1/* 2 * linux/arch/x86_64/entry.S 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 7 */ 8 9/* 10 * entry.S contains the system-call and fault low-level handling routines. 11 * 12 * Some of this is documented in Documentation/x86/entry_64.txt 13 * 14 * NOTE: This code handles signal-recognition, which happens every time 15 * after an interrupt and after each system call. 16 * 17 * A note on terminology: 18 * - iret frame: Architecture defined interrupt frame from SS to RIP 19 * at the top of the kernel process stack. 20 * 21 * Some macro usage: 22 * - CFI macros are used to generate dwarf2 unwind information for better 23 * backtraces. They don't change any code. 24 * - ENTRY/END Define functions in the symbol table. 25 * - TRACE_IRQ_* - Trace hard interrupt state for lock debugging. 26 * - idtentry - Define exception entry points. 27 */ 28 29#include <linux/linkage.h> 30#include <asm/segment.h> 31#include <asm/cache.h> 32#include <asm/errno.h> 33#include <asm/dwarf2.h> 34#include <asm/calling.h> 35#include <asm/asm-offsets.h> 36#include <asm/msr.h> 37#include <asm/unistd.h> 38#include <asm/thread_info.h> 39#include <asm/hw_irq.h> 40#include <asm/page_types.h> 41#include <asm/irqflags.h> 42#include <asm/paravirt.h> 43#include <asm/percpu.h> 44#include <asm/asm.h> 45#include <asm/context_tracking.h> 46#include <asm/smap.h> 47#include <asm/pgtable_types.h> 48#include <linux/err.h> 49 50/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */ 51#include <linux/elf-em.h> 52#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) 53#define __AUDIT_ARCH_64BIT 0x80000000 54#define __AUDIT_ARCH_LE 0x40000000 55 56 .code64 57 .section .entry.text, "ax" 58 59 60#ifdef CONFIG_PARAVIRT 61ENTRY(native_usergs_sysret64) 62 swapgs 63 sysretq 64ENDPROC(native_usergs_sysret64) 65#endif /* CONFIG_PARAVIRT */ 66 67 68.macro TRACE_IRQS_IRETQ 69#ifdef CONFIG_TRACE_IRQFLAGS 70 bt $9,EFLAGS(%rsp) /* interrupts off? */ 71 jnc 1f 72 TRACE_IRQS_ON 731: 74#endif 75.endm 76 77/* 78 * When dynamic function tracer is enabled it will add a breakpoint 79 * to all locations that it is about to modify, sync CPUs, update 80 * all the code, sync CPUs, then remove the breakpoints. In this time 81 * if lockdep is enabled, it might jump back into the debug handler 82 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF). 83 * 84 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to 85 * make sure the stack pointer does not get reset back to the top 86 * of the debug stack, and instead just reuses the current stack. 87 */ 88#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS) 89 90.macro TRACE_IRQS_OFF_DEBUG 91 call debug_stack_set_zero 92 TRACE_IRQS_OFF 93 call debug_stack_reset 94.endm 95 96.macro TRACE_IRQS_ON_DEBUG 97 call debug_stack_set_zero 98 TRACE_IRQS_ON 99 call debug_stack_reset 100.endm 101 102.macro TRACE_IRQS_IRETQ_DEBUG 103 bt $9,EFLAGS(%rsp) /* interrupts off? */ 104 jnc 1f 105 TRACE_IRQS_ON_DEBUG 1061: 107.endm 108 109#else 110# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF 111# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON 112# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ 113#endif 114 115/* 116 * empty frame 117 */ 118 .macro EMPTY_FRAME start=1 offset=0 119 .if \start 120 CFI_STARTPROC simple 121 CFI_SIGNAL_FRAME 122 CFI_DEF_CFA rsp,8+\offset 123 .else 124 CFI_DEF_CFA_OFFSET 8+\offset 125 .endif 126 .endm 127 128/* 129 * initial frame state for interrupts (and exceptions without error code) 130 */ 131 .macro INTR_FRAME start=1 offset=0 132 EMPTY_FRAME \start, 5*8+\offset 133 /*CFI_REL_OFFSET ss, 4*8+\offset*/ 134 CFI_REL_OFFSET rsp, 3*8+\offset 135 /*CFI_REL_OFFSET rflags, 2*8+\offset*/ 136 /*CFI_REL_OFFSET cs, 1*8+\offset*/ 137 CFI_REL_OFFSET rip, 0*8+\offset 138 .endm 139 140/* 141 * initial frame state for exceptions with error code (and interrupts 142 * with vector already pushed) 143 */ 144 .macro XCPT_FRAME start=1 offset=0 145 INTR_FRAME \start, 1*8+\offset 146 .endm 147 148/* 149 * frame that enables passing a complete pt_regs to a C function. 150 */ 151 .macro DEFAULT_FRAME start=1 offset=0 152 XCPT_FRAME \start, ORIG_RAX+\offset 153 CFI_REL_OFFSET rdi, RDI+\offset 154 CFI_REL_OFFSET rsi, RSI+\offset 155 CFI_REL_OFFSET rdx, RDX+\offset 156 CFI_REL_OFFSET rcx, RCX+\offset 157 CFI_REL_OFFSET rax, RAX+\offset 158 CFI_REL_OFFSET r8, R8+\offset 159 CFI_REL_OFFSET r9, R9+\offset 160 CFI_REL_OFFSET r10, R10+\offset 161 CFI_REL_OFFSET r11, R11+\offset 162 CFI_REL_OFFSET rbx, RBX+\offset 163 CFI_REL_OFFSET rbp, RBP+\offset 164 CFI_REL_OFFSET r12, R12+\offset 165 CFI_REL_OFFSET r13, R13+\offset 166 CFI_REL_OFFSET r14, R14+\offset 167 CFI_REL_OFFSET r15, R15+\offset 168 .endm 169 170/* 171 * 64bit SYSCALL instruction entry. Up to 6 arguments in registers. 172 * 173 * 64bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 174 * then loads new ss, cs, and rip from previously programmed MSRs. 175 * rflags gets masked by a value from another MSR (so CLD and CLAC 176 * are not needed). SYSCALL does not save anything on the stack 177 * and does not change rsp. 178 * 179 * Registers on entry: 180 * rax system call number 181 * rcx return address 182 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 183 * rdi arg0 184 * rsi arg1 185 * rdx arg2 186 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 187 * r8 arg4 188 * r9 arg5 189 * (note: r12-r15,rbp,rbx are callee-preserved in C ABI) 190 * 191 * Only called from user space. 192 * 193 * When user can change pt_regs->foo always force IRET. That is because 194 * it deals with uncanonical addresses better. SYSRET has trouble 195 * with them due to bugs in both AMD and Intel CPUs. 196 */ 197 198ENTRY(system_call) 199 CFI_STARTPROC simple 200 CFI_SIGNAL_FRAME 201 CFI_DEF_CFA rsp,0 202 CFI_REGISTER rip,rcx 203 /*CFI_REGISTER rflags,r11*/ 204 205 /* 206 * Interrupts are off on entry. 207 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, 208 * it is too small to ever cause noticeable irq latency. 209 */ 210 SWAPGS_UNSAFE_STACK 211 /* 212 * A hypervisor implementation might want to use a label 213 * after the swapgs, so that it can do the swapgs 214 * for the guest and jump here on syscall. 215 */ 216GLOBAL(system_call_after_swapgs) 217 218 movq %rsp,PER_CPU_VAR(rsp_scratch) 219 movq PER_CPU_VAR(kernel_stack),%rsp 220 221 /* Construct struct pt_regs on stack */ 222 pushq_cfi $__USER_DS /* pt_regs->ss */ 223 pushq_cfi PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */ 224 /* 225 * Re-enable interrupts. 226 * We use 'rsp_scratch' as a scratch space, hence irq-off block above 227 * must execute atomically in the face of possible interrupt-driven 228 * task preemption. We must enable interrupts only after we're done 229 * with using rsp_scratch: 230 */ 231 ENABLE_INTERRUPTS(CLBR_NONE) 232 pushq_cfi %r11 /* pt_regs->flags */ 233 pushq_cfi $__USER_CS /* pt_regs->cs */ 234 pushq_cfi %rcx /* pt_regs->ip */ 235 CFI_REL_OFFSET rip,0 236 pushq_cfi_reg rax /* pt_regs->orig_ax */ 237 pushq_cfi_reg rdi /* pt_regs->di */ 238 pushq_cfi_reg rsi /* pt_regs->si */ 239 pushq_cfi_reg rdx /* pt_regs->dx */ 240 pushq_cfi_reg rcx /* pt_regs->cx */ 241 pushq_cfi $-ENOSYS /* pt_regs->ax */ 242 pushq_cfi_reg r8 /* pt_regs->r8 */ 243 pushq_cfi_reg r9 /* pt_regs->r9 */ 244 pushq_cfi_reg r10 /* pt_regs->r10 */ 245 pushq_cfi_reg r11 /* pt_regs->r11 */ 246 sub $(6*8),%rsp /* pt_regs->bp,bx,r12-15 not saved */ 247 CFI_ADJUST_CFA_OFFSET 6*8 248 249 testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) 250 jnz tracesys 251system_call_fastpath: 252#if __SYSCALL_MASK == ~0 253 cmpq $__NR_syscall_max,%rax 254#else 255 andl $__SYSCALL_MASK,%eax 256 cmpl $__NR_syscall_max,%eax 257#endif 258 ja 1f /* return -ENOSYS (already in pt_regs->ax) */ 259 movq %r10,%rcx 260 call *sys_call_table(,%rax,8) 261 movq %rax,RAX(%rsp) 2621: 263/* 264 * Syscall return path ending with SYSRET (fast path). 265 * Has incompletely filled pt_regs. 266 */ 267 LOCKDEP_SYS_EXIT 268 /* 269 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, 270 * it is too small to ever cause noticeable irq latency. 271 */ 272 DISABLE_INTERRUPTS(CLBR_NONE) 273 274 /* 275 * We must check ti flags with interrupts (or at least preemption) 276 * off because we must *never* return to userspace without 277 * processing exit work that is enqueued if we're preempted here. 278 * In particular, returning to userspace with any of the one-shot 279 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is 280 * very bad. 281 */ 282 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) 283 jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */ 284 285 CFI_REMEMBER_STATE 286 287 RESTORE_C_REGS_EXCEPT_RCX_R11 288 movq RIP(%rsp),%rcx 289 CFI_REGISTER rip,rcx 290 movq EFLAGS(%rsp),%r11 291 /*CFI_REGISTER rflags,r11*/ 292 movq RSP(%rsp),%rsp 293 /* 294 * 64bit SYSRET restores rip from rcx, 295 * rflags from r11 (but RF and VM bits are forced to 0), 296 * cs and ss are loaded from MSRs. 297 * Restoration of rflags re-enables interrupts. 298 * 299 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss 300 * descriptor is not reinitialized. This means that we should 301 * avoid SYSRET with SS == NULL, which could happen if we schedule, 302 * exit the kernel, and re-enter using an interrupt vector. (All 303 * interrupt entries on x86_64 set SS to NULL.) We prevent that 304 * from happening by reloading SS in __switch_to. (Actually 305 * detecting the failure in 64-bit userspace is tricky but can be 306 * done.) 307 */ 308 USERGS_SYSRET64 309 310 CFI_RESTORE_STATE 311 312 /* Do syscall entry tracing */ 313tracesys: 314 movq %rsp, %rdi 315 movl $AUDIT_ARCH_X86_64, %esi 316 call syscall_trace_enter_phase1 317 test %rax, %rax 318 jnz tracesys_phase2 /* if needed, run the slow path */ 319 RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */ 320 movq ORIG_RAX(%rsp), %rax 321 jmp system_call_fastpath /* and return to the fast path */ 322 323tracesys_phase2: 324 SAVE_EXTRA_REGS 325 movq %rsp, %rdi 326 movl $AUDIT_ARCH_X86_64, %esi 327 movq %rax,%rdx 328 call syscall_trace_enter_phase2 329 330 /* 331 * Reload registers from stack in case ptrace changed them. 332 * We don't reload %rax because syscall_trace_entry_phase2() returned 333 * the value it wants us to use in the table lookup. 334 */ 335 RESTORE_C_REGS_EXCEPT_RAX 336 RESTORE_EXTRA_REGS 337#if __SYSCALL_MASK == ~0 338 cmpq $__NR_syscall_max,%rax 339#else 340 andl $__SYSCALL_MASK,%eax 341 cmpl $__NR_syscall_max,%eax 342#endif 343 ja 1f /* return -ENOSYS (already in pt_regs->ax) */ 344 movq %r10,%rcx /* fixup for C */ 345 call *sys_call_table(,%rax,8) 346 movq %rax,RAX(%rsp) 3471: 348 /* Use IRET because user could have changed pt_regs->foo */ 349 350/* 351 * Syscall return path ending with IRET. 352 * Has correct iret frame. 353 */ 354GLOBAL(int_ret_from_sys_call) 355 DISABLE_INTERRUPTS(CLBR_NONE) 356int_ret_from_sys_call_irqs_off: /* jumps come here from the irqs-off SYSRET path */ 357 TRACE_IRQS_OFF 358 movl $_TIF_ALLWORK_MASK,%edi 359 /* edi: mask to check */ 360GLOBAL(int_with_check) 361 LOCKDEP_SYS_EXIT_IRQ 362 GET_THREAD_INFO(%rcx) 363 movl TI_flags(%rcx),%edx 364 andl %edi,%edx 365 jnz int_careful 366 andl $~TS_COMPAT,TI_status(%rcx) 367 jmp syscall_return 368 369 /* Either reschedule or signal or syscall exit tracking needed. */ 370 /* First do a reschedule test. */ 371 /* edx: work, edi: workmask */ 372int_careful: 373 bt $TIF_NEED_RESCHED,%edx 374 jnc int_very_careful 375 TRACE_IRQS_ON 376 ENABLE_INTERRUPTS(CLBR_NONE) 377 pushq_cfi %rdi 378 SCHEDULE_USER 379 popq_cfi %rdi 380 DISABLE_INTERRUPTS(CLBR_NONE) 381 TRACE_IRQS_OFF 382 jmp int_with_check 383 384 /* handle signals and tracing -- both require a full pt_regs */ 385int_very_careful: 386 TRACE_IRQS_ON 387 ENABLE_INTERRUPTS(CLBR_NONE) 388 SAVE_EXTRA_REGS 389 /* Check for syscall exit trace */ 390 testl $_TIF_WORK_SYSCALL_EXIT,%edx 391 jz int_signal 392 pushq_cfi %rdi 393 leaq 8(%rsp),%rdi # &ptregs -> arg1 394 call syscall_trace_leave 395 popq_cfi %rdi 396 andl $~(_TIF_WORK_SYSCALL_EXIT|_TIF_SYSCALL_EMU),%edi 397 jmp int_restore_rest 398 399int_signal: 400 testl $_TIF_DO_NOTIFY_MASK,%edx 401 jz 1f 402 movq %rsp,%rdi # &ptregs -> arg1 403 xorl %esi,%esi # oldset -> arg2 404 call do_notify_resume 4051: movl $_TIF_WORK_MASK,%edi 406int_restore_rest: 407 RESTORE_EXTRA_REGS 408 DISABLE_INTERRUPTS(CLBR_NONE) 409 TRACE_IRQS_OFF 410 jmp int_with_check 411 412syscall_return: 413 /* The IRETQ could re-enable interrupts: */ 414 DISABLE_INTERRUPTS(CLBR_ANY) 415 TRACE_IRQS_IRETQ 416 417 /* 418 * Try to use SYSRET instead of IRET if we're returning to 419 * a completely clean 64-bit userspace context. 420 */ 421 movq RCX(%rsp),%rcx 422 cmpq %rcx,RIP(%rsp) /* RCX == RIP */ 423 jne opportunistic_sysret_failed 424 425 /* 426 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 427 * in kernel space. This essentially lets the user take over 428 * the kernel, since userspace controls RSP. It's not worth 429 * testing for canonicalness exactly -- this check detects any 430 * of the 17 high bits set, which is true for non-canonical 431 * or kernel addresses. (This will pessimize vsyscall=native. 432 * Big deal.) 433 * 434 * If virtual addresses ever become wider, this will need 435 * to be updated to remain correct on both old and new CPUs. 436 */ 437 .ifne __VIRTUAL_MASK_SHIFT - 47 438 .error "virtual address width changed -- SYSRET checks need update" 439 .endif 440 shr $__VIRTUAL_MASK_SHIFT, %rcx 441 jnz opportunistic_sysret_failed 442 443 cmpq $__USER_CS,CS(%rsp) /* CS must match SYSRET */ 444 jne opportunistic_sysret_failed 445 446 movq R11(%rsp),%r11 447 cmpq %r11,EFLAGS(%rsp) /* R11 == RFLAGS */ 448 jne opportunistic_sysret_failed 449 450 /* 451 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET, 452 * restoring TF results in a trap from userspace immediately after 453 * SYSRET. This would cause an infinite loop whenever #DB happens 454 * with register state that satisfies the opportunistic SYSRET 455 * conditions. For example, single-stepping this user code: 456 * 457 * movq $stuck_here,%rcx 458 * pushfq 459 * popq %r11 460 * stuck_here: 461 * 462 * would never get past 'stuck_here'. 463 */ 464 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 465 jnz opportunistic_sysret_failed 466 467 /* nothing to check for RSP */ 468 469 cmpq $__USER_DS,SS(%rsp) /* SS must match SYSRET */ 470 jne opportunistic_sysret_failed 471 472 /* 473 * We win! This label is here just for ease of understanding 474 * perf profiles. Nothing jumps here. 475 */ 476syscall_return_via_sysret: 477 CFI_REMEMBER_STATE 478 /* r11 is already restored (see code above) */ 479 RESTORE_C_REGS_EXCEPT_R11 480 movq RSP(%rsp),%rsp 481 USERGS_SYSRET64 482 CFI_RESTORE_STATE 483 484opportunistic_sysret_failed: 485 SWAPGS 486 jmp restore_c_regs_and_iret 487 CFI_ENDPROC 488END(system_call) 489 490 491 .macro FORK_LIKE func 492ENTRY(stub_\func) 493 CFI_STARTPROC 494 DEFAULT_FRAME 0, 8 /* offset 8: return address */ 495 SAVE_EXTRA_REGS 8 496 jmp sys_\func 497 CFI_ENDPROC 498END(stub_\func) 499 .endm 500 501 FORK_LIKE clone 502 FORK_LIKE fork 503 FORK_LIKE vfork 504 505ENTRY(stub_execve) 506 CFI_STARTPROC 507 DEFAULT_FRAME 0, 8 508 call sys_execve 509return_from_execve: 510 testl %eax, %eax 511 jz 1f 512 /* exec failed, can use fast SYSRET code path in this case */ 513 ret 5141: 515 /* must use IRET code path (pt_regs->cs may have changed) */ 516 addq $8, %rsp 517 CFI_ADJUST_CFA_OFFSET -8 518 ZERO_EXTRA_REGS 519 movq %rax,RAX(%rsp) 520 jmp int_ret_from_sys_call 521 CFI_ENDPROC 522END(stub_execve) 523/* 524 * Remaining execve stubs are only 7 bytes long. 525 * ENTRY() often aligns to 16 bytes, which in this case has no benefits. 526 */ 527 .align 8 528GLOBAL(stub_execveat) 529 CFI_STARTPROC 530 DEFAULT_FRAME 0, 8 531 call sys_execveat 532 jmp return_from_execve 533 CFI_ENDPROC 534END(stub_execveat) 535 536#ifdef CONFIG_X86_X32_ABI 537 .align 8 538GLOBAL(stub_x32_execve) 539 CFI_STARTPROC 540 DEFAULT_FRAME 0, 8 541 call compat_sys_execve 542 jmp return_from_execve 543 CFI_ENDPROC 544END(stub_x32_execve) 545 .align 8 546GLOBAL(stub_x32_execveat) 547 CFI_STARTPROC 548 DEFAULT_FRAME 0, 8 549 call compat_sys_execveat 550 jmp return_from_execve 551 CFI_ENDPROC 552END(stub_x32_execveat) 553#endif 554 555#ifdef CONFIG_IA32_EMULATION 556 .align 8 557GLOBAL(stub32_execve) 558 CFI_STARTPROC 559 call compat_sys_execve 560 jmp return_from_execve 561 CFI_ENDPROC 562END(stub32_execve) 563 .align 8 564GLOBAL(stub32_execveat) 565 CFI_STARTPROC 566 call compat_sys_execveat 567 jmp return_from_execve 568 CFI_ENDPROC 569END(stub32_execveat) 570#endif 571 572/* 573 * sigreturn is special because it needs to restore all registers on return. 574 * This cannot be done with SYSRET, so use the IRET return path instead. 575 */ 576ENTRY(stub_rt_sigreturn) 577 CFI_STARTPROC 578 DEFAULT_FRAME 0, 8 579 /* 580 * SAVE_EXTRA_REGS result is not normally needed: 581 * sigreturn overwrites all pt_regs->GPREGS. 582 * But sigreturn can fail (!), and there is no easy way to detect that. 583 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error, 584 * we SAVE_EXTRA_REGS here. 585 */ 586 SAVE_EXTRA_REGS 8 587 call sys_rt_sigreturn 588return_from_stub: 589 addq $8, %rsp 590 CFI_ADJUST_CFA_OFFSET -8 591 RESTORE_EXTRA_REGS 592 movq %rax,RAX(%rsp) 593 jmp int_ret_from_sys_call 594 CFI_ENDPROC 595END(stub_rt_sigreturn) 596 597#ifdef CONFIG_X86_X32_ABI 598ENTRY(stub_x32_rt_sigreturn) 599 CFI_STARTPROC 600 DEFAULT_FRAME 0, 8 601 SAVE_EXTRA_REGS 8 602 call sys32_x32_rt_sigreturn 603 jmp return_from_stub 604 CFI_ENDPROC 605END(stub_x32_rt_sigreturn) 606#endif 607 608/* 609 * A newly forked process directly context switches into this address. 610 * 611 * rdi: prev task we switched from 612 */ 613ENTRY(ret_from_fork) 614 DEFAULT_FRAME 615 616 LOCK ; btr $TIF_FORK,TI_flags(%r8) 617 618 pushq_cfi $0x0002 619 popfq_cfi # reset kernel eflags 620 621 call schedule_tail # rdi: 'prev' task parameter 622 623 RESTORE_EXTRA_REGS 624 625 testl $3,CS(%rsp) # from kernel_thread? 626 627 /* 628 * By the time we get here, we have no idea whether our pt_regs, 629 * ti flags, and ti status came from the 64-bit SYSCALL fast path, 630 * the slow path, or one of the ia32entry paths. 631 * Use IRET code path to return, since it can safely handle 632 * all of the above. 633 */ 634 jnz int_ret_from_sys_call 635 636 /* We came from kernel_thread */ 637 /* nb: we depend on RESTORE_EXTRA_REGS above */ 638 movq %rbp, %rdi 639 call *%rbx 640 movl $0, RAX(%rsp) 641 RESTORE_EXTRA_REGS 642 jmp int_ret_from_sys_call 643 CFI_ENDPROC 644END(ret_from_fork) 645 646/* 647 * Build the entry stubs with some assembler magic. 648 * We pack 1 stub into every 8-byte block. 649 */ 650 .align 8 651ENTRY(irq_entries_start) 652 INTR_FRAME 653 vector=FIRST_EXTERNAL_VECTOR 654 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) 655 pushq_cfi $(~vector+0x80) /* Note: always in signed byte range */ 656 vector=vector+1 657 jmp common_interrupt 658 CFI_ADJUST_CFA_OFFSET -8 659 .align 8 660 .endr 661 CFI_ENDPROC 662END(irq_entries_start) 663 664/* 665 * Interrupt entry/exit. 666 * 667 * Interrupt entry points save only callee clobbered registers in fast path. 668 * 669 * Entry runs with interrupts off. 670 */ 671 672/* 0(%rsp): ~(interrupt number) */ 673 .macro interrupt func 674 cld 675 /* 676 * Since nothing in interrupt handling code touches r12...r15 members 677 * of "struct pt_regs", and since interrupts can nest, we can save 678 * four stack slots and simultaneously provide 679 * an unwind-friendly stack layout by saving "truncated" pt_regs 680 * exactly up to rbp slot, without these members. 681 */ 682 ALLOC_PT_GPREGS_ON_STACK -RBP 683 SAVE_C_REGS -RBP 684 /* this goes to 0(%rsp) for unwinder, not for saving the value: */ 685 SAVE_EXTRA_REGS_RBP -RBP 686 687 leaq -RBP(%rsp),%rdi /* arg1 for \func (pointer to pt_regs) */ 688 689 testl $3, CS-RBP(%rsp) 690 je 1f 691 SWAPGS 6921: 693 /* 694 * Save previous stack pointer, optionally switch to interrupt stack. 695 * irq_count is used to check if a CPU is already on an interrupt stack 696 * or not. While this is essentially redundant with preempt_count it is 697 * a little cheaper to use a separate counter in the PDA (short of 698 * moving irq_enter into assembly, which would be too much work) 699 */ 700 movq %rsp, %rsi 701 incl PER_CPU_VAR(irq_count) 702 cmovzq PER_CPU_VAR(irq_stack_ptr),%rsp 703 CFI_DEF_CFA_REGISTER rsi 704 pushq %rsi 705 /* 706 * For debugger: 707 * "CFA (Current Frame Address) is the value on stack + offset" 708 */ 709 CFI_ESCAPE 0x0f /* DW_CFA_def_cfa_expression */, 6, \ 710 0x77 /* DW_OP_breg7 (rsp) */, 0, \ 711 0x06 /* DW_OP_deref */, \ 712 0x08 /* DW_OP_const1u */, SIZEOF_PTREGS-RBP, \ 713 0x22 /* DW_OP_plus */ 714 /* We entered an interrupt context - irqs are off: */ 715 TRACE_IRQS_OFF 716 717 call \func 718 .endm 719 720 /* 721 * The interrupt stubs push (~vector+0x80) onto the stack and 722 * then jump to common_interrupt. 723 */ 724 .p2align CONFIG_X86_L1_CACHE_SHIFT 725common_interrupt: 726 XCPT_FRAME 727 ASM_CLAC 728 addq $-0x80,(%rsp) /* Adjust vector to [-256,-1] range */ 729 interrupt do_IRQ 730 /* 0(%rsp): old RSP */ 731ret_from_intr: 732 DISABLE_INTERRUPTS(CLBR_NONE) 733 TRACE_IRQS_OFF 734 decl PER_CPU_VAR(irq_count) 735 736 /* Restore saved previous stack */ 737 popq %rsi 738 CFI_DEF_CFA rsi,SIZEOF_PTREGS-RBP /* reg/off reset after def_cfa_expr */ 739 /* return code expects complete pt_regs - adjust rsp accordingly: */ 740 leaq -RBP(%rsi),%rsp 741 CFI_DEF_CFA_REGISTER rsp 742 CFI_ADJUST_CFA_OFFSET RBP 743 744 testl $3,CS(%rsp) 745 je retint_kernel 746 /* Interrupt came from user space */ 747 748 GET_THREAD_INFO(%rcx) 749 /* 750 * %rcx: thread info. Interrupts off. 751 */ 752retint_with_reschedule: 753 movl $_TIF_WORK_MASK,%edi 754retint_check: 755 LOCKDEP_SYS_EXIT_IRQ 756 movl TI_flags(%rcx),%edx 757 andl %edi,%edx 758 CFI_REMEMBER_STATE 759 jnz retint_careful 760 761retint_swapgs: /* return to user-space */ 762 /* 763 * The iretq could re-enable interrupts: 764 */ 765 DISABLE_INTERRUPTS(CLBR_ANY) 766 TRACE_IRQS_IRETQ 767 768 SWAPGS 769 jmp restore_c_regs_and_iret 770 771/* Returning to kernel space */ 772retint_kernel: 773#ifdef CONFIG_PREEMPT 774 /* Interrupts are off */ 775 /* Check if we need preemption */ 776 bt $9,EFLAGS(%rsp) /* interrupts were off? */ 777 jnc 1f 7780: cmpl $0,PER_CPU_VAR(__preempt_count) 779 jnz 1f 780 call preempt_schedule_irq 781 jmp 0b 7821: 783#endif 784 /* 785 * The iretq could re-enable interrupts: 786 */ 787 TRACE_IRQS_IRETQ 788 789/* 790 * At this label, code paths which return to kernel and to user, 791 * which come from interrupts/exception and from syscalls, merge. 792 */ 793restore_c_regs_and_iret: 794 RESTORE_C_REGS 795 REMOVE_PT_GPREGS_FROM_STACK 8 796 INTERRUPT_RETURN 797 798ENTRY(native_iret) 799 /* 800 * Are we returning to a stack segment from the LDT? Note: in 801 * 64-bit mode SS:RSP on the exception stack is always valid. 802 */ 803#ifdef CONFIG_X86_ESPFIX64 804 testb $4,(SS-RIP)(%rsp) 805 jnz native_irq_return_ldt 806#endif 807 808.global native_irq_return_iret 809native_irq_return_iret: 810 /* 811 * This may fault. Non-paranoid faults on return to userspace are 812 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 813 * Double-faults due to espfix64 are handled in do_double_fault. 814 * Other faults here are fatal. 815 */ 816 iretq 817 818#ifdef CONFIG_X86_ESPFIX64 819native_irq_return_ldt: 820 pushq_cfi %rax 821 pushq_cfi %rdi 822 SWAPGS 823 movq PER_CPU_VAR(espfix_waddr),%rdi 824 movq %rax,(0*8)(%rdi) /* RAX */ 825 movq (2*8)(%rsp),%rax /* RIP */ 826 movq %rax,(1*8)(%rdi) 827 movq (3*8)(%rsp),%rax /* CS */ 828 movq %rax,(2*8)(%rdi) 829 movq (4*8)(%rsp),%rax /* RFLAGS */ 830 movq %rax,(3*8)(%rdi) 831 movq (6*8)(%rsp),%rax /* SS */ 832 movq %rax,(5*8)(%rdi) 833 movq (5*8)(%rsp),%rax /* RSP */ 834 movq %rax,(4*8)(%rdi) 835 andl $0xffff0000,%eax 836 popq_cfi %rdi 837 orq PER_CPU_VAR(espfix_stack),%rax 838 SWAPGS 839 movq %rax,%rsp 840 popq_cfi %rax 841 jmp native_irq_return_iret 842#endif 843 844 /* edi: workmask, edx: work */ 845retint_careful: 846 CFI_RESTORE_STATE 847 bt $TIF_NEED_RESCHED,%edx 848 jnc retint_signal 849 TRACE_IRQS_ON 850 ENABLE_INTERRUPTS(CLBR_NONE) 851 pushq_cfi %rdi 852 SCHEDULE_USER 853 popq_cfi %rdi 854 GET_THREAD_INFO(%rcx) 855 DISABLE_INTERRUPTS(CLBR_NONE) 856 TRACE_IRQS_OFF 857 jmp retint_check 858 859retint_signal: 860 testl $_TIF_DO_NOTIFY_MASK,%edx 861 jz retint_swapgs 862 TRACE_IRQS_ON 863 ENABLE_INTERRUPTS(CLBR_NONE) 864 SAVE_EXTRA_REGS 865 movq $-1,ORIG_RAX(%rsp) 866 xorl %esi,%esi # oldset 867 movq %rsp,%rdi # &pt_regs 868 call do_notify_resume 869 RESTORE_EXTRA_REGS 870 DISABLE_INTERRUPTS(CLBR_NONE) 871 TRACE_IRQS_OFF 872 GET_THREAD_INFO(%rcx) 873 jmp retint_with_reschedule 874 875 CFI_ENDPROC 876END(common_interrupt) 877 878/* 879 * APIC interrupts. 880 */ 881.macro apicinterrupt3 num sym do_sym 882ENTRY(\sym) 883 INTR_FRAME 884 ASM_CLAC 885 pushq_cfi $~(\num) 886.Lcommon_\sym: 887 interrupt \do_sym 888 jmp ret_from_intr 889 CFI_ENDPROC 890END(\sym) 891.endm 892 893#ifdef CONFIG_TRACING 894#define trace(sym) trace_##sym 895#define smp_trace(sym) smp_trace_##sym 896 897.macro trace_apicinterrupt num sym 898apicinterrupt3 \num trace(\sym) smp_trace(\sym) 899.endm 900#else 901.macro trace_apicinterrupt num sym do_sym 902.endm 903#endif 904 905.macro apicinterrupt num sym do_sym 906apicinterrupt3 \num \sym \do_sym 907trace_apicinterrupt \num \sym 908.endm 909 910#ifdef CONFIG_SMP 911apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR \ 912 irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt 913apicinterrupt3 REBOOT_VECTOR \ 914 reboot_interrupt smp_reboot_interrupt 915#endif 916 917#ifdef CONFIG_X86_UV 918apicinterrupt3 UV_BAU_MESSAGE \ 919 uv_bau_message_intr1 uv_bau_message_interrupt 920#endif 921apicinterrupt LOCAL_TIMER_VECTOR \ 922 apic_timer_interrupt smp_apic_timer_interrupt 923apicinterrupt X86_PLATFORM_IPI_VECTOR \ 924 x86_platform_ipi smp_x86_platform_ipi 925 926#ifdef CONFIG_HAVE_KVM 927apicinterrupt3 POSTED_INTR_VECTOR \ 928 kvm_posted_intr_ipi smp_kvm_posted_intr_ipi 929#endif 930 931#ifdef CONFIG_X86_MCE_THRESHOLD 932apicinterrupt THRESHOLD_APIC_VECTOR \ 933 threshold_interrupt smp_threshold_interrupt 934#endif 935 936#ifdef CONFIG_X86_THERMAL_VECTOR 937apicinterrupt THERMAL_APIC_VECTOR \ 938 thermal_interrupt smp_thermal_interrupt 939#endif 940 941#ifdef CONFIG_SMP 942apicinterrupt CALL_FUNCTION_SINGLE_VECTOR \ 943 call_function_single_interrupt smp_call_function_single_interrupt 944apicinterrupt CALL_FUNCTION_VECTOR \ 945 call_function_interrupt smp_call_function_interrupt 946apicinterrupt RESCHEDULE_VECTOR \ 947 reschedule_interrupt smp_reschedule_interrupt 948#endif 949 950apicinterrupt ERROR_APIC_VECTOR \ 951 error_interrupt smp_error_interrupt 952apicinterrupt SPURIOUS_APIC_VECTOR \ 953 spurious_interrupt smp_spurious_interrupt 954 955#ifdef CONFIG_IRQ_WORK 956apicinterrupt IRQ_WORK_VECTOR \ 957 irq_work_interrupt smp_irq_work_interrupt 958#endif 959 960/* 961 * Exception entry points. 962 */ 963#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8) 964 965.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 966ENTRY(\sym) 967 /* Sanity check */ 968 .if \shift_ist != -1 && \paranoid == 0 969 .error "using shift_ist requires paranoid=1" 970 .endif 971 972 .if \has_error_code 973 XCPT_FRAME 974 .else 975 INTR_FRAME 976 .endif 977 978 ASM_CLAC 979 PARAVIRT_ADJUST_EXCEPTION_FRAME 980 981 .ifeq \has_error_code 982 pushq_cfi $-1 /* ORIG_RAX: no syscall to restart */ 983 .endif 984 985 ALLOC_PT_GPREGS_ON_STACK 986 987 .if \paranoid 988 .if \paranoid == 1 989 CFI_REMEMBER_STATE 990 testl $3, CS(%rsp) /* If coming from userspace, switch */ 991 jnz 1f /* stacks. */ 992 .endif 993 call paranoid_entry 994 .else 995 call error_entry 996 .endif 997 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */ 998 999 DEFAULT_FRAME 0 1000 1001 .if \paranoid 1002 .if \shift_ist != -1 1003 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */ 1004 .else 1005 TRACE_IRQS_OFF 1006 .endif 1007 .endif 1008 1009 movq %rsp,%rdi /* pt_regs pointer */ 1010 1011 .if \has_error_code 1012 movq ORIG_RAX(%rsp),%rsi /* get error code */ 1013 movq $-1,ORIG_RAX(%rsp) /* no syscall to restart */ 1014 .else 1015 xorl %esi,%esi /* no error code */ 1016 .endif 1017 1018 .if \shift_ist != -1 1019 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) 1020 .endif 1021 1022 call \do_sym 1023 1024 .if \shift_ist != -1 1025 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) 1026 .endif 1027 1028 /* these procedures expect "no swapgs" flag in ebx */ 1029 .if \paranoid 1030 jmp paranoid_exit 1031 .else 1032 jmp error_exit 1033 .endif 1034 1035 .if \paranoid == 1 1036 CFI_RESTORE_STATE 1037 /* 1038 * Paranoid entry from userspace. Switch stacks and treat it 1039 * as a normal entry. This means that paranoid handlers 1040 * run in real process context if user_mode(regs). 1041 */ 10421: 1043 call error_entry 1044 1045 DEFAULT_FRAME 0 1046 1047 movq %rsp,%rdi /* pt_regs pointer */ 1048 call sync_regs 1049 movq %rax,%rsp /* switch stack */ 1050 1051 movq %rsp,%rdi /* pt_regs pointer */ 1052 1053 .if \has_error_code 1054 movq ORIG_RAX(%rsp),%rsi /* get error code */ 1055 movq $-1,ORIG_RAX(%rsp) /* no syscall to restart */ 1056 .else 1057 xorl %esi,%esi /* no error code */ 1058 .endif 1059 1060 call \do_sym 1061 1062 jmp error_exit /* %ebx: no swapgs flag */ 1063 .endif 1064 1065 CFI_ENDPROC 1066END(\sym) 1067.endm 1068 1069#ifdef CONFIG_TRACING 1070.macro trace_idtentry sym do_sym has_error_code:req 1071idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code 1072idtentry \sym \do_sym has_error_code=\has_error_code 1073.endm 1074#else 1075.macro trace_idtentry sym do_sym has_error_code:req 1076idtentry \sym \do_sym has_error_code=\has_error_code 1077.endm 1078#endif 1079 1080idtentry divide_error do_divide_error has_error_code=0 1081idtentry overflow do_overflow has_error_code=0 1082idtentry bounds do_bounds has_error_code=0 1083idtentry invalid_op do_invalid_op has_error_code=0 1084idtentry device_not_available do_device_not_available has_error_code=0 1085idtentry double_fault do_double_fault has_error_code=1 paranoid=2 1086idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0 1087idtentry invalid_TSS do_invalid_TSS has_error_code=1 1088idtentry segment_not_present do_segment_not_present has_error_code=1 1089idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0 1090idtentry coprocessor_error do_coprocessor_error has_error_code=0 1091idtentry alignment_check do_alignment_check has_error_code=1 1092idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0 1093 1094 1095 /* Reload gs selector with exception handling */ 1096 /* edi: new selector */ 1097ENTRY(native_load_gs_index) 1098 CFI_STARTPROC 1099 pushfq_cfi 1100 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI) 1101 SWAPGS 1102gs_change: 1103 movl %edi,%gs 11042: mfence /* workaround */ 1105 SWAPGS 1106 popfq_cfi 1107 ret 1108 CFI_ENDPROC 1109END(native_load_gs_index) 1110 1111 _ASM_EXTABLE(gs_change,bad_gs) 1112 .section .fixup,"ax" 1113 /* running with kernelgs */ 1114bad_gs: 1115 SWAPGS /* switch back to user gs */ 1116 xorl %eax,%eax 1117 movl %eax,%gs 1118 jmp 2b 1119 .previous 1120 1121/* Call softirq on interrupt stack. Interrupts are off. */ 1122ENTRY(do_softirq_own_stack) 1123 CFI_STARTPROC 1124 pushq_cfi %rbp 1125 CFI_REL_OFFSET rbp,0 1126 mov %rsp,%rbp 1127 CFI_DEF_CFA_REGISTER rbp 1128 incl PER_CPU_VAR(irq_count) 1129 cmove PER_CPU_VAR(irq_stack_ptr),%rsp 1130 push %rbp # backlink for old unwinder 1131 call __do_softirq 1132 leaveq 1133 CFI_RESTORE rbp 1134 CFI_DEF_CFA_REGISTER rsp 1135 CFI_ADJUST_CFA_OFFSET -8 1136 decl PER_CPU_VAR(irq_count) 1137 ret 1138 CFI_ENDPROC 1139END(do_softirq_own_stack) 1140 1141#ifdef CONFIG_XEN 1142idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0 1143 1144/* 1145 * A note on the "critical region" in our callback handler. 1146 * We want to avoid stacking callback handlers due to events occurring 1147 * during handling of the last event. To do this, we keep events disabled 1148 * until we've done all processing. HOWEVER, we must enable events before 1149 * popping the stack frame (can't be done atomically) and so it would still 1150 * be possible to get enough handler activations to overflow the stack. 1151 * Although unlikely, bugs of that kind are hard to track down, so we'd 1152 * like to avoid the possibility. 1153 * So, on entry to the handler we detect whether we interrupted an 1154 * existing activation in its critical region -- if so, we pop the current 1155 * activation and restart the handler using the previous one. 1156 */ 1157ENTRY(xen_do_hypervisor_callback) # do_hypervisor_callback(struct *pt_regs) 1158 CFI_STARTPROC 1159/* 1160 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 1161 * see the correct pointer to the pt_regs 1162 */ 1163 movq %rdi, %rsp # we don't return, adjust the stack frame 1164 CFI_ENDPROC 1165 DEFAULT_FRAME 116611: incl PER_CPU_VAR(irq_count) 1167 movq %rsp,%rbp 1168 CFI_DEF_CFA_REGISTER rbp 1169 cmovzq PER_CPU_VAR(irq_stack_ptr),%rsp 1170 pushq %rbp # backlink for old unwinder 1171 call xen_evtchn_do_upcall 1172 popq %rsp 1173 CFI_DEF_CFA_REGISTER rsp 1174 decl PER_CPU_VAR(irq_count) 1175#ifndef CONFIG_PREEMPT 1176 call xen_maybe_preempt_hcall 1177#endif 1178 jmp error_exit 1179 CFI_ENDPROC 1180END(xen_do_hypervisor_callback) 1181 1182/* 1183 * Hypervisor uses this for application faults while it executes. 1184 * We get here for two reasons: 1185 * 1. Fault while reloading DS, ES, FS or GS 1186 * 2. Fault while executing IRET 1187 * Category 1 we do not need to fix up as Xen has already reloaded all segment 1188 * registers that could be reloaded and zeroed the others. 1189 * Category 2 we fix up by killing the current process. We cannot use the 1190 * normal Linux return path in this case because if we use the IRET hypercall 1191 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 1192 * We distinguish between categories by comparing each saved segment register 1193 * with its current contents: any discrepancy means we in category 1. 1194 */ 1195ENTRY(xen_failsafe_callback) 1196 INTR_FRAME 1 (6*8) 1197 /*CFI_REL_OFFSET gs,GS*/ 1198 /*CFI_REL_OFFSET fs,FS*/ 1199 /*CFI_REL_OFFSET es,ES*/ 1200 /*CFI_REL_OFFSET ds,DS*/ 1201 CFI_REL_OFFSET r11,8 1202 CFI_REL_OFFSET rcx,0 1203 movw %ds,%cx 1204 cmpw %cx,0x10(%rsp) 1205 CFI_REMEMBER_STATE 1206 jne 1f 1207 movw %es,%cx 1208 cmpw %cx,0x18(%rsp) 1209 jne 1f 1210 movw %fs,%cx 1211 cmpw %cx,0x20(%rsp) 1212 jne 1f 1213 movw %gs,%cx 1214 cmpw %cx,0x28(%rsp) 1215 jne 1f 1216 /* All segments match their saved values => Category 2 (Bad IRET). */ 1217 movq (%rsp),%rcx 1218 CFI_RESTORE rcx 1219 movq 8(%rsp),%r11 1220 CFI_RESTORE r11 1221 addq $0x30,%rsp 1222 CFI_ADJUST_CFA_OFFSET -0x30 1223 pushq_cfi $0 /* RIP */ 1224 pushq_cfi %r11 1225 pushq_cfi %rcx 1226 jmp general_protection 1227 CFI_RESTORE_STATE 12281: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 1229 movq (%rsp),%rcx 1230 CFI_RESTORE rcx 1231 movq 8(%rsp),%r11 1232 CFI_RESTORE r11 1233 addq $0x30,%rsp 1234 CFI_ADJUST_CFA_OFFSET -0x30 1235 pushq_cfi $-1 /* orig_ax = -1 => not a system call */ 1236 ALLOC_PT_GPREGS_ON_STACK 1237 SAVE_C_REGS 1238 SAVE_EXTRA_REGS 1239 jmp error_exit 1240 CFI_ENDPROC 1241END(xen_failsafe_callback) 1242 1243apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 1244 xen_hvm_callback_vector xen_evtchn_do_upcall 1245 1246#endif /* CONFIG_XEN */ 1247 1248#if IS_ENABLED(CONFIG_HYPERV) 1249apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ 1250 hyperv_callback_vector hyperv_vector_handler 1251#endif /* CONFIG_HYPERV */ 1252 1253idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK 1254idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK 1255idtentry stack_segment do_stack_segment has_error_code=1 1256#ifdef CONFIG_XEN 1257idtentry xen_debug do_debug has_error_code=0 1258idtentry xen_int3 do_int3 has_error_code=0 1259idtentry xen_stack_segment do_stack_segment has_error_code=1 1260#endif 1261idtentry general_protection do_general_protection has_error_code=1 1262trace_idtentry page_fault do_page_fault has_error_code=1 1263#ifdef CONFIG_KVM_GUEST 1264idtentry async_page_fault do_async_page_fault has_error_code=1 1265#endif 1266#ifdef CONFIG_X86_MCE 1267idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip) 1268#endif 1269 1270/* 1271 * Save all registers in pt_regs, and switch gs if needed. 1272 * Use slow, but surefire "are we in kernel?" check. 1273 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise 1274 */ 1275ENTRY(paranoid_entry) 1276 XCPT_FRAME 1 15*8 1277 cld 1278 SAVE_C_REGS 8 1279 SAVE_EXTRA_REGS 8 1280 movl $1,%ebx 1281 movl $MSR_GS_BASE,%ecx 1282 rdmsr 1283 testl %edx,%edx 1284 js 1f /* negative -> in kernel */ 1285 SWAPGS 1286 xorl %ebx,%ebx 12871: ret 1288 CFI_ENDPROC 1289END(paranoid_entry) 1290 1291/* 1292 * "Paranoid" exit path from exception stack. This is invoked 1293 * only on return from non-NMI IST interrupts that came 1294 * from kernel space. 1295 * 1296 * We may be returning to very strange contexts (e.g. very early 1297 * in syscall entry), so checking for preemption here would 1298 * be complicated. Fortunately, we there's no good reason 1299 * to try to handle preemption here. 1300 */ 1301/* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) */ 1302ENTRY(paranoid_exit) 1303 DEFAULT_FRAME 1304 DISABLE_INTERRUPTS(CLBR_NONE) 1305 TRACE_IRQS_OFF_DEBUG 1306 testl %ebx,%ebx /* swapgs needed? */ 1307 jnz paranoid_exit_no_swapgs 1308 TRACE_IRQS_IRETQ 1309 SWAPGS_UNSAFE_STACK 1310 jmp paranoid_exit_restore 1311paranoid_exit_no_swapgs: 1312 TRACE_IRQS_IRETQ_DEBUG 1313paranoid_exit_restore: 1314 RESTORE_EXTRA_REGS 1315 RESTORE_C_REGS 1316 REMOVE_PT_GPREGS_FROM_STACK 8 1317 INTERRUPT_RETURN 1318 CFI_ENDPROC 1319END(paranoid_exit) 1320 1321/* 1322 * Save all registers in pt_regs, and switch gs if needed. 1323 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise 1324 */ 1325ENTRY(error_entry) 1326 XCPT_FRAME 1 15*8 1327 cld 1328 SAVE_C_REGS 8 1329 SAVE_EXTRA_REGS 8 1330 xorl %ebx,%ebx 1331 testl $3,CS+8(%rsp) 1332 je error_kernelspace 1333error_swapgs: 1334 SWAPGS 1335error_sti: 1336 TRACE_IRQS_OFF 1337 ret 1338 1339 /* 1340 * There are two places in the kernel that can potentially fault with 1341 * usergs. Handle them here. B stepping K8s sometimes report a 1342 * truncated RIP for IRET exceptions returning to compat mode. Check 1343 * for these here too. 1344 */ 1345error_kernelspace: 1346 CFI_REL_OFFSET rcx, RCX+8 1347 incl %ebx 1348 leaq native_irq_return_iret(%rip),%rcx 1349 cmpq %rcx,RIP+8(%rsp) 1350 je error_bad_iret 1351 movl %ecx,%eax /* zero extend */ 1352 cmpq %rax,RIP+8(%rsp) 1353 je bstep_iret 1354 cmpq $gs_change,RIP+8(%rsp) 1355 je error_swapgs 1356 jmp error_sti 1357 1358bstep_iret: 1359 /* Fix truncated RIP */ 1360 movq %rcx,RIP+8(%rsp) 1361 /* fall through */ 1362 1363error_bad_iret: 1364 SWAPGS 1365 mov %rsp,%rdi 1366 call fixup_bad_iret 1367 mov %rax,%rsp 1368 decl %ebx /* Return to usergs */ 1369 jmp error_sti 1370 CFI_ENDPROC 1371END(error_entry) 1372 1373 1374/* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) */ 1375ENTRY(error_exit) 1376 DEFAULT_FRAME 1377 movl %ebx,%eax 1378 RESTORE_EXTRA_REGS 1379 DISABLE_INTERRUPTS(CLBR_NONE) 1380 TRACE_IRQS_OFF 1381 GET_THREAD_INFO(%rcx) 1382 testl %eax,%eax 1383 jne retint_kernel 1384 LOCKDEP_SYS_EXIT_IRQ 1385 movl TI_flags(%rcx),%edx 1386 movl $_TIF_WORK_MASK,%edi 1387 andl %edi,%edx 1388 jnz retint_careful 1389 jmp retint_swapgs 1390 CFI_ENDPROC 1391END(error_exit) 1392 1393/* Runs on exception stack */ 1394ENTRY(nmi) 1395 INTR_FRAME 1396 /* 1397 * Fix up the exception frame if we're on Xen. 1398 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most 1399 * one value to the stack on native, so it may clobber the rdx 1400 * scratch slot, but it won't clobber any of the important 1401 * slots past it. 1402 * 1403 * Xen is a different story, because the Xen frame itself overlaps 1404 * the "NMI executing" variable. 1405 */ 1406 PARAVIRT_ADJUST_EXCEPTION_FRAME 1407 1408 /* 1409 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1410 * the iretq it performs will take us out of NMI context. 1411 * This means that we can have nested NMIs where the next 1412 * NMI is using the top of the stack of the previous NMI. We 1413 * can't let it execute because the nested NMI will corrupt the 1414 * stack of the previous NMI. NMI handlers are not re-entrant 1415 * anyway. 1416 * 1417 * To handle this case we do the following: 1418 * Check the a special location on the stack that contains 1419 * a variable that is set when NMIs are executing. 1420 * The interrupted task's stack is also checked to see if it 1421 * is an NMI stack. 1422 * If the variable is not set and the stack is not the NMI 1423 * stack then: 1424 * o Set the special variable on the stack 1425 * o Copy the interrupt frame into an "outermost" location on the 1426 * stack 1427 * o Copy the interrupt frame into an "iret" location on the stack 1428 * o Continue processing the NMI 1429 * If the variable is set or the previous stack is the NMI stack: 1430 * o Modify the "iret" location to jump to the repeat_nmi 1431 * o return back to the first NMI 1432 * 1433 * Now on exit of the first NMI, we first clear the stack variable 1434 * The NMI stack will tell any nested NMIs at that point that it is 1435 * nested. Then we pop the stack normally with iret, and if there was 1436 * a nested NMI that updated the copy interrupt stack frame, a 1437 * jump will be made to the repeat_nmi code that will handle the second 1438 * NMI. 1439 * 1440 * However, espfix prevents us from directly returning to userspace 1441 * with a single IRET instruction. Similarly, IRET to user mode 1442 * can fault. We therefore handle NMIs from user space like 1443 * other IST entries. 1444 */ 1445 1446 /* Use %rdx as our temp variable throughout */ 1447 pushq_cfi %rdx 1448 CFI_REL_OFFSET rdx, 0 1449 1450 testb $3, CS-RIP+8(%rsp) 1451 jz .Lnmi_from_kernel 1452 1453 /* 1454 * NMI from user mode. We need to run on the thread stack, but we 1455 * can't go through the normal entry paths: NMIs are masked, and 1456 * we don't want to enable interrupts, because then we'll end 1457 * up in an awkward situation in which IRQs are on but NMIs 1458 * are off. 1459 * 1460 * We also must not push anything to the stack before switching 1461 * stacks lest we corrupt the "NMI executing" variable. 1462 */ 1463 1464 SWAPGS_UNSAFE_STACK 1465 cld 1466 movq %rsp, %rdx 1467 movq PER_CPU_VAR(kernel_stack), %rsp 1468 pushq 5*8(%rdx) /* pt_regs->ss */ 1469 pushq 4*8(%rdx) /* pt_regs->rsp */ 1470 pushq 3*8(%rdx) /* pt_regs->flags */ 1471 pushq 2*8(%rdx) /* pt_regs->cs */ 1472 pushq 1*8(%rdx) /* pt_regs->rip */ 1473 pushq $-1 /* pt_regs->orig_ax */ 1474 pushq %rdi /* pt_regs->di */ 1475 pushq %rsi /* pt_regs->si */ 1476 pushq (%rdx) /* pt_regs->dx */ 1477 pushq %rcx /* pt_regs->cx */ 1478 pushq %rax /* pt_regs->ax */ 1479 pushq %r8 /* pt_regs->r8 */ 1480 pushq %r9 /* pt_regs->r9 */ 1481 pushq %r10 /* pt_regs->r10 */ 1482 pushq %r11 /* pt_regs->r11 */ 1483 pushq %rbx /* pt_regs->rbx */ 1484 pushq %rbp /* pt_regs->rbp */ 1485 pushq %r12 /* pt_regs->r12 */ 1486 pushq %r13 /* pt_regs->r13 */ 1487 pushq %r14 /* pt_regs->r14 */ 1488 pushq %r15 /* pt_regs->r15 */ 1489 1490 /* 1491 * At this point we no longer need to worry about stack damage 1492 * due to nesting -- we're on the normal thread stack and we're 1493 * done with the NMI stack. 1494 */ 1495 movq %rsp, %rdi 1496 movq $-1, %rsi 1497 call do_nmi 1498 1499 /* 1500 * Return back to user mode. We must *not* do the normal exit 1501 * work, because we don't want to enable interrupts. Fortunately, 1502 * do_nmi doesn't modify pt_regs. 1503 */ 1504 SWAPGS 1505 jmp restore_c_regs_and_iret 1506 1507.Lnmi_from_kernel: 1508 /* 1509 * Here's what our stack frame will look like: 1510 * +---------------------------------------------------------+ 1511 * | original SS | 1512 * | original Return RSP | 1513 * | original RFLAGS | 1514 * | original CS | 1515 * | original RIP | 1516 * +---------------------------------------------------------+ 1517 * | temp storage for rdx | 1518 * +---------------------------------------------------------+ 1519 * | "NMI executing" variable | 1520 * +---------------------------------------------------------+ 1521 * | iret SS } Copied from "outermost" frame | 1522 * | iret Return RSP } on each loop iteration; overwritten | 1523 * | iret RFLAGS } by a nested NMI to force another | 1524 * | iret CS } iteration if needed. | 1525 * | iret RIP } | 1526 * +---------------------------------------------------------+ 1527 * | outermost SS } initialized in first_nmi; | 1528 * | outermost Return RSP } will not be changed before | 1529 * | outermost RFLAGS } NMI processing is done. | 1530 * | outermost CS } Copied to "iret" frame on each | 1531 * | outermost RIP } iteration. | 1532 * +---------------------------------------------------------+ 1533 * | pt_regs | 1534 * +---------------------------------------------------------+ 1535 * 1536 * The "original" frame is used by hardware. Before re-enabling 1537 * NMIs, we need to be done with it, and we need to leave enough 1538 * space for the asm code here. 1539 * 1540 * We return by executing IRET while RSP points to the "iret" frame. 1541 * That will either return for real or it will loop back into NMI 1542 * processing. 1543 * 1544 * The "outermost" frame is copied to the "iret" frame on each 1545 * iteration of the loop, so each iteration starts with the "iret" 1546 * frame pointing to the final return target. 1547 */ 1548 1549 /* 1550 * Determine whether we're a nested NMI. 1551 * 1552 * If we interrupted kernel code between repeat_nmi and 1553 * end_repeat_nmi, then we are a nested NMI. We must not 1554 * modify the "iret" frame because it's being written by 1555 * the outer NMI. That's okay; the outer NMI handler is 1556 * about to about to call do_nmi anyway, so we can just 1557 * resume the outer NMI. 1558 */ 1559 1560 movq $repeat_nmi, %rdx 1561 cmpq 8(%rsp), %rdx 1562 ja 1f 1563 movq $end_repeat_nmi, %rdx 1564 cmpq 8(%rsp), %rdx 1565 ja nested_nmi_out 15661: 1567 1568 /* 1569 * Now check "NMI executing". If it's set, then we're nested. 1570 * This will not detect if we interrupted an outer NMI just 1571 * before IRET. 1572 */ 1573 cmpl $1, -8(%rsp) 1574 je nested_nmi 1575 1576 /* 1577 * Now test if the previous stack was an NMI stack. This covers 1578 * the case where we interrupt an outer NMI after it clears 1579 * "NMI executing" but before IRET. We need to be careful, though: 1580 * there is one case in which RSP could point to the NMI stack 1581 * despite there being no NMI active: naughty userspace controls 1582 * RSP at the very beginning of the SYSCALL targets. We can 1583 * pull a fast one on naughty userspace, though: we program 1584 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1585 * if it controls the kernel's RSP. We set DF before we clear 1586 * "NMI executing". 1587 */ 1588 lea 6*8(%rsp), %rdx 1589 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1590 cmpq %rdx, 4*8(%rsp) 1591 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1592 ja first_nmi 1593 subq $EXCEPTION_STKSZ, %rdx 1594 cmpq %rdx, 4*8(%rsp) 1595 /* If it is below the NMI stack, it is a normal NMI */ 1596 jb first_nmi 1597 1598 /* Ah, it is within the NMI stack. */ 1599 1600 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1601 jz first_nmi /* RSP was user controlled. */ 1602 1603 /* This is a nested NMI. */ 1604 1605 CFI_REMEMBER_STATE 1606 1607nested_nmi: 1608 /* 1609 * Modify the "iret" frame to point to repeat_nmi, forcing another 1610 * iteration of NMI handling. 1611 */ 1612 leaq -1*8(%rsp), %rdx 1613 movq %rdx, %rsp 1614 CFI_ADJUST_CFA_OFFSET 1*8 1615 leaq -10*8(%rsp), %rdx 1616 pushq_cfi $__KERNEL_DS 1617 pushq_cfi %rdx 1618 pushfq_cfi 1619 pushq_cfi $__KERNEL_CS 1620 pushq_cfi $repeat_nmi 1621 1622 /* Put stack back */ 1623 addq $(6*8), %rsp 1624 CFI_ADJUST_CFA_OFFSET -6*8 1625 1626nested_nmi_out: 1627 popq_cfi %rdx 1628 CFI_RESTORE rdx 1629 1630 /* We are returning to kernel mode, so this cannot result in a fault. */ 1631 INTERRUPT_RETURN 1632 1633 CFI_RESTORE_STATE 1634first_nmi: 1635 /* Restore rdx. */ 1636 movq (%rsp), %rdx 1637 CFI_RESTORE rdx 1638 1639 /* Set "NMI executing" on the stack. */ 1640 pushq_cfi $1 1641 1642 /* Leave room for the "iret" frame */ 1643 subq $(5*8), %rsp 1644 CFI_ADJUST_CFA_OFFSET 5*8 1645 1646 /* Copy the "original" frame to the "outermost" frame */ 1647 .rept 5 1648 pushq_cfi 11*8(%rsp) 1649 .endr 1650 CFI_DEF_CFA_OFFSET 5*8 1651 1652 /* Everything up to here is safe from nested NMIs */ 1653 1654repeat_nmi: 1655 /* 1656 * If there was a nested NMI, the first NMI's iret will return 1657 * here. But NMIs are still enabled and we can take another 1658 * nested NMI. The nested NMI checks the interrupted RIP to see 1659 * if it is between repeat_nmi and end_repeat_nmi, and if so 1660 * it will just return, as we are about to repeat an NMI anyway. 1661 * This makes it safe to copy to the stack frame that a nested 1662 * NMI will update. 1663 * 1664 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1665 * we're repeating an NMI, gsbase has the same value that it had on 1666 * the first iteration. paranoid_entry will load the kernel 1667 * gsbase if needed before we call do_nmi. 1668 * 1669 * Set "NMI executing" in case we came back here via IRET. 1670 */ 1671 movq $1, 10*8(%rsp) 1672 1673 /* 1674 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1675 * here must not modify the "iret" frame while we're writing to 1676 * it or it will end up containing garbage. 1677 */ 1678 addq $(10*8), %rsp 1679 CFI_ADJUST_CFA_OFFSET -10*8 1680 .rept 5 1681 pushq_cfi -6*8(%rsp) 1682 .endr 1683 subq $(5*8), %rsp 1684 CFI_DEF_CFA_OFFSET 5*8 1685end_repeat_nmi: 1686 1687 /* 1688 * Everything below this point can be preempted by a nested NMI. 1689 * If this happens, then the inner NMI will change the "iret" 1690 * frame to point back to repeat_nmi. 1691 */ 1692 pushq_cfi $-1 /* ORIG_RAX: no syscall to restart */ 1693 ALLOC_PT_GPREGS_ON_STACK 1694 1695 /* 1696 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1697 * as we should not be calling schedule in NMI context. 1698 * Even with normal interrupts enabled. An NMI should not be 1699 * setting NEED_RESCHED or anything that normal interrupts and 1700 * exceptions might do. 1701 */ 1702 call paranoid_entry 1703 DEFAULT_FRAME 0 1704 1705 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ 1706 movq %rsp,%rdi 1707 movq $-1,%rsi 1708 call do_nmi 1709 1710 testl %ebx,%ebx /* swapgs needed? */ 1711 jnz nmi_restore 1712nmi_swapgs: 1713 SWAPGS_UNSAFE_STACK 1714nmi_restore: 1715 RESTORE_EXTRA_REGS 1716 RESTORE_C_REGS 1717 1718 /* Point RSP at the "iret" frame. */ 1719 REMOVE_PT_GPREGS_FROM_STACK 6*8 1720 1721 /* 1722 * Clear "NMI executing". Set DF first so that we can easily 1723 * distinguish the remaining code between here and IRET from 1724 * the SYSCALL entry and exit paths. On a native kernel, we 1725 * could just inspect RIP, but, on paravirt kernels, 1726 * INTERRUPT_RETURN can translate into a jump into a 1727 * hypercall page. 1728 */ 1729 std 1730 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1731 1732 /* 1733 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI 1734 * stack in a single instruction. We are returning to kernel 1735 * mode, so this cannot result in a fault. 1736 */ 1737 INTERRUPT_RETURN 1738 CFI_ENDPROC 1739END(nmi) 1740 1741ENTRY(ignore_sysret) 1742 CFI_STARTPROC 1743 mov $-ENOSYS,%eax 1744 sysret 1745 CFI_ENDPROC 1746END(ignore_sysret) 1747 1748