1/*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/watchdog.h>
16
17#include <asm/cpufeature.h>
18#include <asm/hardirq.h>
19#include <asm/apic.h>
20
21#include "perf_event.h"
22
23/*
24 * Intel PerfMon, used on Core and later.
25 */
26static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27{
28	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
29	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
30	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
31	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
32	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
33	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
34	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
35	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
36};
37
38static struct event_constraint intel_core_event_constraints[] __read_mostly =
39{
40	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46	EVENT_CONSTRAINT_END
47};
48
49static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50{
51	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64	EVENT_CONSTRAINT_END
65};
66
67static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68{
69	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80	EVENT_CONSTRAINT_END
81};
82
83static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84{
85	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88	EVENT_EXTRA_END
89};
90
91static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92{
93	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100	EVENT_CONSTRAINT_END
101};
102
103static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104{
105	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123	EVENT_CONSTRAINT_END
124};
125
126static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127{
128	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147	EVENT_CONSTRAINT_END
148};
149
150static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151{
152	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156	EVENT_EXTRA_END
157};
158
159static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160{
161	EVENT_CONSTRAINT_END
162};
163
164static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165{
166	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169	EVENT_CONSTRAINT_END
170};
171
172static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173{
174	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177	EVENT_CONSTRAINT_END
178};
179
180static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
181	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
182	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
183	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
184	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
185	EVENT_EXTRA_END
186};
187
188static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
189	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
191	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
192	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193	EVENT_EXTRA_END
194};
195
196EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
197EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
198EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
199
200struct attribute *nhm_events_attrs[] = {
201	EVENT_PTR(mem_ld_nhm),
202	NULL,
203};
204
205struct attribute *snb_events_attrs[] = {
206	EVENT_PTR(mem_ld_snb),
207	EVENT_PTR(mem_st_snb),
208	NULL,
209};
210
211static struct event_constraint intel_hsw_event_constraints[] = {
212	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
213	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
214	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
215	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
216	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
217	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
218	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
219	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
220	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
221	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
222	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
223	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
224
225	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
226	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
227	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
228	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
229
230	EVENT_CONSTRAINT_END
231};
232
233struct event_constraint intel_bdw_event_constraints[] = {
234	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
235	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
236	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
237	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
238	INTEL_EVENT_CONSTRAINT(0xa3, 0x4),	/* CYCLE_ACTIVITY.* */
239	EVENT_CONSTRAINT_END
240};
241
242static u64 intel_pmu_event_map(int hw_event)
243{
244	return intel_perfmon_event_map[hw_event];
245}
246
247#define SNB_DMND_DATA_RD	(1ULL << 0)
248#define SNB_DMND_RFO		(1ULL << 1)
249#define SNB_DMND_IFETCH		(1ULL << 2)
250#define SNB_DMND_WB		(1ULL << 3)
251#define SNB_PF_DATA_RD		(1ULL << 4)
252#define SNB_PF_RFO		(1ULL << 5)
253#define SNB_PF_IFETCH		(1ULL << 6)
254#define SNB_LLC_DATA_RD		(1ULL << 7)
255#define SNB_LLC_RFO		(1ULL << 8)
256#define SNB_LLC_IFETCH		(1ULL << 9)
257#define SNB_BUS_LOCKS		(1ULL << 10)
258#define SNB_STRM_ST		(1ULL << 11)
259#define SNB_OTHER		(1ULL << 15)
260#define SNB_RESP_ANY		(1ULL << 16)
261#define SNB_NO_SUPP		(1ULL << 17)
262#define SNB_LLC_HITM		(1ULL << 18)
263#define SNB_LLC_HITE		(1ULL << 19)
264#define SNB_LLC_HITS		(1ULL << 20)
265#define SNB_LLC_HITF		(1ULL << 21)
266#define SNB_LOCAL		(1ULL << 22)
267#define SNB_REMOTE		(0xffULL << 23)
268#define SNB_SNP_NONE		(1ULL << 31)
269#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
270#define SNB_SNP_MISS		(1ULL << 33)
271#define SNB_NO_FWD		(1ULL << 34)
272#define SNB_SNP_FWD		(1ULL << 35)
273#define SNB_HITM		(1ULL << 36)
274#define SNB_NON_DRAM		(1ULL << 37)
275
276#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
277#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
278#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
279
280#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
281				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
282				 SNB_HITM)
283
284#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
285#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
286
287#define SNB_L3_ACCESS		SNB_RESP_ANY
288#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
289
290static __initconst const u64 snb_hw_cache_extra_regs
291				[PERF_COUNT_HW_CACHE_MAX]
292				[PERF_COUNT_HW_CACHE_OP_MAX]
293				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
294{
295 [ C(LL  ) ] = {
296	[ C(OP_READ) ] = {
297		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
298		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
299	},
300	[ C(OP_WRITE) ] = {
301		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
302		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
303	},
304	[ C(OP_PREFETCH) ] = {
305		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
306		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
307	},
308 },
309 [ C(NODE) ] = {
310	[ C(OP_READ) ] = {
311		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
312		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
313	},
314	[ C(OP_WRITE) ] = {
315		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
316		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
317	},
318	[ C(OP_PREFETCH) ] = {
319		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
320		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
321	},
322 },
323};
324
325static __initconst const u64 snb_hw_cache_event_ids
326				[PERF_COUNT_HW_CACHE_MAX]
327				[PERF_COUNT_HW_CACHE_OP_MAX]
328				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
329{
330 [ C(L1D) ] = {
331	[ C(OP_READ) ] = {
332		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
333		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
334	},
335	[ C(OP_WRITE) ] = {
336		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
337		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
338	},
339	[ C(OP_PREFETCH) ] = {
340		[ C(RESULT_ACCESS) ] = 0x0,
341		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
342	},
343 },
344 [ C(L1I ) ] = {
345	[ C(OP_READ) ] = {
346		[ C(RESULT_ACCESS) ] = 0x0,
347		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
348	},
349	[ C(OP_WRITE) ] = {
350		[ C(RESULT_ACCESS) ] = -1,
351		[ C(RESULT_MISS)   ] = -1,
352	},
353	[ C(OP_PREFETCH) ] = {
354		[ C(RESULT_ACCESS) ] = 0x0,
355		[ C(RESULT_MISS)   ] = 0x0,
356	},
357 },
358 [ C(LL  ) ] = {
359	[ C(OP_READ) ] = {
360		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
361		[ C(RESULT_ACCESS) ] = 0x01b7,
362		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
363		[ C(RESULT_MISS)   ] = 0x01b7,
364	},
365	[ C(OP_WRITE) ] = {
366		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
367		[ C(RESULT_ACCESS) ] = 0x01b7,
368		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
369		[ C(RESULT_MISS)   ] = 0x01b7,
370	},
371	[ C(OP_PREFETCH) ] = {
372		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
373		[ C(RESULT_ACCESS) ] = 0x01b7,
374		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
375		[ C(RESULT_MISS)   ] = 0x01b7,
376	},
377 },
378 [ C(DTLB) ] = {
379	[ C(OP_READ) ] = {
380		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
381		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
382	},
383	[ C(OP_WRITE) ] = {
384		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
385		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
386	},
387	[ C(OP_PREFETCH) ] = {
388		[ C(RESULT_ACCESS) ] = 0x0,
389		[ C(RESULT_MISS)   ] = 0x0,
390	},
391 },
392 [ C(ITLB) ] = {
393	[ C(OP_READ) ] = {
394		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
395		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
396	},
397	[ C(OP_WRITE) ] = {
398		[ C(RESULT_ACCESS) ] = -1,
399		[ C(RESULT_MISS)   ] = -1,
400	},
401	[ C(OP_PREFETCH) ] = {
402		[ C(RESULT_ACCESS) ] = -1,
403		[ C(RESULT_MISS)   ] = -1,
404	},
405 },
406 [ C(BPU ) ] = {
407	[ C(OP_READ) ] = {
408		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
409		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
410	},
411	[ C(OP_WRITE) ] = {
412		[ C(RESULT_ACCESS) ] = -1,
413		[ C(RESULT_MISS)   ] = -1,
414	},
415	[ C(OP_PREFETCH) ] = {
416		[ C(RESULT_ACCESS) ] = -1,
417		[ C(RESULT_MISS)   ] = -1,
418	},
419 },
420 [ C(NODE) ] = {
421	[ C(OP_READ) ] = {
422		[ C(RESULT_ACCESS) ] = 0x01b7,
423		[ C(RESULT_MISS)   ] = 0x01b7,
424	},
425	[ C(OP_WRITE) ] = {
426		[ C(RESULT_ACCESS) ] = 0x01b7,
427		[ C(RESULT_MISS)   ] = 0x01b7,
428	},
429	[ C(OP_PREFETCH) ] = {
430		[ C(RESULT_ACCESS) ] = 0x01b7,
431		[ C(RESULT_MISS)   ] = 0x01b7,
432	},
433 },
434
435};
436
437/*
438 * Notes on the events:
439 * - data reads do not include code reads (comparable to earlier tables)
440 * - data counts include speculative execution (except L1 write, dtlb, bpu)
441 * - remote node access includes remote memory, remote cache, remote mmio.
442 * - prefetches are not included in the counts because they are not
443 *   reliably counted.
444 */
445
446#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
447#define HSW_DEMAND_RFO			BIT_ULL(1)
448#define HSW_ANY_RESPONSE		BIT_ULL(16)
449#define HSW_SUPPLIER_NONE		BIT_ULL(17)
450#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
451#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
452#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
453#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
454#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
455					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
456					 HSW_L3_MISS_REMOTE_HOP2P)
457#define HSW_SNOOP_NONE			BIT_ULL(31)
458#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
459#define HSW_SNOOP_MISS			BIT_ULL(33)
460#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
461#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
462#define HSW_SNOOP_HITM			BIT_ULL(36)
463#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
464#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
465					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
466					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
467					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
468#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
469#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
470#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
471#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
472					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
473#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
474
475#define BDW_L3_MISS_LOCAL		BIT(26)
476#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
477					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
478					 HSW_L3_MISS_REMOTE_HOP2P)
479
480
481static __initconst const u64 hsw_hw_cache_event_ids
482				[PERF_COUNT_HW_CACHE_MAX]
483				[PERF_COUNT_HW_CACHE_OP_MAX]
484				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
485{
486 [ C(L1D ) ] = {
487	[ C(OP_READ) ] = {
488		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
489		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
490	},
491	[ C(OP_WRITE) ] = {
492		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
493		[ C(RESULT_MISS)   ] = 0x0,
494	},
495	[ C(OP_PREFETCH) ] = {
496		[ C(RESULT_ACCESS) ] = 0x0,
497		[ C(RESULT_MISS)   ] = 0x0,
498	},
499 },
500 [ C(L1I ) ] = {
501	[ C(OP_READ) ] = {
502		[ C(RESULT_ACCESS) ] = 0x0,
503		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
504	},
505	[ C(OP_WRITE) ] = {
506		[ C(RESULT_ACCESS) ] = -1,
507		[ C(RESULT_MISS)   ] = -1,
508	},
509	[ C(OP_PREFETCH) ] = {
510		[ C(RESULT_ACCESS) ] = 0x0,
511		[ C(RESULT_MISS)   ] = 0x0,
512	},
513 },
514 [ C(LL  ) ] = {
515	[ C(OP_READ) ] = {
516		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
517		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
518	},
519	[ C(OP_WRITE) ] = {
520		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
521		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
522	},
523	[ C(OP_PREFETCH) ] = {
524		[ C(RESULT_ACCESS) ] = 0x0,
525		[ C(RESULT_MISS)   ] = 0x0,
526	},
527 },
528 [ C(DTLB) ] = {
529	[ C(OP_READ) ] = {
530		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
531		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
532	},
533	[ C(OP_WRITE) ] = {
534		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
535		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
536	},
537	[ C(OP_PREFETCH) ] = {
538		[ C(RESULT_ACCESS) ] = 0x0,
539		[ C(RESULT_MISS)   ] = 0x0,
540	},
541 },
542 [ C(ITLB) ] = {
543	[ C(OP_READ) ] = {
544		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
545		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
546	},
547	[ C(OP_WRITE) ] = {
548		[ C(RESULT_ACCESS) ] = -1,
549		[ C(RESULT_MISS)   ] = -1,
550	},
551	[ C(OP_PREFETCH) ] = {
552		[ C(RESULT_ACCESS) ] = -1,
553		[ C(RESULT_MISS)   ] = -1,
554	},
555 },
556 [ C(BPU ) ] = {
557	[ C(OP_READ) ] = {
558		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
559		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
560	},
561	[ C(OP_WRITE) ] = {
562		[ C(RESULT_ACCESS) ] = -1,
563		[ C(RESULT_MISS)   ] = -1,
564	},
565	[ C(OP_PREFETCH) ] = {
566		[ C(RESULT_ACCESS) ] = -1,
567		[ C(RESULT_MISS)   ] = -1,
568	},
569 },
570 [ C(NODE) ] = {
571	[ C(OP_READ) ] = {
572		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
573		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
574	},
575	[ C(OP_WRITE) ] = {
576		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
577		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
578	},
579	[ C(OP_PREFETCH) ] = {
580		[ C(RESULT_ACCESS) ] = 0x0,
581		[ C(RESULT_MISS)   ] = 0x0,
582	},
583 },
584};
585
586static __initconst const u64 hsw_hw_cache_extra_regs
587				[PERF_COUNT_HW_CACHE_MAX]
588				[PERF_COUNT_HW_CACHE_OP_MAX]
589				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
590{
591 [ C(LL  ) ] = {
592	[ C(OP_READ) ] = {
593		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
594				       HSW_LLC_ACCESS,
595		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
596				       HSW_L3_MISS|HSW_ANY_SNOOP,
597	},
598	[ C(OP_WRITE) ] = {
599		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
600				       HSW_LLC_ACCESS,
601		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
602				       HSW_L3_MISS|HSW_ANY_SNOOP,
603	},
604	[ C(OP_PREFETCH) ] = {
605		[ C(RESULT_ACCESS) ] = 0x0,
606		[ C(RESULT_MISS)   ] = 0x0,
607	},
608 },
609 [ C(NODE) ] = {
610	[ C(OP_READ) ] = {
611		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
612				       HSW_L3_MISS_LOCAL_DRAM|
613				       HSW_SNOOP_DRAM,
614		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
615				       HSW_L3_MISS_REMOTE|
616				       HSW_SNOOP_DRAM,
617	},
618	[ C(OP_WRITE) ] = {
619		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
620				       HSW_L3_MISS_LOCAL_DRAM|
621				       HSW_SNOOP_DRAM,
622		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
623				       HSW_L3_MISS_REMOTE|
624				       HSW_SNOOP_DRAM,
625	},
626	[ C(OP_PREFETCH) ] = {
627		[ C(RESULT_ACCESS) ] = 0x0,
628		[ C(RESULT_MISS)   ] = 0x0,
629	},
630 },
631};
632
633static __initconst const u64 westmere_hw_cache_event_ids
634				[PERF_COUNT_HW_CACHE_MAX]
635				[PERF_COUNT_HW_CACHE_OP_MAX]
636				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
637{
638 [ C(L1D) ] = {
639	[ C(OP_READ) ] = {
640		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
641		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
642	},
643	[ C(OP_WRITE) ] = {
644		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
645		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
646	},
647	[ C(OP_PREFETCH) ] = {
648		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
649		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
650	},
651 },
652 [ C(L1I ) ] = {
653	[ C(OP_READ) ] = {
654		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
655		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
656	},
657	[ C(OP_WRITE) ] = {
658		[ C(RESULT_ACCESS) ] = -1,
659		[ C(RESULT_MISS)   ] = -1,
660	},
661	[ C(OP_PREFETCH) ] = {
662		[ C(RESULT_ACCESS) ] = 0x0,
663		[ C(RESULT_MISS)   ] = 0x0,
664	},
665 },
666 [ C(LL  ) ] = {
667	[ C(OP_READ) ] = {
668		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
669		[ C(RESULT_ACCESS) ] = 0x01b7,
670		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
671		[ C(RESULT_MISS)   ] = 0x01b7,
672	},
673	/*
674	 * Use RFO, not WRITEBACK, because a write miss would typically occur
675	 * on RFO.
676	 */
677	[ C(OP_WRITE) ] = {
678		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
679		[ C(RESULT_ACCESS) ] = 0x01b7,
680		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
681		[ C(RESULT_MISS)   ] = 0x01b7,
682	},
683	[ C(OP_PREFETCH) ] = {
684		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
685		[ C(RESULT_ACCESS) ] = 0x01b7,
686		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
687		[ C(RESULT_MISS)   ] = 0x01b7,
688	},
689 },
690 [ C(DTLB) ] = {
691	[ C(OP_READ) ] = {
692		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
693		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
694	},
695	[ C(OP_WRITE) ] = {
696		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
697		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
698	},
699	[ C(OP_PREFETCH) ] = {
700		[ C(RESULT_ACCESS) ] = 0x0,
701		[ C(RESULT_MISS)   ] = 0x0,
702	},
703 },
704 [ C(ITLB) ] = {
705	[ C(OP_READ) ] = {
706		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
707		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
708	},
709	[ C(OP_WRITE) ] = {
710		[ C(RESULT_ACCESS) ] = -1,
711		[ C(RESULT_MISS)   ] = -1,
712	},
713	[ C(OP_PREFETCH) ] = {
714		[ C(RESULT_ACCESS) ] = -1,
715		[ C(RESULT_MISS)   ] = -1,
716	},
717 },
718 [ C(BPU ) ] = {
719	[ C(OP_READ) ] = {
720		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
721		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
722	},
723	[ C(OP_WRITE) ] = {
724		[ C(RESULT_ACCESS) ] = -1,
725		[ C(RESULT_MISS)   ] = -1,
726	},
727	[ C(OP_PREFETCH) ] = {
728		[ C(RESULT_ACCESS) ] = -1,
729		[ C(RESULT_MISS)   ] = -1,
730	},
731 },
732 [ C(NODE) ] = {
733	[ C(OP_READ) ] = {
734		[ C(RESULT_ACCESS) ] = 0x01b7,
735		[ C(RESULT_MISS)   ] = 0x01b7,
736	},
737	[ C(OP_WRITE) ] = {
738		[ C(RESULT_ACCESS) ] = 0x01b7,
739		[ C(RESULT_MISS)   ] = 0x01b7,
740	},
741	[ C(OP_PREFETCH) ] = {
742		[ C(RESULT_ACCESS) ] = 0x01b7,
743		[ C(RESULT_MISS)   ] = 0x01b7,
744	},
745 },
746};
747
748/*
749 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
750 * See IA32 SDM Vol 3B 30.6.1.3
751 */
752
753#define NHM_DMND_DATA_RD	(1 << 0)
754#define NHM_DMND_RFO		(1 << 1)
755#define NHM_DMND_IFETCH		(1 << 2)
756#define NHM_DMND_WB		(1 << 3)
757#define NHM_PF_DATA_RD		(1 << 4)
758#define NHM_PF_DATA_RFO		(1 << 5)
759#define NHM_PF_IFETCH		(1 << 6)
760#define NHM_OFFCORE_OTHER	(1 << 7)
761#define NHM_UNCORE_HIT		(1 << 8)
762#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
763#define NHM_OTHER_CORE_HITM	(1 << 10)
764        			/* reserved */
765#define NHM_REMOTE_CACHE_FWD	(1 << 12)
766#define NHM_REMOTE_DRAM		(1 << 13)
767#define NHM_LOCAL_DRAM		(1 << 14)
768#define NHM_NON_DRAM		(1 << 15)
769
770#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
771#define NHM_REMOTE		(NHM_REMOTE_DRAM)
772
773#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
774#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
775#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
776
777#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
778#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
779#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
780
781static __initconst const u64 nehalem_hw_cache_extra_regs
782				[PERF_COUNT_HW_CACHE_MAX]
783				[PERF_COUNT_HW_CACHE_OP_MAX]
784				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
785{
786 [ C(LL  ) ] = {
787	[ C(OP_READ) ] = {
788		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
789		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
790	},
791	[ C(OP_WRITE) ] = {
792		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
793		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
794	},
795	[ C(OP_PREFETCH) ] = {
796		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
797		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
798	},
799 },
800 [ C(NODE) ] = {
801	[ C(OP_READ) ] = {
802		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
803		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
804	},
805	[ C(OP_WRITE) ] = {
806		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
807		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
808	},
809	[ C(OP_PREFETCH) ] = {
810		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
811		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
812	},
813 },
814};
815
816static __initconst const u64 nehalem_hw_cache_event_ids
817				[PERF_COUNT_HW_CACHE_MAX]
818				[PERF_COUNT_HW_CACHE_OP_MAX]
819				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
820{
821 [ C(L1D) ] = {
822	[ C(OP_READ) ] = {
823		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
824		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
825	},
826	[ C(OP_WRITE) ] = {
827		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
828		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
829	},
830	[ C(OP_PREFETCH) ] = {
831		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
832		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
833	},
834 },
835 [ C(L1I ) ] = {
836	[ C(OP_READ) ] = {
837		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
838		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
839	},
840	[ C(OP_WRITE) ] = {
841		[ C(RESULT_ACCESS) ] = -1,
842		[ C(RESULT_MISS)   ] = -1,
843	},
844	[ C(OP_PREFETCH) ] = {
845		[ C(RESULT_ACCESS) ] = 0x0,
846		[ C(RESULT_MISS)   ] = 0x0,
847	},
848 },
849 [ C(LL  ) ] = {
850	[ C(OP_READ) ] = {
851		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852		[ C(RESULT_ACCESS) ] = 0x01b7,
853		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854		[ C(RESULT_MISS)   ] = 0x01b7,
855	},
856	/*
857	 * Use RFO, not WRITEBACK, because a write miss would typically occur
858	 * on RFO.
859	 */
860	[ C(OP_WRITE) ] = {
861		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
862		[ C(RESULT_ACCESS) ] = 0x01b7,
863		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
864		[ C(RESULT_MISS)   ] = 0x01b7,
865	},
866	[ C(OP_PREFETCH) ] = {
867		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
868		[ C(RESULT_ACCESS) ] = 0x01b7,
869		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
870		[ C(RESULT_MISS)   ] = 0x01b7,
871	},
872 },
873 [ C(DTLB) ] = {
874	[ C(OP_READ) ] = {
875		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
876		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
877	},
878	[ C(OP_WRITE) ] = {
879		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
880		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
881	},
882	[ C(OP_PREFETCH) ] = {
883		[ C(RESULT_ACCESS) ] = 0x0,
884		[ C(RESULT_MISS)   ] = 0x0,
885	},
886 },
887 [ C(ITLB) ] = {
888	[ C(OP_READ) ] = {
889		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
890		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
891	},
892	[ C(OP_WRITE) ] = {
893		[ C(RESULT_ACCESS) ] = -1,
894		[ C(RESULT_MISS)   ] = -1,
895	},
896	[ C(OP_PREFETCH) ] = {
897		[ C(RESULT_ACCESS) ] = -1,
898		[ C(RESULT_MISS)   ] = -1,
899	},
900 },
901 [ C(BPU ) ] = {
902	[ C(OP_READ) ] = {
903		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
904		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
905	},
906	[ C(OP_WRITE) ] = {
907		[ C(RESULT_ACCESS) ] = -1,
908		[ C(RESULT_MISS)   ] = -1,
909	},
910	[ C(OP_PREFETCH) ] = {
911		[ C(RESULT_ACCESS) ] = -1,
912		[ C(RESULT_MISS)   ] = -1,
913	},
914 },
915 [ C(NODE) ] = {
916	[ C(OP_READ) ] = {
917		[ C(RESULT_ACCESS) ] = 0x01b7,
918		[ C(RESULT_MISS)   ] = 0x01b7,
919	},
920	[ C(OP_WRITE) ] = {
921		[ C(RESULT_ACCESS) ] = 0x01b7,
922		[ C(RESULT_MISS)   ] = 0x01b7,
923	},
924	[ C(OP_PREFETCH) ] = {
925		[ C(RESULT_ACCESS) ] = 0x01b7,
926		[ C(RESULT_MISS)   ] = 0x01b7,
927	},
928 },
929};
930
931static __initconst const u64 core2_hw_cache_event_ids
932				[PERF_COUNT_HW_CACHE_MAX]
933				[PERF_COUNT_HW_CACHE_OP_MAX]
934				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
935{
936 [ C(L1D) ] = {
937	[ C(OP_READ) ] = {
938		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
939		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
940	},
941	[ C(OP_WRITE) ] = {
942		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
943		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
944	},
945	[ C(OP_PREFETCH) ] = {
946		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
947		[ C(RESULT_MISS)   ] = 0,
948	},
949 },
950 [ C(L1I ) ] = {
951	[ C(OP_READ) ] = {
952		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
953		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
954	},
955	[ C(OP_WRITE) ] = {
956		[ C(RESULT_ACCESS) ] = -1,
957		[ C(RESULT_MISS)   ] = -1,
958	},
959	[ C(OP_PREFETCH) ] = {
960		[ C(RESULT_ACCESS) ] = 0,
961		[ C(RESULT_MISS)   ] = 0,
962	},
963 },
964 [ C(LL  ) ] = {
965	[ C(OP_READ) ] = {
966		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
967		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
968	},
969	[ C(OP_WRITE) ] = {
970		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
971		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
972	},
973	[ C(OP_PREFETCH) ] = {
974		[ C(RESULT_ACCESS) ] = 0,
975		[ C(RESULT_MISS)   ] = 0,
976	},
977 },
978 [ C(DTLB) ] = {
979	[ C(OP_READ) ] = {
980		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
981		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
982	},
983	[ C(OP_WRITE) ] = {
984		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
985		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
986	},
987	[ C(OP_PREFETCH) ] = {
988		[ C(RESULT_ACCESS) ] = 0,
989		[ C(RESULT_MISS)   ] = 0,
990	},
991 },
992 [ C(ITLB) ] = {
993	[ C(OP_READ) ] = {
994		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
995		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
996	},
997	[ C(OP_WRITE) ] = {
998		[ C(RESULT_ACCESS) ] = -1,
999		[ C(RESULT_MISS)   ] = -1,
1000	},
1001	[ C(OP_PREFETCH) ] = {
1002		[ C(RESULT_ACCESS) ] = -1,
1003		[ C(RESULT_MISS)   ] = -1,
1004	},
1005 },
1006 [ C(BPU ) ] = {
1007	[ C(OP_READ) ] = {
1008		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1009		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1010	},
1011	[ C(OP_WRITE) ] = {
1012		[ C(RESULT_ACCESS) ] = -1,
1013		[ C(RESULT_MISS)   ] = -1,
1014	},
1015	[ C(OP_PREFETCH) ] = {
1016		[ C(RESULT_ACCESS) ] = -1,
1017		[ C(RESULT_MISS)   ] = -1,
1018	},
1019 },
1020};
1021
1022static __initconst const u64 atom_hw_cache_event_ids
1023				[PERF_COUNT_HW_CACHE_MAX]
1024				[PERF_COUNT_HW_CACHE_OP_MAX]
1025				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1026{
1027 [ C(L1D) ] = {
1028	[ C(OP_READ) ] = {
1029		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1030		[ C(RESULT_MISS)   ] = 0,
1031	},
1032	[ C(OP_WRITE) ] = {
1033		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1034		[ C(RESULT_MISS)   ] = 0,
1035	},
1036	[ C(OP_PREFETCH) ] = {
1037		[ C(RESULT_ACCESS) ] = 0x0,
1038		[ C(RESULT_MISS)   ] = 0,
1039	},
1040 },
1041 [ C(L1I ) ] = {
1042	[ C(OP_READ) ] = {
1043		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1044		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1045	},
1046	[ C(OP_WRITE) ] = {
1047		[ C(RESULT_ACCESS) ] = -1,
1048		[ C(RESULT_MISS)   ] = -1,
1049	},
1050	[ C(OP_PREFETCH) ] = {
1051		[ C(RESULT_ACCESS) ] = 0,
1052		[ C(RESULT_MISS)   ] = 0,
1053	},
1054 },
1055 [ C(LL  ) ] = {
1056	[ C(OP_READ) ] = {
1057		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1058		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1059	},
1060	[ C(OP_WRITE) ] = {
1061		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1062		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1063	},
1064	[ C(OP_PREFETCH) ] = {
1065		[ C(RESULT_ACCESS) ] = 0,
1066		[ C(RESULT_MISS)   ] = 0,
1067	},
1068 },
1069 [ C(DTLB) ] = {
1070	[ C(OP_READ) ] = {
1071		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1072		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1073	},
1074	[ C(OP_WRITE) ] = {
1075		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1076		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1077	},
1078	[ C(OP_PREFETCH) ] = {
1079		[ C(RESULT_ACCESS) ] = 0,
1080		[ C(RESULT_MISS)   ] = 0,
1081	},
1082 },
1083 [ C(ITLB) ] = {
1084	[ C(OP_READ) ] = {
1085		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1086		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1087	},
1088	[ C(OP_WRITE) ] = {
1089		[ C(RESULT_ACCESS) ] = -1,
1090		[ C(RESULT_MISS)   ] = -1,
1091	},
1092	[ C(OP_PREFETCH) ] = {
1093		[ C(RESULT_ACCESS) ] = -1,
1094		[ C(RESULT_MISS)   ] = -1,
1095	},
1096 },
1097 [ C(BPU ) ] = {
1098	[ C(OP_READ) ] = {
1099		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1100		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1101	},
1102	[ C(OP_WRITE) ] = {
1103		[ C(RESULT_ACCESS) ] = -1,
1104		[ C(RESULT_MISS)   ] = -1,
1105	},
1106	[ C(OP_PREFETCH) ] = {
1107		[ C(RESULT_ACCESS) ] = -1,
1108		[ C(RESULT_MISS)   ] = -1,
1109	},
1110 },
1111};
1112
1113static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1114{
1115	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1116	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1117	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1118	EVENT_EXTRA_END
1119};
1120
1121#define SLM_DMND_READ		SNB_DMND_DATA_RD
1122#define SLM_DMND_WRITE		SNB_DMND_RFO
1123#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1124
1125#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1126#define SLM_LLC_ACCESS		SNB_RESP_ANY
1127#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1128
1129static __initconst const u64 slm_hw_cache_extra_regs
1130				[PERF_COUNT_HW_CACHE_MAX]
1131				[PERF_COUNT_HW_CACHE_OP_MAX]
1132				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1133{
1134 [ C(LL  ) ] = {
1135	[ C(OP_READ) ] = {
1136		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1137		[ C(RESULT_MISS)   ] = 0,
1138	},
1139	[ C(OP_WRITE) ] = {
1140		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1141		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1142	},
1143	[ C(OP_PREFETCH) ] = {
1144		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1145		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1146	},
1147 },
1148};
1149
1150static __initconst const u64 slm_hw_cache_event_ids
1151				[PERF_COUNT_HW_CACHE_MAX]
1152				[PERF_COUNT_HW_CACHE_OP_MAX]
1153				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1154{
1155 [ C(L1D) ] = {
1156	[ C(OP_READ) ] = {
1157		[ C(RESULT_ACCESS) ] = 0,
1158		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1159	},
1160	[ C(OP_WRITE) ] = {
1161		[ C(RESULT_ACCESS) ] = 0,
1162		[ C(RESULT_MISS)   ] = 0,
1163	},
1164	[ C(OP_PREFETCH) ] = {
1165		[ C(RESULT_ACCESS) ] = 0,
1166		[ C(RESULT_MISS)   ] = 0,
1167	},
1168 },
1169 [ C(L1I ) ] = {
1170	[ C(OP_READ) ] = {
1171		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1172		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1173	},
1174	[ C(OP_WRITE) ] = {
1175		[ C(RESULT_ACCESS) ] = -1,
1176		[ C(RESULT_MISS)   ] = -1,
1177	},
1178	[ C(OP_PREFETCH) ] = {
1179		[ C(RESULT_ACCESS) ] = 0,
1180		[ C(RESULT_MISS)   ] = 0,
1181	},
1182 },
1183 [ C(LL  ) ] = {
1184	[ C(OP_READ) ] = {
1185		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186		[ C(RESULT_ACCESS) ] = 0x01b7,
1187		[ C(RESULT_MISS)   ] = 0,
1188	},
1189	[ C(OP_WRITE) ] = {
1190		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1191		[ C(RESULT_ACCESS) ] = 0x01b7,
1192		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1193		[ C(RESULT_MISS)   ] = 0x01b7,
1194	},
1195	[ C(OP_PREFETCH) ] = {
1196		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1197		[ C(RESULT_ACCESS) ] = 0x01b7,
1198		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1199		[ C(RESULT_MISS)   ] = 0x01b7,
1200	},
1201 },
1202 [ C(DTLB) ] = {
1203	[ C(OP_READ) ] = {
1204		[ C(RESULT_ACCESS) ] = 0,
1205		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1206	},
1207	[ C(OP_WRITE) ] = {
1208		[ C(RESULT_ACCESS) ] = 0,
1209		[ C(RESULT_MISS)   ] = 0,
1210	},
1211	[ C(OP_PREFETCH) ] = {
1212		[ C(RESULT_ACCESS) ] = 0,
1213		[ C(RESULT_MISS)   ] = 0,
1214	},
1215 },
1216 [ C(ITLB) ] = {
1217	[ C(OP_READ) ] = {
1218		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1219		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1220	},
1221	[ C(OP_WRITE) ] = {
1222		[ C(RESULT_ACCESS) ] = -1,
1223		[ C(RESULT_MISS)   ] = -1,
1224	},
1225	[ C(OP_PREFETCH) ] = {
1226		[ C(RESULT_ACCESS) ] = -1,
1227		[ C(RESULT_MISS)   ] = -1,
1228	},
1229 },
1230 [ C(BPU ) ] = {
1231	[ C(OP_READ) ] = {
1232		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1233		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1234	},
1235	[ C(OP_WRITE) ] = {
1236		[ C(RESULT_ACCESS) ] = -1,
1237		[ C(RESULT_MISS)   ] = -1,
1238	},
1239	[ C(OP_PREFETCH) ] = {
1240		[ C(RESULT_ACCESS) ] = -1,
1241		[ C(RESULT_MISS)   ] = -1,
1242	},
1243 },
1244};
1245
1246/*
1247 * Use from PMIs where the LBRs are already disabled.
1248 */
1249static void __intel_pmu_disable_all(void)
1250{
1251	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1252
1253	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1254
1255	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1256		intel_pmu_disable_bts();
1257	else
1258		intel_bts_disable_local();
1259
1260	intel_pmu_pebs_disable_all();
1261}
1262
1263static void intel_pmu_disable_all(void)
1264{
1265	__intel_pmu_disable_all();
1266	intel_pmu_lbr_disable_all();
1267}
1268
1269static void __intel_pmu_enable_all(int added, bool pmi)
1270{
1271	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1272
1273	intel_pmu_pebs_enable_all();
1274	intel_pmu_lbr_enable_all(pmi);
1275	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1276			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1277
1278	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1279		struct perf_event *event =
1280			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1281
1282		if (WARN_ON_ONCE(!event))
1283			return;
1284
1285		intel_pmu_enable_bts(event->hw.config);
1286	} else
1287		intel_bts_enable_local();
1288}
1289
1290static void intel_pmu_enable_all(int added)
1291{
1292	__intel_pmu_enable_all(added, false);
1293}
1294
1295/*
1296 * Workaround for:
1297 *   Intel Errata AAK100 (model 26)
1298 *   Intel Errata AAP53  (model 30)
1299 *   Intel Errata BD53   (model 44)
1300 *
1301 * The official story:
1302 *   These chips need to be 'reset' when adding counters by programming the
1303 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1304 *   in sequence on the same PMC or on different PMCs.
1305 *
1306 * In practise it appears some of these events do in fact count, and
1307 * we need to programm all 4 events.
1308 */
1309static void intel_pmu_nhm_workaround(void)
1310{
1311	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1312	static const unsigned long nhm_magic[4] = {
1313		0x4300B5,
1314		0x4300D2,
1315		0x4300B1,
1316		0x4300B1
1317	};
1318	struct perf_event *event;
1319	int i;
1320
1321	/*
1322	 * The Errata requires below steps:
1323	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1324	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1325	 *    the corresponding PMCx;
1326	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1327	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1328	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1329	 */
1330
1331	/*
1332	 * The real steps we choose are a little different from above.
1333	 * A) To reduce MSR operations, we don't run step 1) as they
1334	 *    are already cleared before this function is called;
1335	 * B) Call x86_perf_event_update to save PMCx before configuring
1336	 *    PERFEVTSELx with magic number;
1337	 * C) With step 5), we do clear only when the PERFEVTSELx is
1338	 *    not used currently.
1339	 * D) Call x86_perf_event_set_period to restore PMCx;
1340	 */
1341
1342	/* We always operate 4 pairs of PERF Counters */
1343	for (i = 0; i < 4; i++) {
1344		event = cpuc->events[i];
1345		if (event)
1346			x86_perf_event_update(event);
1347	}
1348
1349	for (i = 0; i < 4; i++) {
1350		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1351		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1352	}
1353
1354	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1355	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1356
1357	for (i = 0; i < 4; i++) {
1358		event = cpuc->events[i];
1359
1360		if (event) {
1361			x86_perf_event_set_period(event);
1362			__x86_pmu_enable_event(&event->hw,
1363					ARCH_PERFMON_EVENTSEL_ENABLE);
1364		} else
1365			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1366	}
1367}
1368
1369static void intel_pmu_nhm_enable_all(int added)
1370{
1371	if (added)
1372		intel_pmu_nhm_workaround();
1373	intel_pmu_enable_all(added);
1374}
1375
1376static inline u64 intel_pmu_get_status(void)
1377{
1378	u64 status;
1379
1380	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1381
1382	return status;
1383}
1384
1385static inline void intel_pmu_ack_status(u64 ack)
1386{
1387	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1388}
1389
1390static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1391{
1392	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1393	u64 ctrl_val, mask;
1394
1395	mask = 0xfULL << (idx * 4);
1396
1397	rdmsrl(hwc->config_base, ctrl_val);
1398	ctrl_val &= ~mask;
1399	wrmsrl(hwc->config_base, ctrl_val);
1400}
1401
1402static inline bool event_is_checkpointed(struct perf_event *event)
1403{
1404	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1405}
1406
1407static void intel_pmu_disable_event(struct perf_event *event)
1408{
1409	struct hw_perf_event *hwc = &event->hw;
1410	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1411
1412	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1413		intel_pmu_disable_bts();
1414		intel_pmu_drain_bts_buffer();
1415		return;
1416	}
1417
1418	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1419	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1420	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1421
1422	/*
1423	 * must disable before any actual event
1424	 * because any event may be combined with LBR
1425	 */
1426	if (needs_branch_stack(event))
1427		intel_pmu_lbr_disable(event);
1428
1429	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1430		intel_pmu_disable_fixed(hwc);
1431		return;
1432	}
1433
1434	x86_pmu_disable_event(event);
1435
1436	if (unlikely(event->attr.precise_ip))
1437		intel_pmu_pebs_disable(event);
1438}
1439
1440static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1441{
1442	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1443	u64 ctrl_val, bits, mask;
1444
1445	/*
1446	 * Enable IRQ generation (0x8),
1447	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1448	 * if requested:
1449	 */
1450	bits = 0x8ULL;
1451	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1452		bits |= 0x2;
1453	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1454		bits |= 0x1;
1455
1456	/*
1457	 * ANY bit is supported in v3 and up
1458	 */
1459	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1460		bits |= 0x4;
1461
1462	bits <<= (idx * 4);
1463	mask = 0xfULL << (idx * 4);
1464
1465	rdmsrl(hwc->config_base, ctrl_val);
1466	ctrl_val &= ~mask;
1467	ctrl_val |= bits;
1468	wrmsrl(hwc->config_base, ctrl_val);
1469}
1470
1471static void intel_pmu_enable_event(struct perf_event *event)
1472{
1473	struct hw_perf_event *hwc = &event->hw;
1474	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1475
1476	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1477		if (!__this_cpu_read(cpu_hw_events.enabled))
1478			return;
1479
1480		intel_pmu_enable_bts(hwc->config);
1481		return;
1482	}
1483	/*
1484	 * must enabled before any actual event
1485	 * because any event may be combined with LBR
1486	 */
1487	if (needs_branch_stack(event))
1488		intel_pmu_lbr_enable(event);
1489
1490	if (event->attr.exclude_host)
1491		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1492	if (event->attr.exclude_guest)
1493		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1494
1495	if (unlikely(event_is_checkpointed(event)))
1496		cpuc->intel_cp_status |= (1ull << hwc->idx);
1497
1498	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1499		intel_pmu_enable_fixed(hwc);
1500		return;
1501	}
1502
1503	if (unlikely(event->attr.precise_ip))
1504		intel_pmu_pebs_enable(event);
1505
1506	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1507}
1508
1509/*
1510 * Save and restart an expired event. Called by NMI contexts,
1511 * so it has to be careful about preempting normal event ops:
1512 */
1513int intel_pmu_save_and_restart(struct perf_event *event)
1514{
1515	x86_perf_event_update(event);
1516	/*
1517	 * For a checkpointed counter always reset back to 0.  This
1518	 * avoids a situation where the counter overflows, aborts the
1519	 * transaction and is then set back to shortly before the
1520	 * overflow, and overflows and aborts again.
1521	 */
1522	if (unlikely(event_is_checkpointed(event))) {
1523		/* No race with NMIs because the counter should not be armed */
1524		wrmsrl(event->hw.event_base, 0);
1525		local64_set(&event->hw.prev_count, 0);
1526	}
1527	return x86_perf_event_set_period(event);
1528}
1529
1530static void intel_pmu_reset(void)
1531{
1532	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1533	unsigned long flags;
1534	int idx;
1535
1536	if (!x86_pmu.num_counters)
1537		return;
1538
1539	local_irq_save(flags);
1540
1541	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1542
1543	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1544		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1545		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1546	}
1547	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1548		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1549
1550	if (ds)
1551		ds->bts_index = ds->bts_buffer_base;
1552
1553	/* Ack all overflows and disable fixed counters */
1554	if (x86_pmu.version >= 2) {
1555		intel_pmu_ack_status(intel_pmu_get_status());
1556		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1557	}
1558
1559	/* Reset LBRs and LBR freezing */
1560	if (x86_pmu.lbr_nr) {
1561		update_debugctlmsr(get_debugctlmsr() &
1562			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1563	}
1564
1565	local_irq_restore(flags);
1566}
1567
1568/*
1569 * This handler is triggered by the local APIC, so the APIC IRQ handling
1570 * rules apply:
1571 */
1572static int intel_pmu_handle_irq(struct pt_regs *regs)
1573{
1574	struct perf_sample_data data;
1575	struct cpu_hw_events *cpuc;
1576	int bit, loops;
1577	u64 status;
1578	int handled;
1579
1580	cpuc = this_cpu_ptr(&cpu_hw_events);
1581
1582	/*
1583	 * No known reason to not always do late ACK,
1584	 * but just in case do it opt-in.
1585	 */
1586	if (!x86_pmu.late_ack)
1587		apic_write(APIC_LVTPC, APIC_DM_NMI);
1588	__intel_pmu_disable_all();
1589	handled = intel_pmu_drain_bts_buffer();
1590	handled += intel_bts_interrupt();
1591	status = intel_pmu_get_status();
1592	if (!status)
1593		goto done;
1594
1595	loops = 0;
1596again:
1597	intel_pmu_ack_status(status);
1598	if (++loops > 100) {
1599		static bool warned = false;
1600		if (!warned) {
1601			WARN(1, "perfevents: irq loop stuck!\n");
1602			perf_event_print_debug();
1603			warned = true;
1604		}
1605		intel_pmu_reset();
1606		goto done;
1607	}
1608
1609	inc_irq_stat(apic_perf_irqs);
1610
1611	intel_pmu_lbr_read();
1612
1613	/*
1614	 * CondChgd bit 63 doesn't mean any overflow status. Ignore
1615	 * and clear the bit.
1616	 */
1617	if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1618		if (!status)
1619			goto done;
1620	}
1621
1622	/*
1623	 * PEBS overflow sets bit 62 in the global status register
1624	 */
1625	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1626		handled++;
1627		x86_pmu.drain_pebs(regs);
1628	}
1629
1630	/*
1631	 * Intel PT
1632	 */
1633	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1634		handled++;
1635		intel_pt_interrupt();
1636	}
1637
1638	/*
1639	 * Checkpointed counters can lead to 'spurious' PMIs because the
1640	 * rollback caused by the PMI will have cleared the overflow status
1641	 * bit. Therefore always force probe these counters.
1642	 */
1643	status |= cpuc->intel_cp_status;
1644
1645	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1646		struct perf_event *event = cpuc->events[bit];
1647
1648		handled++;
1649
1650		if (!test_bit(bit, cpuc->active_mask))
1651			continue;
1652
1653		if (!intel_pmu_save_and_restart(event))
1654			continue;
1655
1656		perf_sample_data_init(&data, 0, event->hw.last_period);
1657
1658		if (has_branch_stack(event))
1659			data.br_stack = &cpuc->lbr_stack;
1660
1661		if (perf_event_overflow(event, &data, regs))
1662			x86_pmu_stop(event, 0);
1663	}
1664
1665	/*
1666	 * Repeat if there is more work to be done:
1667	 */
1668	status = intel_pmu_get_status();
1669	if (status)
1670		goto again;
1671
1672done:
1673	__intel_pmu_enable_all(0, true);
1674	/*
1675	 * Only unmask the NMI after the overflow counters
1676	 * have been reset. This avoids spurious NMIs on
1677	 * Haswell CPUs.
1678	 */
1679	if (x86_pmu.late_ack)
1680		apic_write(APIC_LVTPC, APIC_DM_NMI);
1681	return handled;
1682}
1683
1684static struct event_constraint *
1685intel_bts_constraints(struct perf_event *event)
1686{
1687	struct hw_perf_event *hwc = &event->hw;
1688	unsigned int hw_event, bts_event;
1689
1690	if (event->attr.freq)
1691		return NULL;
1692
1693	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1694	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1695
1696	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1697		return &bts_constraint;
1698
1699	return NULL;
1700}
1701
1702static int intel_alt_er(int idx)
1703{
1704	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1705		return idx;
1706
1707	if (idx == EXTRA_REG_RSP_0)
1708		return EXTRA_REG_RSP_1;
1709
1710	if (idx == EXTRA_REG_RSP_1)
1711		return EXTRA_REG_RSP_0;
1712
1713	return idx;
1714}
1715
1716static void intel_fixup_er(struct perf_event *event, int idx)
1717{
1718	event->hw.extra_reg.idx = idx;
1719
1720	if (idx == EXTRA_REG_RSP_0) {
1721		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1722		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1723		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1724	} else if (idx == EXTRA_REG_RSP_1) {
1725		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1726		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1727		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1728	}
1729}
1730
1731/*
1732 * manage allocation of shared extra msr for certain events
1733 *
1734 * sharing can be:
1735 * per-cpu: to be shared between the various events on a single PMU
1736 * per-core: per-cpu + shared by HT threads
1737 */
1738static struct event_constraint *
1739__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1740				   struct perf_event *event,
1741				   struct hw_perf_event_extra *reg)
1742{
1743	struct event_constraint *c = &emptyconstraint;
1744	struct er_account *era;
1745	unsigned long flags;
1746	int idx = reg->idx;
1747
1748	/*
1749	 * reg->alloc can be set due to existing state, so for fake cpuc we
1750	 * need to ignore this, otherwise we might fail to allocate proper fake
1751	 * state for this extra reg constraint. Also see the comment below.
1752	 */
1753	if (reg->alloc && !cpuc->is_fake)
1754		return NULL; /* call x86_get_event_constraint() */
1755
1756again:
1757	era = &cpuc->shared_regs->regs[idx];
1758	/*
1759	 * we use spin_lock_irqsave() to avoid lockdep issues when
1760	 * passing a fake cpuc
1761	 */
1762	raw_spin_lock_irqsave(&era->lock, flags);
1763
1764	if (!atomic_read(&era->ref) || era->config == reg->config) {
1765
1766		/*
1767		 * If its a fake cpuc -- as per validate_{group,event}() we
1768		 * shouldn't touch event state and we can avoid doing so
1769		 * since both will only call get_event_constraints() once
1770		 * on each event, this avoids the need for reg->alloc.
1771		 *
1772		 * Not doing the ER fixup will only result in era->reg being
1773		 * wrong, but since we won't actually try and program hardware
1774		 * this isn't a problem either.
1775		 */
1776		if (!cpuc->is_fake) {
1777			if (idx != reg->idx)
1778				intel_fixup_er(event, idx);
1779
1780			/*
1781			 * x86_schedule_events() can call get_event_constraints()
1782			 * multiple times on events in the case of incremental
1783			 * scheduling(). reg->alloc ensures we only do the ER
1784			 * allocation once.
1785			 */
1786			reg->alloc = 1;
1787		}
1788
1789		/* lock in msr value */
1790		era->config = reg->config;
1791		era->reg = reg->reg;
1792
1793		/* one more user */
1794		atomic_inc(&era->ref);
1795
1796		/*
1797		 * need to call x86_get_event_constraint()
1798		 * to check if associated event has constraints
1799		 */
1800		c = NULL;
1801	} else {
1802		idx = intel_alt_er(idx);
1803		if (idx != reg->idx) {
1804			raw_spin_unlock_irqrestore(&era->lock, flags);
1805			goto again;
1806		}
1807	}
1808	raw_spin_unlock_irqrestore(&era->lock, flags);
1809
1810	return c;
1811}
1812
1813static void
1814__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1815				   struct hw_perf_event_extra *reg)
1816{
1817	struct er_account *era;
1818
1819	/*
1820	 * Only put constraint if extra reg was actually allocated. Also takes
1821	 * care of event which do not use an extra shared reg.
1822	 *
1823	 * Also, if this is a fake cpuc we shouldn't touch any event state
1824	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1825	 * either since it'll be thrown out.
1826	 */
1827	if (!reg->alloc || cpuc->is_fake)
1828		return;
1829
1830	era = &cpuc->shared_regs->regs[reg->idx];
1831
1832	/* one fewer user */
1833	atomic_dec(&era->ref);
1834
1835	/* allocate again next time */
1836	reg->alloc = 0;
1837}
1838
1839static struct event_constraint *
1840intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1841			      struct perf_event *event)
1842{
1843	struct event_constraint *c = NULL, *d;
1844	struct hw_perf_event_extra *xreg, *breg;
1845
1846	xreg = &event->hw.extra_reg;
1847	if (xreg->idx != EXTRA_REG_NONE) {
1848		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1849		if (c == &emptyconstraint)
1850			return c;
1851	}
1852	breg = &event->hw.branch_reg;
1853	if (breg->idx != EXTRA_REG_NONE) {
1854		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1855		if (d == &emptyconstraint) {
1856			__intel_shared_reg_put_constraints(cpuc, xreg);
1857			c = d;
1858		}
1859	}
1860	return c;
1861}
1862
1863struct event_constraint *
1864x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1865			  struct perf_event *event)
1866{
1867	struct event_constraint *c;
1868
1869	if (x86_pmu.event_constraints) {
1870		for_each_event_constraint(c, x86_pmu.event_constraints) {
1871			if ((event->hw.config & c->cmask) == c->code) {
1872				event->hw.flags |= c->flags;
1873				return c;
1874			}
1875		}
1876	}
1877
1878	return &unconstrained;
1879}
1880
1881static struct event_constraint *
1882__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1883			    struct perf_event *event)
1884{
1885	struct event_constraint *c;
1886
1887	c = intel_bts_constraints(event);
1888	if (c)
1889		return c;
1890
1891	c = intel_shared_regs_constraints(cpuc, event);
1892	if (c)
1893		return c;
1894
1895	c = intel_pebs_constraints(event);
1896	if (c)
1897		return c;
1898
1899	return x86_get_event_constraints(cpuc, idx, event);
1900}
1901
1902static void
1903intel_start_scheduling(struct cpu_hw_events *cpuc)
1904{
1905	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1906	struct intel_excl_states *xl, *xlo;
1907	int tid = cpuc->excl_thread_id;
1908	int o_tid = 1 - tid; /* sibling thread */
1909
1910	/*
1911	 * nothing needed if in group validation mode
1912	 */
1913	if (cpuc->is_fake || !is_ht_workaround_enabled())
1914		return;
1915
1916	/*
1917	 * no exclusion needed
1918	 */
1919	if (!excl_cntrs)
1920		return;
1921
1922	xlo = &excl_cntrs->states[o_tid];
1923	xl = &excl_cntrs->states[tid];
1924
1925	xl->sched_started = true;
1926	/*
1927	 * lock shared state until we are done scheduling
1928	 * in stop_event_scheduling()
1929	 * makes scheduling appear as a transaction
1930	 */
1931	WARN_ON_ONCE(!irqs_disabled());
1932	raw_spin_lock(&excl_cntrs->lock);
1933
1934	/*
1935	 * save initial state of sibling thread
1936	 */
1937	memcpy(xlo->init_state, xlo->state, sizeof(xlo->init_state));
1938}
1939
1940static void
1941intel_stop_scheduling(struct cpu_hw_events *cpuc)
1942{
1943	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1944	struct intel_excl_states *xl, *xlo;
1945	int tid = cpuc->excl_thread_id;
1946	int o_tid = 1 - tid; /* sibling thread */
1947
1948	/*
1949	 * nothing needed if in group validation mode
1950	 */
1951	if (cpuc->is_fake || !is_ht_workaround_enabled())
1952		return;
1953	/*
1954	 * no exclusion needed
1955	 */
1956	if (!excl_cntrs)
1957		return;
1958
1959	xlo = &excl_cntrs->states[o_tid];
1960	xl = &excl_cntrs->states[tid];
1961
1962	/*
1963	 * make new sibling thread state visible
1964	 */
1965	memcpy(xlo->state, xlo->init_state, sizeof(xlo->state));
1966
1967	xl->sched_started = false;
1968	/*
1969	 * release shared state lock (acquired in intel_start_scheduling())
1970	 */
1971	raw_spin_unlock(&excl_cntrs->lock);
1972}
1973
1974static struct event_constraint *
1975intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
1976			   int idx, struct event_constraint *c)
1977{
1978	struct event_constraint *cx;
1979	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1980	struct intel_excl_states *xl, *xlo;
1981	int is_excl, i;
1982	int tid = cpuc->excl_thread_id;
1983	int o_tid = 1 - tid; /* alternate */
1984
1985	/*
1986	 * validating a group does not require
1987	 * enforcing cross-thread  exclusion
1988	 */
1989	if (cpuc->is_fake || !is_ht_workaround_enabled())
1990		return c;
1991
1992	/*
1993	 * no exclusion needed
1994	 */
1995	if (!excl_cntrs)
1996		return c;
1997	/*
1998	 * event requires exclusive counter access
1999	 * across HT threads
2000	 */
2001	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2002	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2003		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2004		if (!cpuc->n_excl++)
2005			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2006	}
2007
2008	/*
2009	 * xl = state of current HT
2010	 * xlo = state of sibling HT
2011	 */
2012	xl = &excl_cntrs->states[tid];
2013	xlo = &excl_cntrs->states[o_tid];
2014
2015	cx = c;
2016
2017	/*
2018	 * because we modify the constraint, we need
2019	 * to make a copy. Static constraints come
2020	 * from static const tables.
2021	 *
2022	 * only needed when constraint has not yet
2023	 * been cloned (marked dynamic)
2024	 */
2025	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2026
2027		/* sanity check */
2028		if (idx < 0)
2029			return &emptyconstraint;
2030
2031		/*
2032		 * grab pre-allocated constraint entry
2033		 */
2034		cx = &cpuc->constraint_list[idx];
2035
2036		/*
2037		 * initialize dynamic constraint
2038		 * with static constraint
2039		 */
2040		memcpy(cx, c, sizeof(*cx));
2041
2042		/*
2043		 * mark constraint as dynamic, so we
2044		 * can free it later on
2045		 */
2046		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2047	}
2048
2049	/*
2050	 * From here on, the constraint is dynamic.
2051	 * Either it was just allocated above, or it
2052	 * was allocated during a earlier invocation
2053	 * of this function
2054	 */
2055
2056	/*
2057	 * Modify static constraint with current dynamic
2058	 * state of thread
2059	 *
2060	 * EXCLUSIVE: sibling counter measuring exclusive event
2061	 * SHARED   : sibling counter measuring non-exclusive event
2062	 * UNUSED   : sibling counter unused
2063	 */
2064	for_each_set_bit(i, cx->idxmsk, X86_PMC_IDX_MAX) {
2065		/*
2066		 * exclusive event in sibling counter
2067		 * our corresponding counter cannot be used
2068		 * regardless of our event
2069		 */
2070		if (xl->state[i] == INTEL_EXCL_EXCLUSIVE)
2071			__clear_bit(i, cx->idxmsk);
2072		/*
2073		 * if measuring an exclusive event, sibling
2074		 * measuring non-exclusive, then counter cannot
2075		 * be used
2076		 */
2077		if (is_excl && xl->state[i] == INTEL_EXCL_SHARED)
2078			__clear_bit(i, cx->idxmsk);
2079	}
2080
2081	/*
2082	 * recompute actual bit weight for scheduling algorithm
2083	 */
2084	cx->weight = hweight64(cx->idxmsk64);
2085
2086	/*
2087	 * if we return an empty mask, then switch
2088	 * back to static empty constraint to avoid
2089	 * the cost of freeing later on
2090	 */
2091	if (cx->weight == 0)
2092		cx = &emptyconstraint;
2093
2094	return cx;
2095}
2096
2097static struct event_constraint *
2098intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2099			    struct perf_event *event)
2100{
2101	struct event_constraint *c1 = NULL;
2102	struct event_constraint *c2;
2103
2104	if (idx >= 0) /* fake does < 0 */
2105		c1 = cpuc->event_constraint[idx];
2106
2107	/*
2108	 * first time only
2109	 * - static constraint: no change across incremental scheduling calls
2110	 * - dynamic constraint: handled by intel_get_excl_constraints()
2111	 */
2112	c2 = __intel_get_event_constraints(cpuc, idx, event);
2113	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2114		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2115		c1->weight = c2->weight;
2116		c2 = c1;
2117	}
2118
2119	if (cpuc->excl_cntrs)
2120		return intel_get_excl_constraints(cpuc, event, idx, c2);
2121
2122	return c2;
2123}
2124
2125static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2126		struct perf_event *event)
2127{
2128	struct hw_perf_event *hwc = &event->hw;
2129	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2130	struct intel_excl_states *xlo, *xl;
2131	unsigned long flags = 0; /* keep compiler happy */
2132	int tid = cpuc->excl_thread_id;
2133	int o_tid = 1 - tid;
2134
2135	/*
2136	 * nothing needed if in group validation mode
2137	 */
2138	if (cpuc->is_fake)
2139		return;
2140
2141	WARN_ON_ONCE(!excl_cntrs);
2142
2143	if (!excl_cntrs)
2144		return;
2145
2146	xl = &excl_cntrs->states[tid];
2147	xlo = &excl_cntrs->states[o_tid];
2148	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2149		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2150		if (!--cpuc->n_excl)
2151			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2152	}
2153
2154	/*
2155	 * put_constraint may be called from x86_schedule_events()
2156	 * which already has the lock held so here make locking
2157	 * conditional
2158	 */
2159	if (!xl->sched_started)
2160		raw_spin_lock_irqsave(&excl_cntrs->lock, flags);
2161
2162	/*
2163	 * if event was actually assigned, then mark the
2164	 * counter state as unused now
2165	 */
2166	if (hwc->idx >= 0)
2167		xlo->state[hwc->idx] = INTEL_EXCL_UNUSED;
2168
2169	if (!xl->sched_started)
2170		raw_spin_unlock_irqrestore(&excl_cntrs->lock, flags);
2171}
2172
2173static void
2174intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2175					struct perf_event *event)
2176{
2177	struct hw_perf_event_extra *reg;
2178
2179	reg = &event->hw.extra_reg;
2180	if (reg->idx != EXTRA_REG_NONE)
2181		__intel_shared_reg_put_constraints(cpuc, reg);
2182
2183	reg = &event->hw.branch_reg;
2184	if (reg->idx != EXTRA_REG_NONE)
2185		__intel_shared_reg_put_constraints(cpuc, reg);
2186}
2187
2188static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2189					struct perf_event *event)
2190{
2191	intel_put_shared_regs_event_constraints(cpuc, event);
2192
2193	/*
2194	 * is PMU has exclusive counter restrictions, then
2195	 * all events are subject to and must call the
2196	 * put_excl_constraints() routine
2197	 */
2198	if (cpuc->excl_cntrs)
2199		intel_put_excl_constraints(cpuc, event);
2200}
2201
2202static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2203{
2204	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2205	struct event_constraint *c = cpuc->event_constraint[idx];
2206	struct intel_excl_states *xlo, *xl;
2207	int tid = cpuc->excl_thread_id;
2208	int o_tid = 1 - tid;
2209	int is_excl;
2210
2211	if (cpuc->is_fake || !c)
2212		return;
2213
2214	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2215
2216	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2217		return;
2218
2219	WARN_ON_ONCE(!excl_cntrs);
2220
2221	if (!excl_cntrs)
2222		return;
2223
2224	xl = &excl_cntrs->states[tid];
2225	xlo = &excl_cntrs->states[o_tid];
2226
2227	WARN_ON_ONCE(!raw_spin_is_locked(&excl_cntrs->lock));
2228
2229	if (cntr >= 0) {
2230		if (is_excl)
2231			xlo->init_state[cntr] = INTEL_EXCL_EXCLUSIVE;
2232		else
2233			xlo->init_state[cntr] = INTEL_EXCL_SHARED;
2234	}
2235}
2236
2237static void intel_pebs_aliases_core2(struct perf_event *event)
2238{
2239	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2240		/*
2241		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2242		 * (0x003c) so that we can use it with PEBS.
2243		 *
2244		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2245		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2246		 * (0x00c0), which is a PEBS capable event, to get the same
2247		 * count.
2248		 *
2249		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2250		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2251		 * larger than the maximum number of instructions that can be
2252		 * retired per cycle (4) and then inverting the condition, we
2253		 * count all cycles that retire 16 or less instructions, which
2254		 * is every cycle.
2255		 *
2256		 * Thereby we gain a PEBS capable cycle counter.
2257		 */
2258		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2259
2260		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2261		event->hw.config = alt_config;
2262	}
2263}
2264
2265static void intel_pebs_aliases_snb(struct perf_event *event)
2266{
2267	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2268		/*
2269		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2270		 * (0x003c) so that we can use it with PEBS.
2271		 *
2272		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2273		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2274		 * (0x01c2), which is a PEBS capable event, to get the same
2275		 * count.
2276		 *
2277		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2278		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2279		 * larger than the maximum number of micro-ops that can be
2280		 * retired per cycle (4) and then inverting the condition, we
2281		 * count all cycles that retire 16 or less micro-ops, which
2282		 * is every cycle.
2283		 *
2284		 * Thereby we gain a PEBS capable cycle counter.
2285		 */
2286		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2287
2288		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2289		event->hw.config = alt_config;
2290	}
2291}
2292
2293static int intel_pmu_hw_config(struct perf_event *event)
2294{
2295	int ret = x86_pmu_hw_config(event);
2296
2297	if (ret)
2298		return ret;
2299
2300	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
2301		x86_pmu.pebs_aliases(event);
2302
2303	if (needs_branch_stack(event)) {
2304		ret = intel_pmu_setup_lbr_filter(event);
2305		if (ret)
2306			return ret;
2307
2308		/*
2309		 * BTS is set up earlier in this path, so don't account twice
2310		 */
2311		if (!intel_pmu_has_bts(event)) {
2312			/* disallow lbr if conflicting events are present */
2313			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2314				return -EBUSY;
2315
2316			event->destroy = hw_perf_lbr_event_destroy;
2317		}
2318	}
2319
2320	if (event->attr.type != PERF_TYPE_RAW)
2321		return 0;
2322
2323	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2324		return 0;
2325
2326	if (x86_pmu.version < 3)
2327		return -EINVAL;
2328
2329	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2330		return -EACCES;
2331
2332	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2333
2334	return 0;
2335}
2336
2337struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2338{
2339	if (x86_pmu.guest_get_msrs)
2340		return x86_pmu.guest_get_msrs(nr);
2341	*nr = 0;
2342	return NULL;
2343}
2344EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2345
2346static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2347{
2348	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2349	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2350
2351	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2352	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2353	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2354	/*
2355	 * If PMU counter has PEBS enabled it is not enough to disable counter
2356	 * on a guest entry since PEBS memory write can overshoot guest entry
2357	 * and corrupt guest memory. Disabling PEBS solves the problem.
2358	 */
2359	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2360	arr[1].host = cpuc->pebs_enabled;
2361	arr[1].guest = 0;
2362
2363	*nr = 2;
2364	return arr;
2365}
2366
2367static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2368{
2369	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2370	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2371	int idx;
2372
2373	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2374		struct perf_event *event = cpuc->events[idx];
2375
2376		arr[idx].msr = x86_pmu_config_addr(idx);
2377		arr[idx].host = arr[idx].guest = 0;
2378
2379		if (!test_bit(idx, cpuc->active_mask))
2380			continue;
2381
2382		arr[idx].host = arr[idx].guest =
2383			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2384
2385		if (event->attr.exclude_host)
2386			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2387		else if (event->attr.exclude_guest)
2388			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2389	}
2390
2391	*nr = x86_pmu.num_counters;
2392	return arr;
2393}
2394
2395static void core_pmu_enable_event(struct perf_event *event)
2396{
2397	if (!event->attr.exclude_host)
2398		x86_pmu_enable_event(event);
2399}
2400
2401static void core_pmu_enable_all(int added)
2402{
2403	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2404	int idx;
2405
2406	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2407		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2408
2409		if (!test_bit(idx, cpuc->active_mask) ||
2410				cpuc->events[idx]->attr.exclude_host)
2411			continue;
2412
2413		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2414	}
2415}
2416
2417static int hsw_hw_config(struct perf_event *event)
2418{
2419	int ret = intel_pmu_hw_config(event);
2420
2421	if (ret)
2422		return ret;
2423	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2424		return 0;
2425	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2426
2427	/*
2428	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2429	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2430	 * this combination.
2431	 */
2432	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2433	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2434	      event->attr.precise_ip > 0))
2435		return -EOPNOTSUPP;
2436
2437	if (event_is_checkpointed(event)) {
2438		/*
2439		 * Sampling of checkpointed events can cause situations where
2440		 * the CPU constantly aborts because of a overflow, which is
2441		 * then checkpointed back and ignored. Forbid checkpointing
2442		 * for sampling.
2443		 *
2444		 * But still allow a long sampling period, so that perf stat
2445		 * from KVM works.
2446		 */
2447		if (event->attr.sample_period > 0 &&
2448		    event->attr.sample_period < 0x7fffffff)
2449			return -EOPNOTSUPP;
2450	}
2451	return 0;
2452}
2453
2454static struct event_constraint counter2_constraint =
2455			EVENT_CONSTRAINT(0, 0x4, 0);
2456
2457static struct event_constraint *
2458hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2459			  struct perf_event *event)
2460{
2461	struct event_constraint *c;
2462
2463	c = intel_get_event_constraints(cpuc, idx, event);
2464
2465	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
2466	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2467		if (c->idxmsk64 & (1U << 2))
2468			return &counter2_constraint;
2469		return &emptyconstraint;
2470	}
2471
2472	return c;
2473}
2474
2475/*
2476 * Broadwell:
2477 *
2478 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2479 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2480 * the two to enforce a minimum period of 128 (the smallest value that has bits
2481 * 0-5 cleared and >= 100).
2482 *
2483 * Because of how the code in x86_perf_event_set_period() works, the truncation
2484 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2485 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2486 *
2487 * Therefore the effective (average) period matches the requested period,
2488 * despite coarser hardware granularity.
2489 */
2490static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2491{
2492	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2493			X86_CONFIG(.event=0xc0, .umask=0x01)) {
2494		if (left < 128)
2495			left = 128;
2496		left &= ~0x3fu;
2497	}
2498	return left;
2499}
2500
2501PMU_FORMAT_ATTR(event,	"config:0-7"	);
2502PMU_FORMAT_ATTR(umask,	"config:8-15"	);
2503PMU_FORMAT_ATTR(edge,	"config:18"	);
2504PMU_FORMAT_ATTR(pc,	"config:19"	);
2505PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
2506PMU_FORMAT_ATTR(inv,	"config:23"	);
2507PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
2508PMU_FORMAT_ATTR(in_tx,  "config:32");
2509PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2510
2511static struct attribute *intel_arch_formats_attr[] = {
2512	&format_attr_event.attr,
2513	&format_attr_umask.attr,
2514	&format_attr_edge.attr,
2515	&format_attr_pc.attr,
2516	&format_attr_inv.attr,
2517	&format_attr_cmask.attr,
2518	NULL,
2519};
2520
2521ssize_t intel_event_sysfs_show(char *page, u64 config)
2522{
2523	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2524
2525	return x86_event_sysfs_show(page, config, event);
2526}
2527
2528struct intel_shared_regs *allocate_shared_regs(int cpu)
2529{
2530	struct intel_shared_regs *regs;
2531	int i;
2532
2533	regs = kzalloc_node(sizeof(struct intel_shared_regs),
2534			    GFP_KERNEL, cpu_to_node(cpu));
2535	if (regs) {
2536		/*
2537		 * initialize the locks to keep lockdep happy
2538		 */
2539		for (i = 0; i < EXTRA_REG_MAX; i++)
2540			raw_spin_lock_init(&regs->regs[i].lock);
2541
2542		regs->core_id = -1;
2543	}
2544	return regs;
2545}
2546
2547static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2548{
2549	struct intel_excl_cntrs *c;
2550	int i;
2551
2552	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2553			 GFP_KERNEL, cpu_to_node(cpu));
2554	if (c) {
2555		raw_spin_lock_init(&c->lock);
2556		for (i = 0; i < X86_PMC_IDX_MAX; i++) {
2557			c->states[0].state[i] = INTEL_EXCL_UNUSED;
2558			c->states[0].init_state[i] = INTEL_EXCL_UNUSED;
2559
2560			c->states[1].state[i] = INTEL_EXCL_UNUSED;
2561			c->states[1].init_state[i] = INTEL_EXCL_UNUSED;
2562		}
2563		c->core_id = -1;
2564	}
2565	return c;
2566}
2567
2568static int intel_pmu_cpu_prepare(int cpu)
2569{
2570	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2571
2572	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2573		cpuc->shared_regs = allocate_shared_regs(cpu);
2574		if (!cpuc->shared_regs)
2575			return NOTIFY_BAD;
2576	}
2577
2578	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2579		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2580
2581		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2582		if (!cpuc->constraint_list)
2583			return NOTIFY_BAD;
2584
2585		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2586		if (!cpuc->excl_cntrs) {
2587			kfree(cpuc->constraint_list);
2588			kfree(cpuc->shared_regs);
2589			return NOTIFY_BAD;
2590		}
2591		cpuc->excl_thread_id = 0;
2592	}
2593
2594	return NOTIFY_OK;
2595}
2596
2597static void intel_pmu_cpu_starting(int cpu)
2598{
2599	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2600	int core_id = topology_core_id(cpu);
2601	int i;
2602
2603	init_debug_store_on_cpu(cpu);
2604	/*
2605	 * Deal with CPUs that don't clear their LBRs on power-up.
2606	 */
2607	intel_pmu_lbr_reset();
2608
2609	cpuc->lbr_sel = NULL;
2610
2611	if (!cpuc->shared_regs)
2612		return;
2613
2614	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2615		void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2616
2617		for_each_cpu(i, topology_thread_cpumask(cpu)) {
2618			struct intel_shared_regs *pc;
2619
2620			pc = per_cpu(cpu_hw_events, i).shared_regs;
2621			if (pc && pc->core_id == core_id) {
2622				*onln = cpuc->shared_regs;
2623				cpuc->shared_regs = pc;
2624				break;
2625			}
2626		}
2627		cpuc->shared_regs->core_id = core_id;
2628		cpuc->shared_regs->refcnt++;
2629	}
2630
2631	if (x86_pmu.lbr_sel_map)
2632		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2633
2634	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2635		for_each_cpu(i, topology_thread_cpumask(cpu)) {
2636			struct intel_excl_cntrs *c;
2637
2638			c = per_cpu(cpu_hw_events, i).excl_cntrs;
2639			if (c && c->core_id == core_id) {
2640				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2641				cpuc->excl_cntrs = c;
2642				cpuc->excl_thread_id = 1;
2643				break;
2644			}
2645		}
2646		cpuc->excl_cntrs->core_id = core_id;
2647		cpuc->excl_cntrs->refcnt++;
2648	}
2649}
2650
2651static void free_excl_cntrs(int cpu)
2652{
2653	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2654	struct intel_excl_cntrs *c;
2655
2656	c = cpuc->excl_cntrs;
2657	if (c) {
2658		if (c->core_id == -1 || --c->refcnt == 0)
2659			kfree(c);
2660		cpuc->excl_cntrs = NULL;
2661		kfree(cpuc->constraint_list);
2662		cpuc->constraint_list = NULL;
2663	}
2664}
2665
2666static void intel_pmu_cpu_dying(int cpu)
2667{
2668	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2669	struct intel_shared_regs *pc;
2670
2671	pc = cpuc->shared_regs;
2672	if (pc) {
2673		if (pc->core_id == -1 || --pc->refcnt == 0)
2674			kfree(pc);
2675		cpuc->shared_regs = NULL;
2676	}
2677
2678	free_excl_cntrs(cpu);
2679
2680	fini_debug_store_on_cpu(cpu);
2681}
2682
2683PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2684
2685PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2686
2687static struct attribute *intel_arch3_formats_attr[] = {
2688	&format_attr_event.attr,
2689	&format_attr_umask.attr,
2690	&format_attr_edge.attr,
2691	&format_attr_pc.attr,
2692	&format_attr_any.attr,
2693	&format_attr_inv.attr,
2694	&format_attr_cmask.attr,
2695	&format_attr_in_tx.attr,
2696	&format_attr_in_tx_cp.attr,
2697
2698	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2699	&format_attr_ldlat.attr, /* PEBS load latency */
2700	NULL,
2701};
2702
2703static __initconst const struct x86_pmu core_pmu = {
2704	.name			= "core",
2705	.handle_irq		= x86_pmu_handle_irq,
2706	.disable_all		= x86_pmu_disable_all,
2707	.enable_all		= core_pmu_enable_all,
2708	.enable			= core_pmu_enable_event,
2709	.disable		= x86_pmu_disable_event,
2710	.hw_config		= x86_pmu_hw_config,
2711	.schedule_events	= x86_schedule_events,
2712	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
2713	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
2714	.event_map		= intel_pmu_event_map,
2715	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
2716	.apic			= 1,
2717	/*
2718	 * Intel PMCs cannot be accessed sanely above 32-bit width,
2719	 * so we install an artificial 1<<31 period regardless of
2720	 * the generic event period:
2721	 */
2722	.max_period		= (1ULL<<31) - 1,
2723	.get_event_constraints	= intel_get_event_constraints,
2724	.put_event_constraints	= intel_put_event_constraints,
2725	.event_constraints	= intel_core_event_constraints,
2726	.guest_get_msrs		= core_guest_get_msrs,
2727	.format_attrs		= intel_arch_formats_attr,
2728	.events_sysfs_show	= intel_event_sysfs_show,
2729
2730	/*
2731	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2732	 * together with PMU version 1 and thus be using core_pmu with
2733	 * shared_regs. We need following callbacks here to allocate
2734	 * it properly.
2735	 */
2736	.cpu_prepare		= intel_pmu_cpu_prepare,
2737	.cpu_starting		= intel_pmu_cpu_starting,
2738	.cpu_dying		= intel_pmu_cpu_dying,
2739};
2740
2741static __initconst const struct x86_pmu intel_pmu = {
2742	.name			= "Intel",
2743	.handle_irq		= intel_pmu_handle_irq,
2744	.disable_all		= intel_pmu_disable_all,
2745	.enable_all		= intel_pmu_enable_all,
2746	.enable			= intel_pmu_enable_event,
2747	.disable		= intel_pmu_disable_event,
2748	.hw_config		= intel_pmu_hw_config,
2749	.schedule_events	= x86_schedule_events,
2750	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
2751	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
2752	.event_map		= intel_pmu_event_map,
2753	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
2754	.apic			= 1,
2755	/*
2756	 * Intel PMCs cannot be accessed sanely above 32 bit width,
2757	 * so we install an artificial 1<<31 period regardless of
2758	 * the generic event period:
2759	 */
2760	.max_period		= (1ULL << 31) - 1,
2761	.get_event_constraints	= intel_get_event_constraints,
2762	.put_event_constraints	= intel_put_event_constraints,
2763	.pebs_aliases		= intel_pebs_aliases_core2,
2764
2765	.format_attrs		= intel_arch3_formats_attr,
2766	.events_sysfs_show	= intel_event_sysfs_show,
2767
2768	.cpu_prepare		= intel_pmu_cpu_prepare,
2769	.cpu_starting		= intel_pmu_cpu_starting,
2770	.cpu_dying		= intel_pmu_cpu_dying,
2771	.guest_get_msrs		= intel_guest_get_msrs,
2772	.sched_task		= intel_pmu_lbr_sched_task,
2773};
2774
2775static __init void intel_clovertown_quirk(void)
2776{
2777	/*
2778	 * PEBS is unreliable due to:
2779	 *
2780	 *   AJ67  - PEBS may experience CPL leaks
2781	 *   AJ68  - PEBS PMI may be delayed by one event
2782	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2783	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2784	 *
2785	 * AJ67 could be worked around by restricting the OS/USR flags.
2786	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2787	 *
2788	 * AJ106 could possibly be worked around by not allowing LBR
2789	 *       usage from PEBS, including the fixup.
2790	 * AJ68  could possibly be worked around by always programming
2791	 *	 a pebs_event_reset[0] value and coping with the lost events.
2792	 *
2793	 * But taken together it might just make sense to not enable PEBS on
2794	 * these chips.
2795	 */
2796	pr_warn("PEBS disabled due to CPU errata\n");
2797	x86_pmu.pebs = 0;
2798	x86_pmu.pebs_constraints = NULL;
2799}
2800
2801static int intel_snb_pebs_broken(int cpu)
2802{
2803	u32 rev = UINT_MAX; /* default to broken for unknown models */
2804
2805	switch (cpu_data(cpu).x86_model) {
2806	case 42: /* SNB */
2807		rev = 0x28;
2808		break;
2809
2810	case 45: /* SNB-EP */
2811		switch (cpu_data(cpu).x86_mask) {
2812		case 6: rev = 0x618; break;
2813		case 7: rev = 0x70c; break;
2814		}
2815	}
2816
2817	return (cpu_data(cpu).microcode < rev);
2818}
2819
2820static void intel_snb_check_microcode(void)
2821{
2822	int pebs_broken = 0;
2823	int cpu;
2824
2825	get_online_cpus();
2826	for_each_online_cpu(cpu) {
2827		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2828			break;
2829	}
2830	put_online_cpus();
2831
2832	if (pebs_broken == x86_pmu.pebs_broken)
2833		return;
2834
2835	/*
2836	 * Serialized by the microcode lock..
2837	 */
2838	if (x86_pmu.pebs_broken) {
2839		pr_info("PEBS enabled due to microcode update\n");
2840		x86_pmu.pebs_broken = 0;
2841	} else {
2842		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2843		x86_pmu.pebs_broken = 1;
2844	}
2845}
2846
2847/*
2848 * Under certain circumstances, access certain MSR may cause #GP.
2849 * The function tests if the input MSR can be safely accessed.
2850 */
2851static bool check_msr(unsigned long msr, u64 mask)
2852{
2853	u64 val_old, val_new, val_tmp;
2854
2855	/*
2856	 * Read the current value, change it and read it back to see if it
2857	 * matches, this is needed to detect certain hardware emulators
2858	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2859	 */
2860	if (rdmsrl_safe(msr, &val_old))
2861		return false;
2862
2863	/*
2864	 * Only change the bits which can be updated by wrmsrl.
2865	 */
2866	val_tmp = val_old ^ mask;
2867	if (wrmsrl_safe(msr, val_tmp) ||
2868	    rdmsrl_safe(msr, &val_new))
2869		return false;
2870
2871	if (val_new != val_tmp)
2872		return false;
2873
2874	/* Here it's sure that the MSR can be safely accessed.
2875	 * Restore the old value and return.
2876	 */
2877	wrmsrl(msr, val_old);
2878
2879	return true;
2880}
2881
2882static __init void intel_sandybridge_quirk(void)
2883{
2884	x86_pmu.check_microcode = intel_snb_check_microcode;
2885	intel_snb_check_microcode();
2886}
2887
2888static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2889	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2890	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2891	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2892	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2893	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2894	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2895	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2896};
2897
2898static __init void intel_arch_events_quirk(void)
2899{
2900	int bit;
2901
2902	/* disable event that reported as not presend by cpuid */
2903	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2904		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2905		pr_warn("CPUID marked event: \'%s\' unavailable\n",
2906			intel_arch_events_map[bit].name);
2907	}
2908}
2909
2910static __init void intel_nehalem_quirk(void)
2911{
2912	union cpuid10_ebx ebx;
2913
2914	ebx.full = x86_pmu.events_maskl;
2915	if (ebx.split.no_branch_misses_retired) {
2916		/*
2917		 * Erratum AAJ80 detected, we work it around by using
2918		 * the BR_MISP_EXEC.ANY event. This will over-count
2919		 * branch-misses, but it's still much better than the
2920		 * architectural event which is often completely bogus:
2921		 */
2922		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2923		ebx.split.no_branch_misses_retired = 0;
2924		x86_pmu.events_maskl = ebx.full;
2925		pr_info("CPU erratum AAJ80 worked around\n");
2926	}
2927}
2928
2929/*
2930 * enable software workaround for errata:
2931 * SNB: BJ122
2932 * IVB: BV98
2933 * HSW: HSD29
2934 *
2935 * Only needed when HT is enabled. However detecting
2936 * if HT is enabled is difficult (model specific). So instead,
2937 * we enable the workaround in the early boot, and verify if
2938 * it is needed in a later initcall phase once we have valid
2939 * topology information to check if HT is actually enabled
2940 */
2941static __init void intel_ht_bug(void)
2942{
2943	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
2944
2945	x86_pmu.commit_scheduling = intel_commit_scheduling;
2946	x86_pmu.start_scheduling = intel_start_scheduling;
2947	x86_pmu.stop_scheduling = intel_stop_scheduling;
2948}
2949
2950EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
2951EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
2952
2953/* Haswell special events */
2954EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
2955EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
2956EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
2957EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
2958EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
2959EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
2960EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
2961EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
2962EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
2963EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
2964EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
2965EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
2966
2967static struct attribute *hsw_events_attrs[] = {
2968	EVENT_PTR(tx_start),
2969	EVENT_PTR(tx_commit),
2970	EVENT_PTR(tx_abort),
2971	EVENT_PTR(tx_capacity),
2972	EVENT_PTR(tx_conflict),
2973	EVENT_PTR(el_start),
2974	EVENT_PTR(el_commit),
2975	EVENT_PTR(el_abort),
2976	EVENT_PTR(el_capacity),
2977	EVENT_PTR(el_conflict),
2978	EVENT_PTR(cycles_t),
2979	EVENT_PTR(cycles_ct),
2980	EVENT_PTR(mem_ld_hsw),
2981	EVENT_PTR(mem_st_hsw),
2982	NULL
2983};
2984
2985__init int intel_pmu_init(void)
2986{
2987	union cpuid10_edx edx;
2988	union cpuid10_eax eax;
2989	union cpuid10_ebx ebx;
2990	struct event_constraint *c;
2991	unsigned int unused;
2992	struct extra_reg *er;
2993	int version, i;
2994
2995	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2996		switch (boot_cpu_data.x86) {
2997		case 0x6:
2998			return p6_pmu_init();
2999		case 0xb:
3000			return knc_pmu_init();
3001		case 0xf:
3002			return p4_pmu_init();
3003		}
3004		return -ENODEV;
3005	}
3006
3007	/*
3008	 * Check whether the Architectural PerfMon supports
3009	 * Branch Misses Retired hw_event or not.
3010	 */
3011	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3012	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3013		return -ENODEV;
3014
3015	version = eax.split.version_id;
3016	if (version < 2)
3017		x86_pmu = core_pmu;
3018	else
3019		x86_pmu = intel_pmu;
3020
3021	x86_pmu.version			= version;
3022	x86_pmu.num_counters		= eax.split.num_counters;
3023	x86_pmu.cntval_bits		= eax.split.bit_width;
3024	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3025
3026	x86_pmu.events_maskl		= ebx.full;
3027	x86_pmu.events_mask_len		= eax.split.mask_length;
3028
3029	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3030
3031	/*
3032	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3033	 * assume at least 3 events:
3034	 */
3035	if (version > 1)
3036		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3037
3038	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3039		u64 capabilities;
3040
3041		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3042		x86_pmu.intel_cap.capabilities = capabilities;
3043	}
3044
3045	intel_ds_init();
3046
3047	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3048
3049	/*
3050	 * Install the hw-cache-events table:
3051	 */
3052	switch (boot_cpu_data.x86_model) {
3053	case 14: /* 65nm Core "Yonah" */
3054		pr_cont("Core events, ");
3055		break;
3056
3057	case 15: /* 65nm Core2 "Merom"          */
3058		x86_add_quirk(intel_clovertown_quirk);
3059	case 22: /* 65nm Core2 "Merom-L"        */
3060	case 23: /* 45nm Core2 "Penryn"         */
3061	case 29: /* 45nm Core2 "Dunnington (MP) */
3062		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3063		       sizeof(hw_cache_event_ids));
3064
3065		intel_pmu_lbr_init_core();
3066
3067		x86_pmu.event_constraints = intel_core2_event_constraints;
3068		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3069		pr_cont("Core2 events, ");
3070		break;
3071
3072	case 30: /* 45nm Nehalem    */
3073	case 26: /* 45nm Nehalem-EP */
3074	case 46: /* 45nm Nehalem-EX */
3075		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3076		       sizeof(hw_cache_event_ids));
3077		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3078		       sizeof(hw_cache_extra_regs));
3079
3080		intel_pmu_lbr_init_nhm();
3081
3082		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3083		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3084		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3085		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3086
3087		x86_pmu.cpu_events = nhm_events_attrs;
3088
3089		/* UOPS_ISSUED.STALLED_CYCLES */
3090		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3091			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3092		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3093		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3094			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3095
3096		x86_add_quirk(intel_nehalem_quirk);
3097
3098		pr_cont("Nehalem events, ");
3099		break;
3100
3101	case 28: /* 45nm Atom "Pineview"   */
3102	case 38: /* 45nm Atom "Lincroft"   */
3103	case 39: /* 32nm Atom "Penwell"    */
3104	case 53: /* 32nm Atom "Cloverview" */
3105	case 54: /* 32nm Atom "Cedarview"  */
3106		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3107		       sizeof(hw_cache_event_ids));
3108
3109		intel_pmu_lbr_init_atom();
3110
3111		x86_pmu.event_constraints = intel_gen_event_constraints;
3112		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3113		pr_cont("Atom events, ");
3114		break;
3115
3116	case 55: /* 22nm Atom "Silvermont"                */
3117	case 76: /* 14nm Atom "Airmont"                   */
3118	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3119		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3120			sizeof(hw_cache_event_ids));
3121		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3122		       sizeof(hw_cache_extra_regs));
3123
3124		intel_pmu_lbr_init_atom();
3125
3126		x86_pmu.event_constraints = intel_slm_event_constraints;
3127		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3128		x86_pmu.extra_regs = intel_slm_extra_regs;
3129		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3130		pr_cont("Silvermont events, ");
3131		break;
3132
3133	case 37: /* 32nm Westmere    */
3134	case 44: /* 32nm Westmere-EP */
3135	case 47: /* 32nm Westmere-EX */
3136		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3137		       sizeof(hw_cache_event_ids));
3138		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3139		       sizeof(hw_cache_extra_regs));
3140
3141		intel_pmu_lbr_init_nhm();
3142
3143		x86_pmu.event_constraints = intel_westmere_event_constraints;
3144		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3145		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3146		x86_pmu.extra_regs = intel_westmere_extra_regs;
3147		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3148
3149		x86_pmu.cpu_events = nhm_events_attrs;
3150
3151		/* UOPS_ISSUED.STALLED_CYCLES */
3152		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3153			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3154		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3155		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3156			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3157
3158		pr_cont("Westmere events, ");
3159		break;
3160
3161	case 42: /* 32nm SandyBridge         */
3162	case 45: /* 32nm SandyBridge-E/EN/EP */
3163		x86_add_quirk(intel_sandybridge_quirk);
3164		x86_add_quirk(intel_ht_bug);
3165		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3166		       sizeof(hw_cache_event_ids));
3167		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3168		       sizeof(hw_cache_extra_regs));
3169
3170		intel_pmu_lbr_init_snb();
3171
3172		x86_pmu.event_constraints = intel_snb_event_constraints;
3173		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3174		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3175		if (boot_cpu_data.x86_model == 45)
3176			x86_pmu.extra_regs = intel_snbep_extra_regs;
3177		else
3178			x86_pmu.extra_regs = intel_snb_extra_regs;
3179
3180
3181		/* all extra regs are per-cpu when HT is on */
3182		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3183		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3184
3185		x86_pmu.cpu_events = snb_events_attrs;
3186
3187		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3188		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3189			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3190		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3191		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3192			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3193
3194		pr_cont("SandyBridge events, ");
3195		break;
3196
3197	case 58: /* 22nm IvyBridge       */
3198	case 62: /* 22nm IvyBridge-EP/EX */
3199		x86_add_quirk(intel_ht_bug);
3200		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3201		       sizeof(hw_cache_event_ids));
3202		/* dTLB-load-misses on IVB is different than SNB */
3203		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3204
3205		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3206		       sizeof(hw_cache_extra_regs));
3207
3208		intel_pmu_lbr_init_snb();
3209
3210		x86_pmu.event_constraints = intel_ivb_event_constraints;
3211		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3212		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3213		if (boot_cpu_data.x86_model == 62)
3214			x86_pmu.extra_regs = intel_snbep_extra_regs;
3215		else
3216			x86_pmu.extra_regs = intel_snb_extra_regs;
3217		/* all extra regs are per-cpu when HT is on */
3218		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3219		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3220
3221		x86_pmu.cpu_events = snb_events_attrs;
3222
3223		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3224		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3225			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3226
3227		pr_cont("IvyBridge events, ");
3228		break;
3229
3230
3231	case 60: /* 22nm Haswell Core */
3232	case 63: /* 22nm Haswell Server */
3233	case 69: /* 22nm Haswell ULT */
3234	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3235		x86_add_quirk(intel_ht_bug);
3236		x86_pmu.late_ack = true;
3237		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3238		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3239
3240		intel_pmu_lbr_init_hsw();
3241
3242		x86_pmu.event_constraints = intel_hsw_event_constraints;
3243		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3244		x86_pmu.extra_regs = intel_snbep_extra_regs;
3245		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3246		/* all extra regs are per-cpu when HT is on */
3247		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3248		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3249
3250		x86_pmu.hw_config = hsw_hw_config;
3251		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3252		x86_pmu.cpu_events = hsw_events_attrs;
3253		x86_pmu.lbr_double_abort = true;
3254		pr_cont("Haswell events, ");
3255		break;
3256
3257	case 61: /* 14nm Broadwell Core-M */
3258	case 86: /* 14nm Broadwell Xeon D */
3259	case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3260	case 79: /* 14nm Broadwell Server */
3261		x86_pmu.late_ack = true;
3262		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3263		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3264
3265		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3266		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3267									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3268		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3269									  HSW_SNOOP_DRAM;
3270		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3271									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3272		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3273									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3274
3275		intel_pmu_lbr_init_hsw();
3276
3277		x86_pmu.event_constraints = intel_bdw_event_constraints;
3278		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3279		x86_pmu.extra_regs = intel_snbep_extra_regs;
3280		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3281		/* all extra regs are per-cpu when HT is on */
3282		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3283		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3284
3285		x86_pmu.hw_config = hsw_hw_config;
3286		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3287		x86_pmu.cpu_events = hsw_events_attrs;
3288		x86_pmu.limit_period = bdw_limit_period;
3289		pr_cont("Broadwell events, ");
3290		break;
3291
3292	default:
3293		switch (x86_pmu.version) {
3294		case 1:
3295			x86_pmu.event_constraints = intel_v1_event_constraints;
3296			pr_cont("generic architected perfmon v1, ");
3297			break;
3298		default:
3299			/*
3300			 * default constraints for v2 and up
3301			 */
3302			x86_pmu.event_constraints = intel_gen_event_constraints;
3303			pr_cont("generic architected perfmon, ");
3304			break;
3305		}
3306	}
3307
3308	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3309		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3310		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3311		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3312	}
3313	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3314
3315	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3316		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3317		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3318		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3319	}
3320
3321	x86_pmu.intel_ctrl |=
3322		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3323
3324	if (x86_pmu.event_constraints) {
3325		/*
3326		 * event on fixed counter2 (REF_CYCLES) only works on this
3327		 * counter, so do not extend mask to generic counters
3328		 */
3329		for_each_event_constraint(c, x86_pmu.event_constraints) {
3330			if (c->cmask == FIXED_EVENT_FLAGS
3331			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3332				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3333			}
3334			c->idxmsk64 &=
3335				~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3336			c->weight = hweight64(c->idxmsk64);
3337		}
3338	}
3339
3340	/*
3341	 * Access LBR MSR may cause #GP under certain circumstances.
3342	 * E.g. KVM doesn't support LBR MSR
3343	 * Check all LBT MSR here.
3344	 * Disable LBR access if any LBR MSRs can not be accessed.
3345	 */
3346	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3347		x86_pmu.lbr_nr = 0;
3348	for (i = 0; i < x86_pmu.lbr_nr; i++) {
3349		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3350		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3351			x86_pmu.lbr_nr = 0;
3352	}
3353
3354	/*
3355	 * Access extra MSR may cause #GP under certain circumstances.
3356	 * E.g. KVM doesn't support offcore event
3357	 * Check all extra_regs here.
3358	 */
3359	if (x86_pmu.extra_regs) {
3360		for (er = x86_pmu.extra_regs; er->msr; er++) {
3361			er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3362			/* Disable LBR select mapping */
3363			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3364				x86_pmu.lbr_sel_map = NULL;
3365		}
3366	}
3367
3368	/* Support full width counters using alternative MSR range */
3369	if (x86_pmu.intel_cap.full_width_write) {
3370		x86_pmu.max_period = x86_pmu.cntval_mask;
3371		x86_pmu.perfctr = MSR_IA32_PMC0;
3372		pr_cont("full-width counters, ");
3373	}
3374
3375	return 0;
3376}
3377
3378/*
3379 * HT bug: phase 2 init
3380 * Called once we have valid topology information to check
3381 * whether or not HT is enabled
3382 * If HT is off, then we disable the workaround
3383 */
3384static __init int fixup_ht_bug(void)
3385{
3386	int cpu = smp_processor_id();
3387	int w, c;
3388	/*
3389	 * problem not present on this CPU model, nothing to do
3390	 */
3391	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3392		return 0;
3393
3394	w = cpumask_weight(topology_thread_cpumask(cpu));
3395	if (w > 1) {
3396		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3397		return 0;
3398	}
3399
3400	watchdog_nmi_disable_all();
3401
3402	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3403
3404	x86_pmu.commit_scheduling = NULL;
3405	x86_pmu.start_scheduling = NULL;
3406	x86_pmu.stop_scheduling = NULL;
3407
3408	watchdog_nmi_enable_all();
3409
3410	get_online_cpus();
3411
3412	for_each_online_cpu(c) {
3413		free_excl_cntrs(c);
3414	}
3415
3416	put_online_cpus();
3417	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3418	return 0;
3419}
3420subsys_initcall(fixup_ht_bug)
3421