(int nr, volatile unsigned long *addr) 21{ 22 if (IS_IMMEDIATE(nr)) { 23 __asm__ __volatile__ ( 24 "bset.b %1, @(%O2,%0) ! __set_bit\n\t" 25 : "+r" (addr) 26 : "i" (BYTE_OFFSET(nr)), "i" (BYTE_NUMBER(nr)) 27 : "t", "memory" 28 ); 29 } else { 30 unsigned long mask = BIT_MASK(nr); 31 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); 32 33 *p |= mask; 34 } 35} 36 37static inline void __clear_bit(int nr, volatile unsigned long *addr) 38{ 39 if (IS_IMMEDIATE(nr)) { 40 __asm__ __volatile__ ( 41 "bclr.b %1, @(%O2,%0) ! __clear_bit\n\t" 42 : "+r" (addr) 43 : "i" (BYTE_OFFSET(nr)), 44 "i" (BYTE_NUMBER(nr)) 45 : "t", "memory" 46 ); 47 } else { 48 unsigned long mask = BIT_MASK(nr); 49 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); 50 51 *p &= ~mask; 52 } 53} 54 55/** 56 * __change_bit - Toggle a bit in memory 57 * @nr: the bit to change 58 * @addr: the address to start counting from 59 * 60 * Unlike change_bit(), this function is non-atomic and may be reordered. 61 * If it's called on the same region of memory simultaneously, the effect 62 * may be that only one operation succeeds. 63 */ 64static inline void __change_bit(int nr, volatile unsigned long *addr) 65{ 66 if (IS_IMMEDIATE(nr)) { 67 __asm__ __volatile__ ( 68 "bxor.b %1, @(%O2,%0) ! __change_bit\n\t" 69 : "+r" (addr) 70 : "i" (BYTE_OFFSET(nr)), 71 "i" (BYTE_NUMBER(nr)) 72 : "t", "memory" 73 ); 74 } else { 75 unsigned long mask = BIT_MASK(nr); 76 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); 77 78 *p ^= mask; 79 } 80} 81 82/** 83 * __test_and_set_bit - Set a bit and return its old value 84 * @nr: Bit to set 85 * @addr: Address to count from 86 * 87 * This operation is non-atomic and can be reordered. 88 * If two examples of this operation race, one can appear to succeed 89 * but actually fail. You must protect multiple accesses with a lock. 90 */ 91static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) 92{ 93 unsigned long mask = BIT_MASK(nr); 94 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); 95 unsigned long old = *p; 96 97 *p = old | mask; 98 return (old & mask) != 0; 99} 100 101/** 102 * __test_and_clear_bit - Clear a bit and return its old value 103 * @nr: Bit to clear 104 * @addr: Address to count from 105 * 106 * This operation is non-atomic and can be reordered. 107 * If two examples of this operation race, one can appear to succeed 108 * but actually fail. You must protect multiple accesses with a lock. 109 */ 110static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) 111{ 112 unsigned long mask = BIT_MASK(nr); 113 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); 114 unsigned long old = *p; 115 116 *p = old & ~mask; 117 return (old & mask) != 0; 118} 119 120/* WARNING: non atomic and it can be reordered! */ 121static inline int __test_and_change_bit(int nr, 122 volatile unsigned long *addr) 123{ 124 unsigned long mask = BIT_MASK(nr); 125 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); 126 unsigned long old = *p; 127 128 *p = old ^ mask; 129 return (old & mask) != 0; 130} 131 132/** 133 * test_bit - Determine whether a bit is set 134 * @nr: bit number to test 135 * @addr: Address to start counting from 136 */ 137static inline int test_bit(int nr, const volatile unsigned long *addr) 138{ 139 return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1))); 140} 141 142#endif /* __ASM_SH_BITOPS_OP32_H */ 143