1/* 2 * linux/arch/unicore32/kernel/irq.c 3 * 4 * Code specific to PKUnity SoC and UniCore ISA 5 * 6 * Copyright (C) 2001-2010 GUAN Xue-tao 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12#include <linux/kernel_stat.h> 13#include <linux/module.h> 14#include <linux/signal.h> 15#include <linux/ioport.h> 16#include <linux/interrupt.h> 17#include <linux/irq.h> 18#include <linux/random.h> 19#include <linux/smp.h> 20#include <linux/init.h> 21#include <linux/seq_file.h> 22#include <linux/errno.h> 23#include <linux/list.h> 24#include <linux/kallsyms.h> 25#include <linux/proc_fs.h> 26#include <linux/syscore_ops.h> 27#include <linux/gpio.h> 28 29#include <mach/hardware.h> 30 31#include "setup.h" 32 33/* 34 * PKUnity GPIO edge detection for IRQs: 35 * IRQs are generated on Falling-Edge, Rising-Edge, or both. 36 * Use this instead of directly setting GRER/GFER. 37 */ 38static int GPIO_IRQ_rising_edge; 39static int GPIO_IRQ_falling_edge; 40static int GPIO_IRQ_mask = 0; 41 42#define GPIO_MASK(irq) (1 << (irq - IRQ_GPIO0)) 43 44static int puv3_gpio_type(struct irq_data *d, unsigned int type) 45{ 46 unsigned int mask; 47 48 if (d->irq < IRQ_GPIOHIGH) 49 mask = 1 << d->irq; 50 else 51 mask = GPIO_MASK(d->irq); 52 53 if (type == IRQ_TYPE_PROBE) { 54 if ((GPIO_IRQ_rising_edge | GPIO_IRQ_falling_edge) & mask) 55 return 0; 56 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; 57 } 58 59 if (type & IRQ_TYPE_EDGE_RISING) 60 GPIO_IRQ_rising_edge |= mask; 61 else 62 GPIO_IRQ_rising_edge &= ~mask; 63 if (type & IRQ_TYPE_EDGE_FALLING) 64 GPIO_IRQ_falling_edge |= mask; 65 else 66 GPIO_IRQ_falling_edge &= ~mask; 67 68 writel(GPIO_IRQ_rising_edge & GPIO_IRQ_mask, GPIO_GRER); 69 writel(GPIO_IRQ_falling_edge & GPIO_IRQ_mask, GPIO_GFER); 70 71 return 0; 72} 73 74/* 75 * GPIO IRQs must be acknowledged. This is for IRQs from 0 to 7. 76 */ 77static void puv3_low_gpio_ack(struct irq_data *d) 78{ 79 writel((1 << d->irq), GPIO_GEDR); 80} 81 82static void puv3_low_gpio_mask(struct irq_data *d) 83{ 84 writel(readl(INTC_ICMR) & ~(1 << d->irq), INTC_ICMR); 85} 86 87static void puv3_low_gpio_unmask(struct irq_data *d) 88{ 89 writel(readl(INTC_ICMR) | (1 << d->irq), INTC_ICMR); 90} 91 92static int puv3_low_gpio_wake(struct irq_data *d, unsigned int on) 93{ 94 if (on) 95 writel(readl(PM_PWER) | (1 << d->irq), PM_PWER); 96 else 97 writel(readl(PM_PWER) & ~(1 << d->irq), PM_PWER); 98 return 0; 99} 100 101static struct irq_chip puv3_low_gpio_chip = { 102 .name = "GPIO-low", 103 .irq_ack = puv3_low_gpio_ack, 104 .irq_mask = puv3_low_gpio_mask, 105 .irq_unmask = puv3_low_gpio_unmask, 106 .irq_set_type = puv3_gpio_type, 107 .irq_set_wake = puv3_low_gpio_wake, 108}; 109 110/* 111 * IRQ8 (GPIO0 through 27) handler. We enter here with the 112 * irq_controller_lock held, and IRQs disabled. Decode the IRQ 113 * and call the handler. 114 */ 115static void 116puv3_gpio_handler(unsigned int irq, struct irq_desc *desc) 117{ 118 unsigned int mask; 119 120 mask = readl(GPIO_GEDR); 121 do { 122 /* 123 * clear down all currently active IRQ sources. 124 * We will be processing them all. 125 */ 126 writel(mask, GPIO_GEDR); 127 128 irq = IRQ_GPIO0; 129 do { 130 if (mask & 1) 131 generic_handle_irq(irq); 132 mask >>= 1; 133 irq++; 134 } while (mask); 135 mask = readl(GPIO_GEDR); 136 } while (mask); 137} 138 139/* 140 * GPIO0-27 edge IRQs need to be handled specially. 141 * In addition, the IRQs are all collected up into one bit in the 142 * interrupt controller registers. 143 */ 144static void puv3_high_gpio_ack(struct irq_data *d) 145{ 146 unsigned int mask = GPIO_MASK(d->irq); 147 148 writel(mask, GPIO_GEDR); 149} 150 151static void puv3_high_gpio_mask(struct irq_data *d) 152{ 153 unsigned int mask = GPIO_MASK(d->irq); 154 155 GPIO_IRQ_mask &= ~mask; 156 157 writel(readl(GPIO_GRER) & ~mask, GPIO_GRER); 158 writel(readl(GPIO_GFER) & ~mask, GPIO_GFER); 159} 160 161static void puv3_high_gpio_unmask(struct irq_data *d) 162{ 163 unsigned int mask = GPIO_MASK(d->irq); 164 165 GPIO_IRQ_mask |= mask; 166 167 writel(GPIO_IRQ_rising_edge & GPIO_IRQ_mask, GPIO_GRER); 168 writel(GPIO_IRQ_falling_edge & GPIO_IRQ_mask, GPIO_GFER); 169} 170 171static int puv3_high_gpio_wake(struct irq_data *d, unsigned int on) 172{ 173 if (on) 174 writel(readl(PM_PWER) | PM_PWER_GPIOHIGH, PM_PWER); 175 else 176 writel(readl(PM_PWER) & ~PM_PWER_GPIOHIGH, PM_PWER); 177 return 0; 178} 179 180static struct irq_chip puv3_high_gpio_chip = { 181 .name = "GPIO-high", 182 .irq_ack = puv3_high_gpio_ack, 183 .irq_mask = puv3_high_gpio_mask, 184 .irq_unmask = puv3_high_gpio_unmask, 185 .irq_set_type = puv3_gpio_type, 186 .irq_set_wake = puv3_high_gpio_wake, 187}; 188 189/* 190 * We don't need to ACK IRQs on the PKUnity unless they're GPIOs 191 * this is for internal IRQs i.e. from 8 to 31. 192 */ 193static void puv3_mask_irq(struct irq_data *d) 194{ 195 writel(readl(INTC_ICMR) & ~(1 << d->irq), INTC_ICMR); 196} 197 198static void puv3_unmask_irq(struct irq_data *d) 199{ 200 writel(readl(INTC_ICMR) | (1 << d->irq), INTC_ICMR); 201} 202 203/* 204 * Apart form GPIOs, only the RTC alarm can be a wakeup event. 205 */ 206static int puv3_set_wake(struct irq_data *d, unsigned int on) 207{ 208 if (d->irq == IRQ_RTCAlarm) { 209 if (on) 210 writel(readl(PM_PWER) | PM_PWER_RTC, PM_PWER); 211 else 212 writel(readl(PM_PWER) & ~PM_PWER_RTC, PM_PWER); 213 return 0; 214 } 215 return -EINVAL; 216} 217 218static struct irq_chip puv3_normal_chip = { 219 .name = "PKUnity-v3", 220 .irq_ack = puv3_mask_irq, 221 .irq_mask = puv3_mask_irq, 222 .irq_unmask = puv3_unmask_irq, 223 .irq_set_wake = puv3_set_wake, 224}; 225 226static struct resource irq_resource = { 227 .name = "irqs", 228 .start = io_v2p(PKUNITY_INTC_BASE), 229 .end = io_v2p(PKUNITY_INTC_BASE) + 0xFFFFF, 230}; 231 232static struct puv3_irq_state { 233 unsigned int saved; 234 unsigned int icmr; 235 unsigned int iclr; 236 unsigned int iccr; 237} puv3_irq_state; 238 239static int puv3_irq_suspend(void) 240{ 241 struct puv3_irq_state *st = &puv3_irq_state; 242 243 st->saved = 1; 244 st->icmr = readl(INTC_ICMR); 245 st->iclr = readl(INTC_ICLR); 246 st->iccr = readl(INTC_ICCR); 247 248 /* 249 * Disable all GPIO-based interrupts. 250 */ 251 writel(readl(INTC_ICMR) & ~(0x1ff), INTC_ICMR); 252 253 /* 254 * Set the appropriate edges for wakeup. 255 */ 256 writel(readl(PM_PWER) & GPIO_IRQ_rising_edge, GPIO_GRER); 257 writel(readl(PM_PWER) & GPIO_IRQ_falling_edge, GPIO_GFER); 258 259 /* 260 * Clear any pending GPIO interrupts. 261 */ 262 writel(readl(GPIO_GEDR), GPIO_GEDR); 263 264 return 0; 265} 266 267static void puv3_irq_resume(void) 268{ 269 struct puv3_irq_state *st = &puv3_irq_state; 270 271 if (st->saved) { 272 writel(st->iccr, INTC_ICCR); 273 writel(st->iclr, INTC_ICLR); 274 275 writel(GPIO_IRQ_rising_edge & GPIO_IRQ_mask, GPIO_GRER); 276 writel(GPIO_IRQ_falling_edge & GPIO_IRQ_mask, GPIO_GFER); 277 278 writel(st->icmr, INTC_ICMR); 279 } 280} 281 282static struct syscore_ops puv3_irq_syscore_ops = { 283 .suspend = puv3_irq_suspend, 284 .resume = puv3_irq_resume, 285}; 286 287static int __init puv3_irq_init_syscore(void) 288{ 289 register_syscore_ops(&puv3_irq_syscore_ops); 290 return 0; 291} 292 293device_initcall(puv3_irq_init_syscore); 294 295void __init init_IRQ(void) 296{ 297 unsigned int irq; 298 299 request_resource(&iomem_resource, &irq_resource); 300 301 /* disable all IRQs */ 302 writel(0, INTC_ICMR); 303 304 /* all IRQs are IRQ, not REAL */ 305 writel(0, INTC_ICLR); 306 307 /* clear all GPIO edge detects */ 308 writel(FMASK(8, 0) & ~FIELD(1, 1, GPI_SOFF_REQ), GPIO_GPIR); 309 writel(0, GPIO_GFER); 310 writel(0, GPIO_GRER); 311 writel(0x0FFFFFFF, GPIO_GEDR); 312 313 writel(1, INTC_ICCR); 314 315 for (irq = 0; irq < IRQ_GPIOHIGH; irq++) { 316 irq_set_chip(irq, &puv3_low_gpio_chip); 317 irq_set_handler(irq, handle_edge_irq); 318 irq_modify_status(irq, 319 IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN, 320 0); 321 } 322 323 for (irq = IRQ_GPIOHIGH + 1; irq < IRQ_GPIO0; irq++) { 324 irq_set_chip(irq, &puv3_normal_chip); 325 irq_set_handler(irq, handle_level_irq); 326 irq_modify_status(irq, 327 IRQ_NOREQUEST | IRQ_NOAUTOEN, 328 IRQ_NOPROBE); 329 } 330 331 for (irq = IRQ_GPIO0; irq <= IRQ_GPIO27; irq++) { 332 irq_set_chip(irq, &puv3_high_gpio_chip); 333 irq_set_handler(irq, handle_edge_irq); 334 irq_modify_status(irq, 335 IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN, 336 0); 337 } 338 339 /* 340 * Install handler for GPIO 0-27 edge detect interrupts 341 */ 342 irq_set_chip(IRQ_GPIOHIGH, &puv3_normal_chip); 343 irq_set_chained_handler(IRQ_GPIOHIGH, puv3_gpio_handler); 344 345#ifdef CONFIG_PUV3_GPIO 346 puv3_init_gpio(); 347#endif 348} 349 350/* 351 * do_IRQ handles all hardware IRQ's. Decoded IRQs should not 352 * come via this function. Instead, they should provide their 353 * own 'handler' 354 */ 355asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs) 356{ 357 struct pt_regs *old_regs = set_irq_regs(regs); 358 359 irq_enter(); 360 361 /* 362 * Some hardware gives randomly wrong interrupts. Rather 363 * than crashing, do something sensible. 364 */ 365 if (unlikely(irq >= nr_irqs)) { 366 if (printk_ratelimit()) 367 printk(KERN_WARNING "Bad IRQ%u\n", irq); 368 ack_bad_irq(irq); 369 } else { 370 generic_handle_irq(irq); 371 } 372 373 irq_exit(); 374 set_irq_regs(old_regs); 375} 376 377