1/* 2 * linux/arch/unicore32/kernel/process.c 3 * 4 * Code specific to PKUnity SoC and UniCore ISA 5 * 6 * Copyright (C) 2001-2010 GUAN Xue-tao 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12#include <stdarg.h> 13 14#include <linux/module.h> 15#include <linux/sched.h> 16#include <linux/kernel.h> 17#include <linux/mm.h> 18#include <linux/stddef.h> 19#include <linux/unistd.h> 20#include <linux/delay.h> 21#include <linux/reboot.h> 22#include <linux/interrupt.h> 23#include <linux/kallsyms.h> 24#include <linux/init.h> 25#include <linux/cpu.h> 26#include <linux/elfcore.h> 27#include <linux/pm.h> 28#include <linux/tick.h> 29#include <linux/utsname.h> 30#include <linux/uaccess.h> 31#include <linux/random.h> 32#include <linux/gpio.h> 33#include <linux/stacktrace.h> 34 35#include <asm/cacheflush.h> 36#include <asm/processor.h> 37#include <asm/stacktrace.h> 38 39#include "setup.h" 40 41static const char * const processor_modes[] = { 42 "UK00", "UK01", "UK02", "UK03", "UK04", "UK05", "UK06", "UK07", 43 "UK08", "UK09", "UK0A", "UK0B", "UK0C", "UK0D", "UK0E", "UK0F", 44 "USER", "REAL", "INTR", "PRIV", "UK14", "UK15", "UK16", "ABRT", 45 "UK18", "UK19", "UK1A", "EXTN", "UK1C", "UK1D", "UK1E", "SUSR" 46}; 47 48void arch_cpu_idle(void) 49{ 50 cpu_do_idle(); 51 local_irq_enable(); 52} 53 54void machine_halt(void) 55{ 56 gpio_set_value(GPO_SOFT_OFF, 0); 57} 58 59/* 60 * Function pointers to optional machine specific functions 61 */ 62void (*pm_power_off)(void) = NULL; 63EXPORT_SYMBOL(pm_power_off); 64 65void machine_power_off(void) 66{ 67 if (pm_power_off) 68 pm_power_off(); 69 machine_halt(); 70} 71 72void machine_restart(char *cmd) 73{ 74 /* Disable interrupts first */ 75 local_irq_disable(); 76 77 /* 78 * Tell the mm system that we are going to reboot - 79 * we may need it to insert some 1:1 mappings so that 80 * soft boot works. 81 */ 82 setup_mm_for_reboot(); 83 84 /* Clean and invalidate caches */ 85 flush_cache_all(); 86 87 /* Turn off caching */ 88 cpu_proc_fin(); 89 90 /* Push out any further dirty data, and ensure cache is empty */ 91 flush_cache_all(); 92 93 /* 94 * Now handle reboot code. 95 */ 96 if (reboot_mode == REBOOT_SOFT) { 97 /* Jump into ROM at address 0xffff0000 */ 98 cpu_reset(VECTORS_BASE); 99 } else { 100 writel(0x00002001, PM_PLLSYSCFG); /* cpu clk = 250M */ 101 writel(0x00100800, PM_PLLDDRCFG); /* ddr clk = 44M */ 102 writel(0x00002001, PM_PLLVGACFG); /* vga clk = 250M */ 103 104 /* Use on-chip reset capability */ 105 /* following instructions must be in one icache line */ 106 __asm__ __volatile__( 107 " .align 5\n\t" 108 " stw %1, [%0]\n\t" 109 "201: ldw r0, [%0]\n\t" 110 " cmpsub.a r0, #0\n\t" 111 " bne 201b\n\t" 112 " stw %3, [%2]\n\t" 113 " nop; nop; nop\n\t" 114 /* prefetch 3 instructions at most */ 115 : 116 : "r" (PM_PMCR), 117 "r" (PM_PMCR_CFBSYS | PM_PMCR_CFBDDR 118 | PM_PMCR_CFBVGA), 119 "r" (RESETC_SWRR), 120 "r" (RESETC_SWRR_SRB) 121 : "r0", "memory"); 122 } 123 124 /* 125 * Whoops - the architecture was unable to reboot. 126 * Tell the user! 127 */ 128 mdelay(1000); 129 printk(KERN_EMERG "Reboot failed -- System halted\n"); 130 do { } while (1); 131} 132 133void __show_regs(struct pt_regs *regs) 134{ 135 unsigned long flags; 136 char buf[64]; 137 138 show_regs_print_info(KERN_DEFAULT); 139 print_symbol("PC is at %s\n", instruction_pointer(regs)); 140 print_symbol("LR is at %s\n", regs->UCreg_lr); 141 printk(KERN_DEFAULT "pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n" 142 "sp : %08lx ip : %08lx fp : %08lx\n", 143 regs->UCreg_pc, regs->UCreg_lr, regs->UCreg_asr, 144 regs->UCreg_sp, regs->UCreg_ip, regs->UCreg_fp); 145 printk(KERN_DEFAULT "r26: %08lx r25: %08lx r24: %08lx\n", 146 regs->UCreg_26, regs->UCreg_25, 147 regs->UCreg_24); 148 printk(KERN_DEFAULT "r23: %08lx r22: %08lx r21: %08lx r20: %08lx\n", 149 regs->UCreg_23, regs->UCreg_22, 150 regs->UCreg_21, regs->UCreg_20); 151 printk(KERN_DEFAULT "r19: %08lx r18: %08lx r17: %08lx r16: %08lx\n", 152 regs->UCreg_19, regs->UCreg_18, 153 regs->UCreg_17, regs->UCreg_16); 154 printk(KERN_DEFAULT "r15: %08lx r14: %08lx r13: %08lx r12: %08lx\n", 155 regs->UCreg_15, regs->UCreg_14, 156 regs->UCreg_13, regs->UCreg_12); 157 printk(KERN_DEFAULT "r11: %08lx r10: %08lx r9 : %08lx r8 : %08lx\n", 158 regs->UCreg_11, regs->UCreg_10, 159 regs->UCreg_09, regs->UCreg_08); 160 printk(KERN_DEFAULT "r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n", 161 regs->UCreg_07, regs->UCreg_06, 162 regs->UCreg_05, regs->UCreg_04); 163 printk(KERN_DEFAULT "r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n", 164 regs->UCreg_03, regs->UCreg_02, 165 regs->UCreg_01, regs->UCreg_00); 166 167 flags = regs->UCreg_asr; 168 buf[0] = flags & PSR_S_BIT ? 'S' : 's'; 169 buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z'; 170 buf[2] = flags & PSR_C_BIT ? 'C' : 'c'; 171 buf[3] = flags & PSR_V_BIT ? 'V' : 'v'; 172 buf[4] = '\0'; 173 174 printk(KERN_DEFAULT "Flags: %s INTR o%s REAL o%s Mode %s Segment %s\n", 175 buf, interrupts_enabled(regs) ? "n" : "ff", 176 fast_interrupts_enabled(regs) ? "n" : "ff", 177 processor_modes[processor_mode(regs)], 178 segment_eq(get_fs(), get_ds()) ? "kernel" : "user"); 179 { 180 unsigned int ctrl; 181 182 buf[0] = '\0'; 183 { 184 unsigned int transbase; 185 asm("movc %0, p0.c2, #0\n" 186 : "=r" (transbase)); 187 snprintf(buf, sizeof(buf), " Table: %08x", transbase); 188 } 189 asm("movc %0, p0.c1, #0\n" : "=r" (ctrl)); 190 191 printk(KERN_DEFAULT "Control: %08x%s\n", ctrl, buf); 192 } 193} 194 195void show_regs(struct pt_regs *regs) 196{ 197 printk(KERN_DEFAULT "\n"); 198 printk(KERN_DEFAULT "Pid: %d, comm: %20s\n", 199 task_pid_nr(current), current->comm); 200 __show_regs(regs); 201 __backtrace(); 202} 203 204/* 205 * Free current thread data structures etc.. 206 */ 207void exit_thread(void) 208{ 209} 210 211void flush_thread(void) 212{ 213 struct thread_info *thread = current_thread_info(); 214 struct task_struct *tsk = current; 215 216 memset(thread->used_cp, 0, sizeof(thread->used_cp)); 217 memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); 218#ifdef CONFIG_UNICORE_FPU_F64 219 memset(&thread->fpstate, 0, sizeof(struct fp_state)); 220#endif 221} 222 223void release_thread(struct task_struct *dead_task) 224{ 225} 226 227asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); 228asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread"); 229 230int 231copy_thread(unsigned long clone_flags, unsigned long stack_start, 232 unsigned long stk_sz, struct task_struct *p) 233{ 234 struct thread_info *thread = task_thread_info(p); 235 struct pt_regs *childregs = task_pt_regs(p); 236 237 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save)); 238 thread->cpu_context.sp = (unsigned long)childregs; 239 if (unlikely(p->flags & PF_KTHREAD)) { 240 thread->cpu_context.pc = (unsigned long)ret_from_kernel_thread; 241 thread->cpu_context.r4 = stack_start; 242 thread->cpu_context.r5 = stk_sz; 243 memset(childregs, 0, sizeof(struct pt_regs)); 244 } else { 245 thread->cpu_context.pc = (unsigned long)ret_from_fork; 246 *childregs = *current_pt_regs(); 247 childregs->UCreg_00 = 0; 248 if (stack_start) 249 childregs->UCreg_sp = stack_start; 250 251 if (clone_flags & CLONE_SETTLS) 252 childregs->UCreg_16 = childregs->UCreg_03; 253 } 254 return 0; 255} 256 257/* 258 * Fill in the task's elfregs structure for a core dump. 259 */ 260int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs) 261{ 262 elf_core_copy_regs(elfregs, task_pt_regs(t)); 263 return 1; 264} 265 266/* 267 * fill in the fpe structure for a core dump... 268 */ 269int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fp) 270{ 271 struct thread_info *thread = current_thread_info(); 272 int used_math = thread->used_cp[1] | thread->used_cp[2]; 273 274#ifdef CONFIG_UNICORE_FPU_F64 275 if (used_math) 276 memcpy(fp, &thread->fpstate, sizeof(*fp)); 277#endif 278 return used_math != 0; 279} 280EXPORT_SYMBOL(dump_fpu); 281 282unsigned long get_wchan(struct task_struct *p) 283{ 284 struct stackframe frame; 285 int count = 0; 286 if (!p || p == current || p->state == TASK_RUNNING) 287 return 0; 288 289 frame.fp = thread_saved_fp(p); 290 frame.sp = thread_saved_sp(p); 291 frame.lr = 0; /* recovered from the stack */ 292 frame.pc = thread_saved_pc(p); 293 do { 294 int ret = unwind_frame(&frame); 295 if (ret < 0) 296 return 0; 297 if (!in_sched_functions(frame.pc)) 298 return frame.pc; 299 } while ((count++) < 16); 300 return 0; 301} 302 303unsigned long arch_randomize_brk(struct mm_struct *mm) 304{ 305 unsigned long range_end = mm->brk + 0x02000000; 306 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 307} 308 309/* 310 * The vectors page is always readable from user space for the 311 * atomic helpers and the signal restart code. Let's declare a mapping 312 * for it so it is visible through ptrace and /proc/<pid>/mem. 313 */ 314 315int vectors_user_mapping(void) 316{ 317 struct mm_struct *mm = current->mm; 318 return install_special_mapping(mm, 0xffff0000, PAGE_SIZE, 319 VM_READ | VM_EXEC | 320 VM_MAYREAD | VM_MAYEXEC | 321 VM_DONTEXPAND | VM_DONTDUMP, 322 NULL); 323} 324 325const char *arch_vma_name(struct vm_area_struct *vma) 326{ 327 return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL; 328} 329