1/*  Generic MTRR (Memory Type Range Register) driver.
2
3    Copyright (C) 1997-2000  Richard Gooch
4    Copyright (c) 2002	     Patrick Mochel
5
6    This library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Library General Public
8    License as published by the Free Software Foundation; either
9    version 2 of the License, or (at your option) any later version.
10
11    This library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Library General Public License for more details.
15
16    You should have received a copy of the GNU Library General Public
17    License along with this library; if not, write to the Free
18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20    Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21    The postal address is:
22      Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24    Source: "Pentium Pro Family Developer's Manual, Volume 3:
25    Operating System Writer's Guide" (Intel document number 242692),
26    section 11.11.7
27
28    This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29    on 6-7 March 2002.
30    Source: Intel Architecture Software Developers Manual, Volume 3:
31    System Programming Guide; Section 9.11. (1997 edition - PPro).
32*/
33
34#define DEBUG
35
36#include <linux/types.h> /* FIXME: kvm_para.h needs this */
37
38#include <linux/stop_machine.h>
39#include <linux/kvm_para.h>
40#include <linux/uaccess.h>
41#include <linux/module.h>
42#include <linux/mutex.h>
43#include <linux/init.h>
44#include <linux/sort.h>
45#include <linux/cpu.h>
46#include <linux/pci.h>
47#include <linux/smp.h>
48#include <linux/syscore_ops.h>
49
50#include <asm/processor.h>
51#include <asm/e820.h>
52#include <asm/mtrr.h>
53#include <asm/msr.h>
54#include <asm/pat.h>
55
56#include "mtrr.h"
57
58/* arch_phys_wc_add returns an MTRR register index plus this offset. */
59#define MTRR_TO_PHYS_WC_OFFSET 1000
60
61u32 num_var_ranges;
62
63unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
64static DEFINE_MUTEX(mtrr_mutex);
65
66u64 size_or_mask, size_and_mask;
67static bool mtrr_aps_delayed_init;
68
69static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
70
71const struct mtrr_ops *mtrr_if;
72
73static void set_mtrr(unsigned int reg, unsigned long base,
74		     unsigned long size, mtrr_type type);
75
76void set_mtrr_ops(const struct mtrr_ops *ops)
77{
78	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
79		mtrr_ops[ops->vendor] = ops;
80}
81
82/*  Returns non-zero if we have the write-combining memory type  */
83static int have_wrcomb(void)
84{
85	struct pci_dev *dev;
86
87	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
88	if (dev != NULL) {
89		/*
90		 * ServerWorks LE chipsets < rev 6 have problems with
91		 * write-combining. Don't allow it and leave room for other
92		 * chipsets to be tagged
93		 */
94		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
95		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
96		    dev->revision <= 5) {
97			pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
98			pci_dev_put(dev);
99			return 0;
100		}
101		/*
102		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
103		 * write combining memory may resulting in data corruption
104		 */
105		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
106		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
107			pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
108			pci_dev_put(dev);
109			return 0;
110		}
111		pci_dev_put(dev);
112	}
113	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
114}
115
116/*  This function returns the number of variable MTRRs  */
117static void __init set_num_var_ranges(void)
118{
119	unsigned long config = 0, dummy;
120
121	if (use_intel())
122		rdmsr(MSR_MTRRcap, config, dummy);
123	else if (is_cpu(AMD))
124		config = 2;
125	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
126		config = 8;
127
128	num_var_ranges = config & 0xff;
129}
130
131static void __init init_table(void)
132{
133	int i, max;
134
135	max = num_var_ranges;
136	for (i = 0; i < max; i++)
137		mtrr_usage_table[i] = 1;
138}
139
140struct set_mtrr_data {
141	unsigned long	smp_base;
142	unsigned long	smp_size;
143	unsigned int	smp_reg;
144	mtrr_type	smp_type;
145};
146
147/**
148 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
149 * by all the CPUs.
150 * @info: pointer to mtrr configuration data
151 *
152 * Returns nothing.
153 */
154static int mtrr_rendezvous_handler(void *info)
155{
156	struct set_mtrr_data *data = info;
157
158	/*
159	 * We use this same function to initialize the mtrrs during boot,
160	 * resume, runtime cpu online and on an explicit request to set a
161	 * specific MTRR.
162	 *
163	 * During boot or suspend, the state of the boot cpu's mtrrs has been
164	 * saved, and we want to replicate that across all the cpus that come
165	 * online (either at the end of boot or resume or during a runtime cpu
166	 * online). If we're doing that, @reg is set to something special and on
167	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
168	 * started the boot/resume sequence, this might be a duplicate
169	 * set_all()).
170	 */
171	if (data->smp_reg != ~0U) {
172		mtrr_if->set(data->smp_reg, data->smp_base,
173			     data->smp_size, data->smp_type);
174	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
175		mtrr_if->set_all();
176	}
177	return 0;
178}
179
180static inline int types_compatible(mtrr_type type1, mtrr_type type2)
181{
182	return type1 == MTRR_TYPE_UNCACHABLE ||
183	       type2 == MTRR_TYPE_UNCACHABLE ||
184	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
185	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
186}
187
188/**
189 * set_mtrr - update mtrrs on all processors
190 * @reg:	mtrr in question
191 * @base:	mtrr base
192 * @size:	mtrr size
193 * @type:	mtrr type
194 *
195 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
196 *
197 * 1. Queue work to do the following on all processors:
198 * 2. Disable Interrupts
199 * 3. Wait for all procs to do so
200 * 4. Enter no-fill cache mode
201 * 5. Flush caches
202 * 6. Clear PGE bit
203 * 7. Flush all TLBs
204 * 8. Disable all range registers
205 * 9. Update the MTRRs
206 * 10. Enable all range registers
207 * 11. Flush all TLBs and caches again
208 * 12. Enter normal cache mode and reenable caching
209 * 13. Set PGE
210 * 14. Wait for buddies to catch up
211 * 15. Enable interrupts.
212 *
213 * What does that mean for us? Well, stop_machine() will ensure that
214 * the rendezvous handler is started on each CPU. And in lockstep they
215 * do the state transition of disabling interrupts, updating MTRR's
216 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
217 * callback and let them take care of it.) and enabling interrupts.
218 *
219 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
220 * becomes nops.
221 */
222static void
223set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
224{
225	struct set_mtrr_data data = { .smp_reg = reg,
226				      .smp_base = base,
227				      .smp_size = size,
228				      .smp_type = type
229				    };
230
231	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
232}
233
234static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
235				      unsigned long size, mtrr_type type)
236{
237	struct set_mtrr_data data = { .smp_reg = reg,
238				      .smp_base = base,
239				      .smp_size = size,
240				      .smp_type = type
241				    };
242
243	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
244				       cpu_callout_mask);
245}
246
247/**
248 * mtrr_add_page - Add a memory type region
249 * @base: Physical base address of region in pages (in units of 4 kB!)
250 * @size: Physical size of region in pages (4 kB)
251 * @type: Type of MTRR desired
252 * @increment: If this is true do usage counting on the region
253 *
254 * Memory type region registers control the caching on newer Intel and
255 * non Intel processors. This function allows drivers to request an
256 * MTRR is added. The details and hardware specifics of each processor's
257 * implementation are hidden from the caller, but nevertheless the
258 * caller should expect to need to provide a power of two size on an
259 * equivalent power of two boundary.
260 *
261 * If the region cannot be added either because all regions are in use
262 * or the CPU cannot support it a negative value is returned. On success
263 * the register number for this entry is returned, but should be treated
264 * as a cookie only.
265 *
266 * On a multiprocessor machine the changes are made to all processors.
267 * This is required on x86 by the Intel processors.
268 *
269 * The available types are
270 *
271 * %MTRR_TYPE_UNCACHABLE - No caching
272 *
273 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
274 *
275 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
276 *
277 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
278 *
279 * BUGS: Needs a quiet flag for the cases where drivers do not mind
280 * failures and do not wish system log messages to be sent.
281 */
282int mtrr_add_page(unsigned long base, unsigned long size,
283		  unsigned int type, bool increment)
284{
285	unsigned long lbase, lsize;
286	int i, replace, error;
287	mtrr_type ltype;
288
289	if (!mtrr_if)
290		return -ENXIO;
291
292	error = mtrr_if->validate_add_page(base, size, type);
293	if (error)
294		return error;
295
296	if (type >= MTRR_NUM_TYPES) {
297		pr_warning("mtrr: type: %u invalid\n", type);
298		return -EINVAL;
299	}
300
301	/* If the type is WC, check that this processor supports it */
302	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
303		pr_warning("mtrr: your processor doesn't support write-combining\n");
304		return -ENOSYS;
305	}
306
307	if (!size) {
308		pr_warning("mtrr: zero sized request\n");
309		return -EINVAL;
310	}
311
312	if ((base | (base + size - 1)) >>
313	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
314		pr_warning("mtrr: base or size exceeds the MTRR width\n");
315		return -EINVAL;
316	}
317
318	error = -EINVAL;
319	replace = -1;
320
321	/* No CPU hotplug when we change MTRR entries */
322	get_online_cpus();
323
324	/* Search for existing MTRR  */
325	mutex_lock(&mtrr_mutex);
326	for (i = 0; i < num_var_ranges; ++i) {
327		mtrr_if->get(i, &lbase, &lsize, &ltype);
328		if (!lsize || base > lbase + lsize - 1 ||
329		    base + size - 1 < lbase)
330			continue;
331		/*
332		 * At this point we know there is some kind of
333		 * overlap/enclosure
334		 */
335		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
336			if (base <= lbase &&
337			    base + size - 1 >= lbase + lsize - 1) {
338				/*  New region encloses an existing region  */
339				if (type == ltype) {
340					replace = replace == -1 ? i : -2;
341					continue;
342				} else if (types_compatible(type, ltype))
343					continue;
344			}
345			pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
346				" 0x%lx000,0x%lx000\n", base, size, lbase,
347				lsize);
348			goto out;
349		}
350		/* New region is enclosed by an existing region */
351		if (ltype != type) {
352			if (types_compatible(type, ltype))
353				continue;
354			pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
355				base, size, mtrr_attrib_to_str(ltype),
356				mtrr_attrib_to_str(type));
357			goto out;
358		}
359		if (increment)
360			++mtrr_usage_table[i];
361		error = i;
362		goto out;
363	}
364	/* Search for an empty MTRR */
365	i = mtrr_if->get_free_region(base, size, replace);
366	if (i >= 0) {
367		set_mtrr(i, base, size, type);
368		if (likely(replace < 0)) {
369			mtrr_usage_table[i] = 1;
370		} else {
371			mtrr_usage_table[i] = mtrr_usage_table[replace];
372			if (increment)
373				mtrr_usage_table[i]++;
374			if (unlikely(replace != i)) {
375				set_mtrr(replace, 0, 0, 0);
376				mtrr_usage_table[replace] = 0;
377			}
378		}
379	} else {
380		pr_info("mtrr: no more MTRRs available\n");
381	}
382	error = i;
383 out:
384	mutex_unlock(&mtrr_mutex);
385	put_online_cpus();
386	return error;
387}
388
389static int mtrr_check(unsigned long base, unsigned long size)
390{
391	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
392		pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
393		pr_debug("mtrr: size: 0x%lx  base: 0x%lx\n", size, base);
394		dump_stack();
395		return -1;
396	}
397	return 0;
398}
399
400/**
401 * mtrr_add - Add a memory type region
402 * @base: Physical base address of region
403 * @size: Physical size of region
404 * @type: Type of MTRR desired
405 * @increment: If this is true do usage counting on the region
406 *
407 * Memory type region registers control the caching on newer Intel and
408 * non Intel processors. This function allows drivers to request an
409 * MTRR is added. The details and hardware specifics of each processor's
410 * implementation are hidden from the caller, but nevertheless the
411 * caller should expect to need to provide a power of two size on an
412 * equivalent power of two boundary.
413 *
414 * If the region cannot be added either because all regions are in use
415 * or the CPU cannot support it a negative value is returned. On success
416 * the register number for this entry is returned, but should be treated
417 * as a cookie only.
418 *
419 * On a multiprocessor machine the changes are made to all processors.
420 * This is required on x86 by the Intel processors.
421 *
422 * The available types are
423 *
424 * %MTRR_TYPE_UNCACHABLE - No caching
425 *
426 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
427 *
428 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
429 *
430 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
431 *
432 * BUGS: Needs a quiet flag for the cases where drivers do not mind
433 * failures and do not wish system log messages to be sent.
434 */
435int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
436	     bool increment)
437{
438	if (mtrr_check(base, size))
439		return -EINVAL;
440	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
441			     increment);
442}
443EXPORT_SYMBOL(mtrr_add);
444
445/**
446 * mtrr_del_page - delete a memory type region
447 * @reg: Register returned by mtrr_add
448 * @base: Physical base address
449 * @size: Size of region
450 *
451 * If register is supplied then base and size are ignored. This is
452 * how drivers should call it.
453 *
454 * Releases an MTRR region. If the usage count drops to zero the
455 * register is freed and the region returns to default state.
456 * On success the register is returned, on failure a negative error
457 * code.
458 */
459int mtrr_del_page(int reg, unsigned long base, unsigned long size)
460{
461	int i, max;
462	mtrr_type ltype;
463	unsigned long lbase, lsize;
464	int error = -EINVAL;
465
466	if (!mtrr_if)
467		return -ENXIO;
468
469	max = num_var_ranges;
470	/* No CPU hotplug when we change MTRR entries */
471	get_online_cpus();
472	mutex_lock(&mtrr_mutex);
473	if (reg < 0) {
474		/*  Search for existing MTRR  */
475		for (i = 0; i < max; ++i) {
476			mtrr_if->get(i, &lbase, &lsize, &ltype);
477			if (lbase == base && lsize == size) {
478				reg = i;
479				break;
480			}
481		}
482		if (reg < 0) {
483			pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
484				 base, size);
485			goto out;
486		}
487	}
488	if (reg >= max) {
489		pr_warning("mtrr: register: %d too big\n", reg);
490		goto out;
491	}
492	mtrr_if->get(reg, &lbase, &lsize, &ltype);
493	if (lsize < 1) {
494		pr_warning("mtrr: MTRR %d not used\n", reg);
495		goto out;
496	}
497	if (mtrr_usage_table[reg] < 1) {
498		pr_warning("mtrr: reg: %d has count=0\n", reg);
499		goto out;
500	}
501	if (--mtrr_usage_table[reg] < 1)
502		set_mtrr(reg, 0, 0, 0);
503	error = reg;
504 out:
505	mutex_unlock(&mtrr_mutex);
506	put_online_cpus();
507	return error;
508}
509
510/**
511 * mtrr_del - delete a memory type region
512 * @reg: Register returned by mtrr_add
513 * @base: Physical base address
514 * @size: Size of region
515 *
516 * If register is supplied then base and size are ignored. This is
517 * how drivers should call it.
518 *
519 * Releases an MTRR region. If the usage count drops to zero the
520 * register is freed and the region returns to default state.
521 * On success the register is returned, on failure a negative error
522 * code.
523 */
524int mtrr_del(int reg, unsigned long base, unsigned long size)
525{
526	if (mtrr_check(base, size))
527		return -EINVAL;
528	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
529}
530EXPORT_SYMBOL(mtrr_del);
531
532/**
533 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
534 * @base: Physical base address
535 * @size: Size of region
536 *
537 * If PAT is available, this does nothing.  If PAT is unavailable, it
538 * attempts to add a WC MTRR covering size bytes starting at base and
539 * logs an error if this fails.
540 *
541 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
542 * but drivers should not try to interpret that return value.
543 */
544int arch_phys_wc_add(unsigned long base, unsigned long size)
545{
546	int ret;
547
548	if (pat_enabled)
549		return 0;  /* Success!  (We don't need to do anything.) */
550
551	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
552	if (ret < 0) {
553		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
554			(void *)base, (void *)(base + size - 1));
555		return ret;
556	}
557	return ret + MTRR_TO_PHYS_WC_OFFSET;
558}
559EXPORT_SYMBOL(arch_phys_wc_add);
560
561/*
562 * arch_phys_wc_del - undoes arch_phys_wc_add
563 * @handle: Return value from arch_phys_wc_add
564 *
565 * This cleans up after mtrr_add_wc_if_needed.
566 *
567 * The API guarantees that mtrr_del_wc_if_needed(error code) and
568 * mtrr_del_wc_if_needed(0) do nothing.
569 */
570void arch_phys_wc_del(int handle)
571{
572	if (handle >= 1) {
573		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
574		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
575	}
576}
577EXPORT_SYMBOL(arch_phys_wc_del);
578
579/*
580 * phys_wc_to_mtrr_index - translates arch_phys_wc_add's return value
581 * @handle: Return value from arch_phys_wc_add
582 *
583 * This will turn the return value from arch_phys_wc_add into an mtrr
584 * index suitable for debugging.
585 *
586 * Note: There is no legitimate use for this function, except possibly
587 * in printk line.  Alas there is an illegitimate use in some ancient
588 * drm ioctls.
589 */
590int phys_wc_to_mtrr_index(int handle)
591{
592	if (handle < MTRR_TO_PHYS_WC_OFFSET)
593		return -1;
594	else
595		return handle - MTRR_TO_PHYS_WC_OFFSET;
596}
597EXPORT_SYMBOL_GPL(phys_wc_to_mtrr_index);
598
599/*
600 * HACK ALERT!
601 * These should be called implicitly, but we can't yet until all the initcall
602 * stuff is done...
603 */
604static void __init init_ifs(void)
605{
606#ifndef CONFIG_X86_64
607	amd_init_mtrr();
608	cyrix_init_mtrr();
609	centaur_init_mtrr();
610#endif
611}
612
613/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
614 * MTRR driver doesn't require this
615 */
616struct mtrr_value {
617	mtrr_type	ltype;
618	unsigned long	lbase;
619	unsigned long	lsize;
620};
621
622static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
623
624static int mtrr_save(void)
625{
626	int i;
627
628	for (i = 0; i < num_var_ranges; i++) {
629		mtrr_if->get(i, &mtrr_value[i].lbase,
630				&mtrr_value[i].lsize,
631				&mtrr_value[i].ltype);
632	}
633	return 0;
634}
635
636static void mtrr_restore(void)
637{
638	int i;
639
640	for (i = 0; i < num_var_ranges; i++) {
641		if (mtrr_value[i].lsize) {
642			set_mtrr(i, mtrr_value[i].lbase,
643				    mtrr_value[i].lsize,
644				    mtrr_value[i].ltype);
645		}
646	}
647}
648
649
650
651static struct syscore_ops mtrr_syscore_ops = {
652	.suspend	= mtrr_save,
653	.resume		= mtrr_restore,
654};
655
656int __initdata changed_by_mtrr_cleanup;
657
658#define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
659/**
660 * mtrr_bp_init - initialize mtrrs on the boot CPU
661 *
662 * This needs to be called early; before any of the other CPUs are
663 * initialized (i.e. before smp_init()).
664 *
665 */
666void __init mtrr_bp_init(void)
667{
668	u32 phys_addr;
669
670	init_ifs();
671
672	phys_addr = 32;
673
674	if (cpu_has_mtrr) {
675		mtrr_if = &generic_mtrr_ops;
676		size_or_mask = SIZE_OR_MASK_BITS(36);
677		size_and_mask = 0x00f00000;
678		phys_addr = 36;
679
680		/*
681		 * This is an AMD specific MSR, but we assume(hope?) that
682		 * Intel will implement it too when they extend the address
683		 * bus of the Xeon.
684		 */
685		if (cpuid_eax(0x80000000) >= 0x80000008) {
686			phys_addr = cpuid_eax(0x80000008) & 0xff;
687			/* CPUID workaround for Intel 0F33/0F34 CPU */
688			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
689			    boot_cpu_data.x86 == 0xF &&
690			    boot_cpu_data.x86_model == 0x3 &&
691			    (boot_cpu_data.x86_mask == 0x3 ||
692			     boot_cpu_data.x86_mask == 0x4))
693				phys_addr = 36;
694
695			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
696			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
697		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
698			   boot_cpu_data.x86 == 6) {
699			/*
700			 * VIA C* family have Intel style MTRRs,
701			 * but don't support PAE
702			 */
703			size_or_mask = SIZE_OR_MASK_BITS(32);
704			size_and_mask = 0;
705			phys_addr = 32;
706		}
707	} else {
708		switch (boot_cpu_data.x86_vendor) {
709		case X86_VENDOR_AMD:
710			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
711				/* Pre-Athlon (K6) AMD CPU MTRRs */
712				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
713				size_or_mask = SIZE_OR_MASK_BITS(32);
714				size_and_mask = 0;
715			}
716			break;
717		case X86_VENDOR_CENTAUR:
718			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
719				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
720				size_or_mask = SIZE_OR_MASK_BITS(32);
721				size_and_mask = 0;
722			}
723			break;
724		case X86_VENDOR_CYRIX:
725			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
726				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
727				size_or_mask = SIZE_OR_MASK_BITS(32);
728				size_and_mask = 0;
729			}
730			break;
731		default:
732			break;
733		}
734	}
735
736	if (mtrr_if) {
737		set_num_var_ranges();
738		init_table();
739		if (use_intel()) {
740			get_mtrr_state();
741
742			if (mtrr_cleanup(phys_addr)) {
743				changed_by_mtrr_cleanup = 1;
744				mtrr_if->set_all();
745			}
746		}
747	}
748}
749
750void mtrr_ap_init(void)
751{
752	if (!use_intel() || mtrr_aps_delayed_init)
753		return;
754	/*
755	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
756	 * changed, but this routine will be called in cpu boot time,
757	 * holding the lock breaks it.
758	 *
759	 * This routine is called in two cases:
760	 *
761	 *   1. very earily time of software resume, when there absolutely
762	 *      isn't mtrr entry changes;
763	 *
764	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
765	 *      lock to prevent mtrr entry changes
766	 */
767	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
768}
769
770/**
771 * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
772 */
773void mtrr_save_state(void)
774{
775	int first_cpu;
776
777	get_online_cpus();
778	first_cpu = cpumask_first(cpu_online_mask);
779	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
780	put_online_cpus();
781}
782
783void set_mtrr_aps_delayed_init(void)
784{
785	if (!use_intel())
786		return;
787
788	mtrr_aps_delayed_init = true;
789}
790
791/*
792 * Delayed MTRR initialization for all AP's
793 */
794void mtrr_aps_init(void)
795{
796	if (!use_intel())
797		return;
798
799	/*
800	 * Check if someone has requested the delay of AP MTRR initialization,
801	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
802	 * then we are done.
803	 */
804	if (!mtrr_aps_delayed_init)
805		return;
806
807	set_mtrr(~0U, 0, 0, 0);
808	mtrr_aps_delayed_init = false;
809}
810
811void mtrr_bp_restore(void)
812{
813	if (!use_intel())
814		return;
815
816	mtrr_if->set_all();
817}
818
819static int __init mtrr_init_finialize(void)
820{
821	if (!mtrr_if)
822		return 0;
823
824	if (use_intel()) {
825		if (!changed_by_mtrr_cleanup)
826			mtrr_state_warn();
827		return 0;
828	}
829
830	/*
831	 * The CPU has no MTRR and seems to not support SMP. They have
832	 * specific drivers, we use a tricky method to support
833	 * suspend/resume for them.
834	 *
835	 * TBD: is there any system with such CPU which supports
836	 * suspend/resume? If no, we should remove the code.
837	 */
838	register_syscore_ops(&mtrr_syscore_ops);
839
840	return 0;
841}
842subsys_initcall(mtrr_init_finialize);
843