1#ifndef _ASM_X86_PERCPU_H
2#define _ASM_X86_PERCPU_H
3
4#ifdef CONFIG_X86_64
5#define __percpu_seg		gs
6#define __percpu_mov_op		movq
7#else
8#define __percpu_seg		fs
9#define __percpu_mov_op		movl
10#endif
11
12#ifdef __ASSEMBLY__
13
14/*
15 * PER_CPU finds an address of a per-cpu variable.
16 *
17 * Args:
18 *    var - variable name
19 *    reg - 32bit register
20 *
21 * The resulting address is stored in the "reg" argument.
22 *
23 * Example:
24 *    PER_CPU(cpu_gdt_descr, %ebx)
25 */
26#ifdef CONFIG_SMP
27#define PER_CPU(var, reg)						\
28	__percpu_mov_op %__percpu_seg:this_cpu_off, reg;		\
29	lea var(reg), reg
30#define PER_CPU_VAR(var)	%__percpu_seg:var
31#else /* ! SMP */
32#define PER_CPU(var, reg)	__percpu_mov_op $var, reg
33#define PER_CPU_VAR(var)	var
34#endif	/* SMP */
35
36#ifdef CONFIG_X86_64_SMP
37#define INIT_PER_CPU_VAR(var)  init_per_cpu__##var
38#else
39#define INIT_PER_CPU_VAR(var)  var
40#endif
41
42#else /* ...!ASSEMBLY */
43
44#include <linux/kernel.h>
45#include <linux/stringify.h>
46
47#ifdef CONFIG_SMP
48#define __percpu_prefix		"%%"__stringify(__percpu_seg)":"
49#define __my_cpu_offset		this_cpu_read(this_cpu_off)
50
51/*
52 * Compared to the generic __my_cpu_offset version, the following
53 * saves one instruction and avoids clobbering a temp register.
54 */
55#define arch_raw_cpu_ptr(ptr)				\
56({							\
57	unsigned long tcp_ptr__;			\
58	asm volatile("add " __percpu_arg(1) ", %0"	\
59		     : "=r" (tcp_ptr__)			\
60		     : "m" (this_cpu_off), "0" (ptr));	\
61	(typeof(*(ptr)) __kernel __force *)tcp_ptr__;	\
62})
63#else
64#define __percpu_prefix		""
65#endif
66
67#define __percpu_arg(x)		__percpu_prefix "%" #x
68
69/*
70 * Initialized pointers to per-cpu variables needed for the boot
71 * processor need to use these macros to get the proper address
72 * offset from __per_cpu_load on SMP.
73 *
74 * There also must be an entry in vmlinux_64.lds.S
75 */
76#define DECLARE_INIT_PER_CPU(var) \
77       extern typeof(var) init_per_cpu_var(var)
78
79#ifdef CONFIG_X86_64_SMP
80#define init_per_cpu_var(var)  init_per_cpu__##var
81#else
82#define init_per_cpu_var(var)  var
83#endif
84
85/* For arch-specific code, we can use direct single-insn ops (they
86 * don't give an lvalue though). */
87extern void __bad_percpu_size(void);
88
89#define percpu_to_op(op, var, val)			\
90do {							\
91	typedef typeof(var) pto_T__;			\
92	if (0) {					\
93		pto_T__ pto_tmp__;			\
94		pto_tmp__ = (val);			\
95		(void)pto_tmp__;			\
96	}						\
97	switch (sizeof(var)) {				\
98	case 1:						\
99		asm(op "b %1,"__percpu_arg(0)		\
100		    : "+m" (var)			\
101		    : "qi" ((pto_T__)(val)));		\
102		break;					\
103	case 2:						\
104		asm(op "w %1,"__percpu_arg(0)		\
105		    : "+m" (var)			\
106		    : "ri" ((pto_T__)(val)));		\
107		break;					\
108	case 4:						\
109		asm(op "l %1,"__percpu_arg(0)		\
110		    : "+m" (var)			\
111		    : "ri" ((pto_T__)(val)));		\
112		break;					\
113	case 8:						\
114		asm(op "q %1,"__percpu_arg(0)		\
115		    : "+m" (var)			\
116		    : "re" ((pto_T__)(val)));		\
117		break;					\
118	default: __bad_percpu_size();			\
119	}						\
120} while (0)
121
122/*
123 * Generate a percpu add to memory instruction and optimize code
124 * if one is added or subtracted.
125 */
126#define percpu_add_op(var, val)						\
127do {									\
128	typedef typeof(var) pao_T__;					\
129	const int pao_ID__ = (__builtin_constant_p(val) &&		\
130			      ((val) == 1 || (val) == -1)) ?		\
131				(int)(val) : 0;				\
132	if (0) {							\
133		pao_T__ pao_tmp__;					\
134		pao_tmp__ = (val);					\
135		(void)pao_tmp__;					\
136	}								\
137	switch (sizeof(var)) {						\
138	case 1:								\
139		if (pao_ID__ == 1)					\
140			asm("incb "__percpu_arg(0) : "+m" (var));	\
141		else if (pao_ID__ == -1)				\
142			asm("decb "__percpu_arg(0) : "+m" (var));	\
143		else							\
144			asm("addb %1, "__percpu_arg(0)			\
145			    : "+m" (var)				\
146			    : "qi" ((pao_T__)(val)));			\
147		break;							\
148	case 2:								\
149		if (pao_ID__ == 1)					\
150			asm("incw "__percpu_arg(0) : "+m" (var));	\
151		else if (pao_ID__ == -1)				\
152			asm("decw "__percpu_arg(0) : "+m" (var));	\
153		else							\
154			asm("addw %1, "__percpu_arg(0)			\
155			    : "+m" (var)				\
156			    : "ri" ((pao_T__)(val)));			\
157		break;							\
158	case 4:								\
159		if (pao_ID__ == 1)					\
160			asm("incl "__percpu_arg(0) : "+m" (var));	\
161		else if (pao_ID__ == -1)				\
162			asm("decl "__percpu_arg(0) : "+m" (var));	\
163		else							\
164			asm("addl %1, "__percpu_arg(0)			\
165			    : "+m" (var)				\
166			    : "ri" ((pao_T__)(val)));			\
167		break;							\
168	case 8:								\
169		if (pao_ID__ == 1)					\
170			asm("incq "__percpu_arg(0) : "+m" (var));	\
171		else if (pao_ID__ == -1)				\
172			asm("decq "__percpu_arg(0) : "+m" (var));	\
173		else							\
174			asm("addq %1, "__percpu_arg(0)			\
175			    : "+m" (var)				\
176			    : "re" ((pao_T__)(val)));			\
177		break;							\
178	default: __bad_percpu_size();					\
179	}								\
180} while (0)
181
182#define percpu_from_op(op, var)				\
183({							\
184	typeof(var) pfo_ret__;				\
185	switch (sizeof(var)) {				\
186	case 1:						\
187		asm(op "b "__percpu_arg(1)",%0"		\
188		    : "=q" (pfo_ret__)			\
189		    : "m" (var));			\
190		break;					\
191	case 2:						\
192		asm(op "w "__percpu_arg(1)",%0"		\
193		    : "=r" (pfo_ret__)			\
194		    : "m" (var));			\
195		break;					\
196	case 4:						\
197		asm(op "l "__percpu_arg(1)",%0"		\
198		    : "=r" (pfo_ret__)			\
199		    : "m" (var));			\
200		break;					\
201	case 8:						\
202		asm(op "q "__percpu_arg(1)",%0"		\
203		    : "=r" (pfo_ret__)			\
204		    : "m" (var));			\
205		break;					\
206	default: __bad_percpu_size();			\
207	}						\
208	pfo_ret__;					\
209})
210
211#define percpu_stable_op(op, var)			\
212({							\
213	typeof(var) pfo_ret__;				\
214	switch (sizeof(var)) {				\
215	case 1:						\
216		asm(op "b "__percpu_arg(P1)",%0"	\
217		    : "=q" (pfo_ret__)			\
218		    : "p" (&(var)));			\
219		break;					\
220	case 2:						\
221		asm(op "w "__percpu_arg(P1)",%0"	\
222		    : "=r" (pfo_ret__)			\
223		    : "p" (&(var)));			\
224		break;					\
225	case 4:						\
226		asm(op "l "__percpu_arg(P1)",%0"	\
227		    : "=r" (pfo_ret__)			\
228		    : "p" (&(var)));			\
229		break;					\
230	case 8:						\
231		asm(op "q "__percpu_arg(P1)",%0"	\
232		    : "=r" (pfo_ret__)			\
233		    : "p" (&(var)));			\
234		break;					\
235	default: __bad_percpu_size();			\
236	}						\
237	pfo_ret__;					\
238})
239
240#define percpu_unary_op(op, var)			\
241({							\
242	switch (sizeof(var)) {				\
243	case 1:						\
244		asm(op "b "__percpu_arg(0)		\
245		    : "+m" (var));			\
246		break;					\
247	case 2:						\
248		asm(op "w "__percpu_arg(0)		\
249		    : "+m" (var));			\
250		break;					\
251	case 4:						\
252		asm(op "l "__percpu_arg(0)		\
253		    : "+m" (var));			\
254		break;					\
255	case 8:						\
256		asm(op "q "__percpu_arg(0)		\
257		    : "+m" (var));			\
258		break;					\
259	default: __bad_percpu_size();			\
260	}						\
261})
262
263/*
264 * Add return operation
265 */
266#define percpu_add_return_op(var, val)					\
267({									\
268	typeof(var) paro_ret__ = val;					\
269	switch (sizeof(var)) {						\
270	case 1:								\
271		asm("xaddb %0, "__percpu_arg(1)				\
272			    : "+q" (paro_ret__), "+m" (var)		\
273			    : : "memory");				\
274		break;							\
275	case 2:								\
276		asm("xaddw %0, "__percpu_arg(1)				\
277			    : "+r" (paro_ret__), "+m" (var)		\
278			    : : "memory");				\
279		break;							\
280	case 4:								\
281		asm("xaddl %0, "__percpu_arg(1)				\
282			    : "+r" (paro_ret__), "+m" (var)		\
283			    : : "memory");				\
284		break;							\
285	case 8:								\
286		asm("xaddq %0, "__percpu_arg(1)				\
287			    : "+re" (paro_ret__), "+m" (var)		\
288			    : : "memory");				\
289		break;							\
290	default: __bad_percpu_size();					\
291	}								\
292	paro_ret__ += val;						\
293	paro_ret__;							\
294})
295
296/*
297 * xchg is implemented using cmpxchg without a lock prefix. xchg is
298 * expensive due to the implied lock prefix.  The processor cannot prefetch
299 * cachelines if xchg is used.
300 */
301#define percpu_xchg_op(var, nval)					\
302({									\
303	typeof(var) pxo_ret__;						\
304	typeof(var) pxo_new__ = (nval);					\
305	switch (sizeof(var)) {						\
306	case 1:								\
307		asm("\n\tmov "__percpu_arg(1)",%%al"			\
308		    "\n1:\tcmpxchgb %2, "__percpu_arg(1)		\
309		    "\n\tjnz 1b"					\
310			    : "=&a" (pxo_ret__), "+m" (var)		\
311			    : "q" (pxo_new__)				\
312			    : "memory");				\
313		break;							\
314	case 2:								\
315		asm("\n\tmov "__percpu_arg(1)",%%ax"			\
316		    "\n1:\tcmpxchgw %2, "__percpu_arg(1)		\
317		    "\n\tjnz 1b"					\
318			    : "=&a" (pxo_ret__), "+m" (var)		\
319			    : "r" (pxo_new__)				\
320			    : "memory");				\
321		break;							\
322	case 4:								\
323		asm("\n\tmov "__percpu_arg(1)",%%eax"			\
324		    "\n1:\tcmpxchgl %2, "__percpu_arg(1)		\
325		    "\n\tjnz 1b"					\
326			    : "=&a" (pxo_ret__), "+m" (var)		\
327			    : "r" (pxo_new__)				\
328			    : "memory");				\
329		break;							\
330	case 8:								\
331		asm("\n\tmov "__percpu_arg(1)",%%rax"			\
332		    "\n1:\tcmpxchgq %2, "__percpu_arg(1)		\
333		    "\n\tjnz 1b"					\
334			    : "=&a" (pxo_ret__), "+m" (var)		\
335			    : "r" (pxo_new__)				\
336			    : "memory");				\
337		break;							\
338	default: __bad_percpu_size();					\
339	}								\
340	pxo_ret__;							\
341})
342
343/*
344 * cmpxchg has no such implied lock semantics as a result it is much
345 * more efficient for cpu local operations.
346 */
347#define percpu_cmpxchg_op(var, oval, nval)				\
348({									\
349	typeof(var) pco_ret__;						\
350	typeof(var) pco_old__ = (oval);					\
351	typeof(var) pco_new__ = (nval);					\
352	switch (sizeof(var)) {						\
353	case 1:								\
354		asm("cmpxchgb %2, "__percpu_arg(1)			\
355			    : "=a" (pco_ret__), "+m" (var)		\
356			    : "q" (pco_new__), "0" (pco_old__)		\
357			    : "memory");				\
358		break;							\
359	case 2:								\
360		asm("cmpxchgw %2, "__percpu_arg(1)			\
361			    : "=a" (pco_ret__), "+m" (var)		\
362			    : "r" (pco_new__), "0" (pco_old__)		\
363			    : "memory");				\
364		break;							\
365	case 4:								\
366		asm("cmpxchgl %2, "__percpu_arg(1)			\
367			    : "=a" (pco_ret__), "+m" (var)		\
368			    : "r" (pco_new__), "0" (pco_old__)		\
369			    : "memory");				\
370		break;							\
371	case 8:								\
372		asm("cmpxchgq %2, "__percpu_arg(1)			\
373			    : "=a" (pco_ret__), "+m" (var)		\
374			    : "r" (pco_new__), "0" (pco_old__)		\
375			    : "memory");				\
376		break;							\
377	default: __bad_percpu_size();					\
378	}								\
379	pco_ret__;							\
380})
381
382/*
383 * this_cpu_read() makes gcc load the percpu variable every time it is
384 * accessed while this_cpu_read_stable() allows the value to be cached.
385 * this_cpu_read_stable() is more efficient and can be used if its value
386 * is guaranteed to be valid across cpus.  The current users include
387 * get_current() and get_thread_info() both of which are actually
388 * per-thread variables implemented as per-cpu variables and thus
389 * stable for the duration of the respective task.
390 */
391#define this_cpu_read_stable(var)	percpu_stable_op("mov", var)
392
393#define raw_cpu_read_1(pcp)		percpu_from_op("mov", pcp)
394#define raw_cpu_read_2(pcp)		percpu_from_op("mov", pcp)
395#define raw_cpu_read_4(pcp)		percpu_from_op("mov", pcp)
396
397#define raw_cpu_write_1(pcp, val)	percpu_to_op("mov", (pcp), val)
398#define raw_cpu_write_2(pcp, val)	percpu_to_op("mov", (pcp), val)
399#define raw_cpu_write_4(pcp, val)	percpu_to_op("mov", (pcp), val)
400#define raw_cpu_add_1(pcp, val)		percpu_add_op((pcp), val)
401#define raw_cpu_add_2(pcp, val)		percpu_add_op((pcp), val)
402#define raw_cpu_add_4(pcp, val)		percpu_add_op((pcp), val)
403#define raw_cpu_and_1(pcp, val)		percpu_to_op("and", (pcp), val)
404#define raw_cpu_and_2(pcp, val)		percpu_to_op("and", (pcp), val)
405#define raw_cpu_and_4(pcp, val)		percpu_to_op("and", (pcp), val)
406#define raw_cpu_or_1(pcp, val)		percpu_to_op("or", (pcp), val)
407#define raw_cpu_or_2(pcp, val)		percpu_to_op("or", (pcp), val)
408#define raw_cpu_or_4(pcp, val)		percpu_to_op("or", (pcp), val)
409#define raw_cpu_xchg_1(pcp, val)	percpu_xchg_op(pcp, val)
410#define raw_cpu_xchg_2(pcp, val)	percpu_xchg_op(pcp, val)
411#define raw_cpu_xchg_4(pcp, val)	percpu_xchg_op(pcp, val)
412
413#define this_cpu_read_1(pcp)		percpu_from_op("mov", pcp)
414#define this_cpu_read_2(pcp)		percpu_from_op("mov", pcp)
415#define this_cpu_read_4(pcp)		percpu_from_op("mov", pcp)
416#define this_cpu_write_1(pcp, val)	percpu_to_op("mov", (pcp), val)
417#define this_cpu_write_2(pcp, val)	percpu_to_op("mov", (pcp), val)
418#define this_cpu_write_4(pcp, val)	percpu_to_op("mov", (pcp), val)
419#define this_cpu_add_1(pcp, val)	percpu_add_op((pcp), val)
420#define this_cpu_add_2(pcp, val)	percpu_add_op((pcp), val)
421#define this_cpu_add_4(pcp, val)	percpu_add_op((pcp), val)
422#define this_cpu_and_1(pcp, val)	percpu_to_op("and", (pcp), val)
423#define this_cpu_and_2(pcp, val)	percpu_to_op("and", (pcp), val)
424#define this_cpu_and_4(pcp, val)	percpu_to_op("and", (pcp), val)
425#define this_cpu_or_1(pcp, val)		percpu_to_op("or", (pcp), val)
426#define this_cpu_or_2(pcp, val)		percpu_to_op("or", (pcp), val)
427#define this_cpu_or_4(pcp, val)		percpu_to_op("or", (pcp), val)
428#define this_cpu_xchg_1(pcp, nval)	percpu_xchg_op(pcp, nval)
429#define this_cpu_xchg_2(pcp, nval)	percpu_xchg_op(pcp, nval)
430#define this_cpu_xchg_4(pcp, nval)	percpu_xchg_op(pcp, nval)
431
432#define raw_cpu_add_return_1(pcp, val)		percpu_add_return_op(pcp, val)
433#define raw_cpu_add_return_2(pcp, val)		percpu_add_return_op(pcp, val)
434#define raw_cpu_add_return_4(pcp, val)		percpu_add_return_op(pcp, val)
435#define raw_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
436#define raw_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
437#define raw_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
438
439#define this_cpu_add_return_1(pcp, val)		percpu_add_return_op(pcp, val)
440#define this_cpu_add_return_2(pcp, val)		percpu_add_return_op(pcp, val)
441#define this_cpu_add_return_4(pcp, val)		percpu_add_return_op(pcp, val)
442#define this_cpu_cmpxchg_1(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
443#define this_cpu_cmpxchg_2(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
444#define this_cpu_cmpxchg_4(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
445
446#ifdef CONFIG_X86_CMPXCHG64
447#define percpu_cmpxchg8b_double(pcp1, pcp2, o1, o2, n1, n2)		\
448({									\
449	bool __ret;							\
450	typeof(pcp1) __o1 = (o1), __n1 = (n1);				\
451	typeof(pcp2) __o2 = (o2), __n2 = (n2);				\
452	asm volatile("cmpxchg8b "__percpu_arg(1)"\n\tsetz %0\n\t"	\
453		    : "=a" (__ret), "+m" (pcp1), "+m" (pcp2), "+d" (__o2) \
454		    :  "b" (__n1), "c" (__n2), "a" (__o1));		\
455	__ret;								\
456})
457
458#define raw_cpu_cmpxchg_double_4	percpu_cmpxchg8b_double
459#define this_cpu_cmpxchg_double_4	percpu_cmpxchg8b_double
460#endif /* CONFIG_X86_CMPXCHG64 */
461
462/*
463 * Per cpu atomic 64 bit operations are only available under 64 bit.
464 * 32 bit must fall back to generic operations.
465 */
466#ifdef CONFIG_X86_64
467#define raw_cpu_read_8(pcp)			percpu_from_op("mov", pcp)
468#define raw_cpu_write_8(pcp, val)		percpu_to_op("mov", (pcp), val)
469#define raw_cpu_add_8(pcp, val)			percpu_add_op((pcp), val)
470#define raw_cpu_and_8(pcp, val)			percpu_to_op("and", (pcp), val)
471#define raw_cpu_or_8(pcp, val)			percpu_to_op("or", (pcp), val)
472#define raw_cpu_add_return_8(pcp, val)		percpu_add_return_op(pcp, val)
473#define raw_cpu_xchg_8(pcp, nval)		percpu_xchg_op(pcp, nval)
474#define raw_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
475
476#define this_cpu_read_8(pcp)			percpu_from_op("mov", pcp)
477#define this_cpu_write_8(pcp, val)		percpu_to_op("mov", (pcp), val)
478#define this_cpu_add_8(pcp, val)		percpu_add_op((pcp), val)
479#define this_cpu_and_8(pcp, val)		percpu_to_op("and", (pcp), val)
480#define this_cpu_or_8(pcp, val)			percpu_to_op("or", (pcp), val)
481#define this_cpu_add_return_8(pcp, val)		percpu_add_return_op(pcp, val)
482#define this_cpu_xchg_8(pcp, nval)		percpu_xchg_op(pcp, nval)
483#define this_cpu_cmpxchg_8(pcp, oval, nval)	percpu_cmpxchg_op(pcp, oval, nval)
484
485/*
486 * Pretty complex macro to generate cmpxchg16 instruction.  The instruction
487 * is not supported on early AMD64 processors so we must be able to emulate
488 * it in software.  The address used in the cmpxchg16 instruction must be
489 * aligned to a 16 byte boundary.
490 */
491#define percpu_cmpxchg16b_double(pcp1, pcp2, o1, o2, n1, n2)		\
492({									\
493	bool __ret;							\
494	typeof(pcp1) __o1 = (o1), __n1 = (n1);				\
495	typeof(pcp2) __o2 = (o2), __n2 = (n2);				\
496	alternative_io("leaq %P1,%%rsi\n\tcall this_cpu_cmpxchg16b_emu\n\t", \
497		       "cmpxchg16b " __percpu_arg(1) "\n\tsetz %0\n\t",	\
498		       X86_FEATURE_CX16,				\
499		       ASM_OUTPUT2("=a" (__ret), "+m" (pcp1),		\
500				   "+m" (pcp2), "+d" (__o2)),		\
501		       "b" (__n1), "c" (__n2), "a" (__o1) : "rsi");	\
502	__ret;								\
503})
504
505#define raw_cpu_cmpxchg_double_8	percpu_cmpxchg16b_double
506#define this_cpu_cmpxchg_double_8	percpu_cmpxchg16b_double
507
508#endif
509
510/* This is not atomic against other CPUs -- CPU preemption needs to be off */
511#define x86_test_and_clear_bit_percpu(bit, var)				\
512({									\
513	int old__;							\
514	asm volatile("btr %2,"__percpu_arg(1)"\n\tsbbl %0,%0"		\
515		     : "=r" (old__), "+m" (var)				\
516		     : "dIr" (bit));					\
517	old__;								\
518})
519
520static __always_inline int x86_this_cpu_constant_test_bit(unsigned int nr,
521                        const unsigned long __percpu *addr)
522{
523	unsigned long __percpu *a = (unsigned long *)addr + nr / BITS_PER_LONG;
524
525#ifdef CONFIG_X86_64
526	return ((1UL << (nr % BITS_PER_LONG)) & raw_cpu_read_8(*a)) != 0;
527#else
528	return ((1UL << (nr % BITS_PER_LONG)) & raw_cpu_read_4(*a)) != 0;
529#endif
530}
531
532static inline int x86_this_cpu_variable_test_bit(int nr,
533                        const unsigned long __percpu *addr)
534{
535	int oldbit;
536
537	asm volatile("bt "__percpu_arg(2)",%1\n\t"
538			"sbb %0,%0"
539			: "=r" (oldbit)
540			: "m" (*(unsigned long *)addr), "Ir" (nr));
541
542	return oldbit;
543}
544
545#define x86_this_cpu_test_bit(nr, addr)			\
546	(__builtin_constant_p((nr))			\
547	 ? x86_this_cpu_constant_test_bit((nr), (addr))	\
548	 : x86_this_cpu_variable_test_bit((nr), (addr)))
549
550
551#include <asm-generic/percpu.h>
552
553/* We can use this directly for local CPU (faster). */
554DECLARE_PER_CPU_READ_MOSTLY(unsigned long, this_cpu_off);
555
556#endif /* !__ASSEMBLY__ */
557
558#ifdef CONFIG_SMP
559
560/*
561 * Define the "EARLY_PER_CPU" macros.  These are used for some per_cpu
562 * variables that are initialized and accessed before there are per_cpu
563 * areas allocated.
564 */
565
566#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)			\
567	DEFINE_PER_CPU(_type, _name) = _initvalue;			\
568	__typeof__(_type) _name##_early_map[NR_CPUS] __initdata =	\
569				{ [0 ... NR_CPUS-1] = _initvalue };	\
570	__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
571
572#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue)	\
573	DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue;		\
574	__typeof__(_type) _name##_early_map[NR_CPUS] __initdata =	\
575				{ [0 ... NR_CPUS-1] = _initvalue };	\
576	__typeof__(_type) *_name##_early_ptr __refdata = _name##_early_map
577
578#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
579	EXPORT_PER_CPU_SYMBOL(_name)
580
581#define DECLARE_EARLY_PER_CPU(_type, _name)			\
582	DECLARE_PER_CPU(_type, _name);				\
583	extern __typeof__(_type) *_name##_early_ptr;		\
584	extern __typeof__(_type)  _name##_early_map[]
585
586#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name)		\
587	DECLARE_PER_CPU_READ_MOSTLY(_type, _name);		\
588	extern __typeof__(_type) *_name##_early_ptr;		\
589	extern __typeof__(_type)  _name##_early_map[]
590
591#define	early_per_cpu_ptr(_name) (_name##_early_ptr)
592#define	early_per_cpu_map(_name, _idx) (_name##_early_map[_idx])
593#define	early_per_cpu(_name, _cpu) 				\
594	*(early_per_cpu_ptr(_name) ?				\
595		&early_per_cpu_ptr(_name)[_cpu] :		\
596		&per_cpu(_name, _cpu))
597
598#else	/* !CONFIG_SMP */
599#define	DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)		\
600	DEFINE_PER_CPU(_type, _name) = _initvalue
601
602#define DEFINE_EARLY_PER_CPU_READ_MOSTLY(_type, _name, _initvalue)	\
603	DEFINE_PER_CPU_READ_MOSTLY(_type, _name) = _initvalue
604
605#define EXPORT_EARLY_PER_CPU_SYMBOL(_name)			\
606	EXPORT_PER_CPU_SYMBOL(_name)
607
608#define DECLARE_EARLY_PER_CPU(_type, _name)			\
609	DECLARE_PER_CPU(_type, _name)
610
611#define DECLARE_EARLY_PER_CPU_READ_MOSTLY(_type, _name)		\
612	DECLARE_PER_CPU_READ_MOSTLY(_type, _name)
613
614#define	early_per_cpu(_name, _cpu) per_cpu(_name, _cpu)
615#define	early_per_cpu_ptr(_name) NULL
616/* no early_per_cpu_map() */
617
618#endif	/* !CONFIG_SMP */
619
620#endif /* _ASM_X86_PERCPU_H */
621