1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 *   Yaniv Kamay  <yaniv@qumranet.com>
14 *   Avi Kivity   <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2.  See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21/*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26/*
27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28 * uses for EPT without A/D paging type.
29 */
30extern u64 __pure __using_nonexistent_pte_bit(void)
31	       __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
32
33#if PTTYPE == 64
34	#define pt_element_t u64
35	#define guest_walker guest_walker64
36	#define FNAME(name) paging##64_##name
37	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41	#define PT_LEVEL_BITS PT64_LEVEL_BITS
42	#define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43	#define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
46	#ifdef CONFIG_X86_64
47	#define PT_MAX_FULL_LEVELS 4
48	#define CMPXCHG cmpxchg
49	#else
50	#define CMPXCHG cmpxchg64
51	#define PT_MAX_FULL_LEVELS 2
52	#endif
53#elif PTTYPE == 32
54	#define pt_element_t u32
55	#define guest_walker guest_walker32
56	#define FNAME(name) paging##32_##name
57	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61	#define PT_LEVEL_BITS PT32_LEVEL_BITS
62	#define PT_MAX_FULL_LEVELS 2
63	#define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64	#define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67	#define CMPXCHG cmpxchg
68#elif PTTYPE == PTTYPE_EPT
69	#define pt_element_t u64
70	#define guest_walker guest_walkerEPT
71	#define FNAME(name) ept_##name
72	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76	#define PT_LEVEL_BITS PT64_LEVEL_BITS
77	#define PT_GUEST_ACCESSED_MASK 0
78	#define PT_GUEST_DIRTY_MASK 0
79	#define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80	#define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81	#define CMPXCHG cmpxchg64
82	#define PT_MAX_FULL_LEVELS 4
83#else
84	#error Invalid PTTYPE value
85#endif
86
87#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
89
90/*
91 * The guest_walker structure emulates the behavior of the hardware page
92 * table walker.
93 */
94struct guest_walker {
95	int level;
96	unsigned max_level;
97	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
98	pt_element_t ptes[PT_MAX_FULL_LEVELS];
99	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
100	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
101	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
102	bool pte_writable[PT_MAX_FULL_LEVELS];
103	unsigned pt_access;
104	unsigned pte_access;
105	gfn_t gfn;
106	struct x86_exception fault;
107};
108
109static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
110{
111	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
112}
113
114static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
115{
116	unsigned mask;
117
118	/* dirty bit is not supported, so no need to track it */
119	if (!PT_GUEST_DIRTY_MASK)
120		return;
121
122	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
123
124	mask = (unsigned)~ACC_WRITE_MASK;
125	/* Allow write access to dirty gptes */
126	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
127		PT_WRITABLE_MASK;
128	*access &= mask;
129}
130
131static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
132{
133	int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f;
134
135	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) |
136		((mmu->bad_mt_xwr & (1ull << low6)) != 0);
137}
138
139static inline int FNAME(is_present_gpte)(unsigned long pte)
140{
141#if PTTYPE != PTTYPE_EPT
142	return is_present_gpte(pte);
143#else
144	return pte & 7;
145#endif
146}
147
148static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
149			       pt_element_t __user *ptep_user, unsigned index,
150			       pt_element_t orig_pte, pt_element_t new_pte)
151{
152	int npages;
153	pt_element_t ret;
154	pt_element_t *table;
155	struct page *page;
156
157	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
158	/* Check if the user is doing something meaningless. */
159	if (unlikely(npages != 1))
160		return -EFAULT;
161
162	table = kmap_atomic(page);
163	ret = CMPXCHG(&table[index], orig_pte, new_pte);
164	kunmap_atomic(table);
165
166	kvm_release_page_dirty(page);
167
168	return (ret != orig_pte);
169}
170
171static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
172				  struct kvm_mmu_page *sp, u64 *spte,
173				  u64 gpte)
174{
175	if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
176		goto no_present;
177
178	if (!FNAME(is_present_gpte)(gpte))
179		goto no_present;
180
181	/* if accessed bit is not supported prefetch non accessed gpte */
182	if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
183		goto no_present;
184
185	return false;
186
187no_present:
188	drop_spte(vcpu->kvm, spte);
189	return true;
190}
191
192static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
193{
194	unsigned access;
195#if PTTYPE == PTTYPE_EPT
196	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
197		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
198		ACC_USER_MASK;
199#else
200	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
201	access &= ~(gpte >> PT64_NX_SHIFT);
202#endif
203
204	return access;
205}
206
207static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
208					     struct kvm_mmu *mmu,
209					     struct guest_walker *walker,
210					     int write_fault)
211{
212	unsigned level, index;
213	pt_element_t pte, orig_pte;
214	pt_element_t __user *ptep_user;
215	gfn_t table_gfn;
216	int ret;
217
218	/* dirty/accessed bits are not supported, so no need to update them */
219	if (!PT_GUEST_DIRTY_MASK)
220		return 0;
221
222	for (level = walker->max_level; level >= walker->level; --level) {
223		pte = orig_pte = walker->ptes[level - 1];
224		table_gfn = walker->table_gfn[level - 1];
225		ptep_user = walker->ptep_user[level - 1];
226		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
227		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
228			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
229			pte |= PT_GUEST_ACCESSED_MASK;
230		}
231		if (level == walker->level && write_fault &&
232				!(pte & PT_GUEST_DIRTY_MASK)) {
233			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
234			pte |= PT_GUEST_DIRTY_MASK;
235		}
236		if (pte == orig_pte)
237			continue;
238
239		/*
240		 * If the slot is read-only, simply do not process the accessed
241		 * and dirty bits.  This is the correct thing to do if the slot
242		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243		 * are only supported if the accessed and dirty bits are already
244		 * set in the ROM (so that MMIO writes are never needed).
245		 *
246		 * Note that NPT does not allow this at all and faults, since
247		 * it always wants nested page table entries for the guest
248		 * page tables to be writable.  And EPT works but will simply
249		 * overwrite the read-only memory to set the accessed and dirty
250		 * bits.
251		 */
252		if (unlikely(!walker->pte_writable[level - 1]))
253			continue;
254
255		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
256		if (ret)
257			return ret;
258
259		mark_page_dirty(vcpu->kvm, table_gfn);
260		walker->ptes[level - 1] = pte;
261	}
262	return 0;
263}
264
265/*
266 * Fetch a guest pte for a guest virtual address
267 */
268static int FNAME(walk_addr_generic)(struct guest_walker *walker,
269				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
270				    gva_t addr, u32 access)
271{
272	int ret;
273	pt_element_t pte;
274	pt_element_t __user *uninitialized_var(ptep_user);
275	gfn_t table_gfn;
276	unsigned index, pt_access, pte_access, accessed_dirty;
277	gpa_t pte_gpa;
278	int offset;
279	const int write_fault = access & PFERR_WRITE_MASK;
280	const int user_fault  = access & PFERR_USER_MASK;
281	const int fetch_fault = access & PFERR_FETCH_MASK;
282	u16 errcode = 0;
283	gpa_t real_gpa;
284	gfn_t gfn;
285
286	trace_kvm_mmu_pagetable_walk(addr, access);
287retry_walk:
288	walker->level = mmu->root_level;
289	pte           = mmu->get_cr3(vcpu);
290
291#if PTTYPE == 64
292	if (walker->level == PT32E_ROOT_LEVEL) {
293		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
294		trace_kvm_mmu_paging_element(pte, walker->level);
295		if (!FNAME(is_present_gpte)(pte))
296			goto error;
297		--walker->level;
298	}
299#endif
300	walker->max_level = walker->level;
301	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
302
303	accessed_dirty = PT_GUEST_ACCESSED_MASK;
304	pt_access = pte_access = ACC_ALL;
305	++walker->level;
306
307	do {
308		gfn_t real_gfn;
309		unsigned long host_addr;
310
311		pt_access &= pte_access;
312		--walker->level;
313
314		index = PT_INDEX(addr, walker->level);
315
316		table_gfn = gpte_to_gfn(pte);
317		offset    = index * sizeof(pt_element_t);
318		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
319		walker->table_gfn[walker->level - 1] = table_gfn;
320		walker->pte_gpa[walker->level - 1] = pte_gpa;
321
322		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
323					      PFERR_USER_MASK|PFERR_WRITE_MASK,
324					      &walker->fault);
325
326		/*
327		 * FIXME: This can happen if emulation (for of an INS/OUTS
328		 * instruction) triggers a nested page fault.  The exit
329		 * qualification / exit info field will incorrectly have
330		 * "guest page access" as the nested page fault's cause,
331		 * instead of "guest page structure access".  To fix this,
332		 * the x86_exception struct should be augmented with enough
333		 * information to fix the exit_qualification or exit_info_1
334		 * fields.
335		 */
336		if (unlikely(real_gfn == UNMAPPED_GVA))
337			return 0;
338
339		real_gfn = gpa_to_gfn(real_gfn);
340
341		host_addr = gfn_to_hva_prot(vcpu->kvm, real_gfn,
342					    &walker->pte_writable[walker->level - 1]);
343		if (unlikely(kvm_is_error_hva(host_addr)))
344			goto error;
345
346		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
347		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
348			goto error;
349		walker->ptep_user[walker->level - 1] = ptep_user;
350
351		trace_kvm_mmu_paging_element(pte, walker->level);
352
353		if (unlikely(!FNAME(is_present_gpte)(pte)))
354			goto error;
355
356		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte,
357					             walker->level))) {
358			errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
359			goto error;
360		}
361
362		accessed_dirty &= pte;
363		pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
364
365		walker->ptes[walker->level - 1] = pte;
366	} while (!is_last_gpte(mmu, walker->level, pte));
367
368	if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) {
369		errcode |= PFERR_PRESENT_MASK;
370		goto error;
371	}
372
373	gfn = gpte_to_gfn_lvl(pte, walker->level);
374	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
375
376	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
377		gfn += pse36_gfn_delta(pte);
378
379	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
380	if (real_gpa == UNMAPPED_GVA)
381		return 0;
382
383	walker->gfn = real_gpa >> PAGE_SHIFT;
384
385	if (!write_fault)
386		FNAME(protect_clean_gpte)(&pte_access, pte);
387	else
388		/*
389		 * On a write fault, fold the dirty bit into accessed_dirty.
390		 * For modes without A/D bits support accessed_dirty will be
391		 * always clear.
392		 */
393		accessed_dirty &= pte >>
394			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
395
396	if (unlikely(!accessed_dirty)) {
397		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
398		if (unlikely(ret < 0))
399			goto error;
400		else if (ret)
401			goto retry_walk;
402	}
403
404	walker->pt_access = pt_access;
405	walker->pte_access = pte_access;
406	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
407		 __func__, (u64)pte, pte_access, pt_access);
408	return 1;
409
410error:
411	errcode |= write_fault | user_fault;
412	if (fetch_fault && (mmu->nx ||
413			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
414		errcode |= PFERR_FETCH_MASK;
415
416	walker->fault.vector = PF_VECTOR;
417	walker->fault.error_code_valid = true;
418	walker->fault.error_code = errcode;
419
420#if PTTYPE == PTTYPE_EPT
421	/*
422	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
423	 * misconfiguration requires to be injected. The detection is
424	 * done by is_rsvd_bits_set() above.
425	 *
426	 * We set up the value of exit_qualification to inject:
427	 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
428	 * [5:3] - Calculated by the page walk of the guest EPT page tables
429	 * [7:8] - Derived from [7:8] of real exit_qualification
430	 *
431	 * The other bits are set to 0.
432	 */
433	if (!(errcode & PFERR_RSVD_MASK)) {
434		vcpu->arch.exit_qualification &= 0x187;
435		vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
436	}
437#endif
438	walker->fault.address = addr;
439	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
440
441	trace_kvm_mmu_walker_error(walker->fault.error_code);
442	return 0;
443}
444
445static int FNAME(walk_addr)(struct guest_walker *walker,
446			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
447{
448	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
449					access);
450}
451
452#if PTTYPE != PTTYPE_EPT
453static int FNAME(walk_addr_nested)(struct guest_walker *walker,
454				   struct kvm_vcpu *vcpu, gva_t addr,
455				   u32 access)
456{
457	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
458					addr, access);
459}
460#endif
461
462static bool
463FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
464		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
465{
466	unsigned pte_access;
467	gfn_t gfn;
468	pfn_t pfn;
469
470	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
471		return false;
472
473	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
474
475	gfn = gpte_to_gfn(gpte);
476	pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
477	FNAME(protect_clean_gpte)(&pte_access, gpte);
478	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
479			no_dirty_log && (pte_access & ACC_WRITE_MASK));
480	if (is_error_pfn(pfn))
481		return false;
482
483	/*
484	 * we call mmu_set_spte() with host_writable = true because
485	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
486	 */
487	mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
488		     gfn, pfn, true, true);
489
490	return true;
491}
492
493static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
494			      u64 *spte, const void *pte)
495{
496	pt_element_t gpte = *(const pt_element_t *)pte;
497
498	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
499}
500
501static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
502				struct guest_walker *gw, int level)
503{
504	pt_element_t curr_pte;
505	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
506	u64 mask;
507	int r, index;
508
509	if (level == PT_PAGE_TABLE_LEVEL) {
510		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
511		base_gpa = pte_gpa & ~mask;
512		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
513
514		r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
515				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
516		curr_pte = gw->prefetch_ptes[index];
517	} else
518		r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
519				  &curr_pte, sizeof(curr_pte));
520
521	return r || curr_pte != gw->ptes[level - 1];
522}
523
524static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
525				u64 *sptep)
526{
527	struct kvm_mmu_page *sp;
528	pt_element_t *gptep = gw->prefetch_ptes;
529	u64 *spte;
530	int i;
531
532	sp = page_header(__pa(sptep));
533
534	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
535		return;
536
537	if (sp->role.direct)
538		return __direct_pte_prefetch(vcpu, sp, sptep);
539
540	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
541	spte = sp->spt + i;
542
543	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
544		if (spte == sptep)
545			continue;
546
547		if (is_shadow_present_pte(*spte))
548			continue;
549
550		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
551			break;
552	}
553}
554
555/*
556 * Fetch a shadow pte for a specific level in the paging hierarchy.
557 * If the guest tries to write a write-protected page, we need to
558 * emulate this operation, return 1 to indicate this case.
559 */
560static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
561			 struct guest_walker *gw,
562			 int write_fault, int hlevel,
563			 pfn_t pfn, bool map_writable, bool prefault)
564{
565	struct kvm_mmu_page *sp = NULL;
566	struct kvm_shadow_walk_iterator it;
567	unsigned direct_access, access = gw->pt_access;
568	int top_level, emulate = 0;
569
570	direct_access = gw->pte_access;
571
572	top_level = vcpu->arch.mmu.root_level;
573	if (top_level == PT32E_ROOT_LEVEL)
574		top_level = PT32_ROOT_LEVEL;
575	/*
576	 * Verify that the top-level gpte is still there.  Since the page
577	 * is a root page, it is either write protected (and cannot be
578	 * changed from now on) or it is invalid (in which case, we don't
579	 * really care if it changes underneath us after this point).
580	 */
581	if (FNAME(gpte_changed)(vcpu, gw, top_level))
582		goto out_gpte_changed;
583
584	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
585		goto out_gpte_changed;
586
587	for (shadow_walk_init(&it, vcpu, addr);
588	     shadow_walk_okay(&it) && it.level > gw->level;
589	     shadow_walk_next(&it)) {
590		gfn_t table_gfn;
591
592		clear_sp_write_flooding_count(it.sptep);
593		drop_large_spte(vcpu, it.sptep);
594
595		sp = NULL;
596		if (!is_shadow_present_pte(*it.sptep)) {
597			table_gfn = gw->table_gfn[it.level - 2];
598			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
599					      false, access, it.sptep);
600		}
601
602		/*
603		 * Verify that the gpte in the page we've just write
604		 * protected is still there.
605		 */
606		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
607			goto out_gpte_changed;
608
609		if (sp)
610			link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
611	}
612
613	for (;
614	     shadow_walk_okay(&it) && it.level > hlevel;
615	     shadow_walk_next(&it)) {
616		gfn_t direct_gfn;
617
618		clear_sp_write_flooding_count(it.sptep);
619		validate_direct_spte(vcpu, it.sptep, direct_access);
620
621		drop_large_spte(vcpu, it.sptep);
622
623		if (is_shadow_present_pte(*it.sptep))
624			continue;
625
626		direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
627
628		sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
629				      true, direct_access, it.sptep);
630		link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
631	}
632
633	clear_sp_write_flooding_count(it.sptep);
634	mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
635		     it.level, gw->gfn, pfn, prefault, map_writable);
636	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
637
638	return emulate;
639
640out_gpte_changed:
641	if (sp)
642		kvm_mmu_put_page(sp, it.sptep);
643	kvm_release_pfn_clean(pfn);
644	return 0;
645}
646
647 /*
648 * To see whether the mapped gfn can write its page table in the current
649 * mapping.
650 *
651 * It is the helper function of FNAME(page_fault). When guest uses large page
652 * size to map the writable gfn which is used as current page table, we should
653 * force kvm to use small page size to map it because new shadow page will be
654 * created when kvm establishes shadow page table that stop kvm using large
655 * page size. Do it early can avoid unnecessary #PF and emulation.
656 *
657 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
658 * currently used as its page table.
659 *
660 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
661 * since the PDPT is always shadowed, that means, we can not use large page
662 * size to map the gfn which is used as PDPT.
663 */
664static bool
665FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
666			      struct guest_walker *walker, int user_fault,
667			      bool *write_fault_to_shadow_pgtable)
668{
669	int level;
670	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
671	bool self_changed = false;
672
673	if (!(walker->pte_access & ACC_WRITE_MASK ||
674	      (!is_write_protection(vcpu) && !user_fault)))
675		return false;
676
677	for (level = walker->level; level <= walker->max_level; level++) {
678		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
679
680		self_changed |= !(gfn & mask);
681		*write_fault_to_shadow_pgtable |= !gfn;
682	}
683
684	return self_changed;
685}
686
687/*
688 * Page fault handler.  There are several causes for a page fault:
689 *   - there is no shadow pte for the guest pte
690 *   - write access through a shadow pte marked read only so that we can set
691 *     the dirty bit
692 *   - write access to a shadow pte marked read only so we can update the page
693 *     dirty bitmap, when userspace requests it
694 *   - mmio access; in this case we will never install a present shadow pte
695 *   - normal guest page fault due to the guest pte marked not present, not
696 *     writable, or not executable
697 *
698 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
699 *           a negative value on error.
700 */
701static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
702			     bool prefault)
703{
704	int write_fault = error_code & PFERR_WRITE_MASK;
705	int user_fault = error_code & PFERR_USER_MASK;
706	struct guest_walker walker;
707	int r;
708	pfn_t pfn;
709	int level = PT_PAGE_TABLE_LEVEL;
710	int force_pt_level;
711	unsigned long mmu_seq;
712	bool map_writable, is_self_change_mapping;
713
714	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
715
716	if (unlikely(error_code & PFERR_RSVD_MASK)) {
717		r = handle_mmio_page_fault(vcpu, addr, error_code,
718					      mmu_is_nested(vcpu));
719		if (likely(r != RET_MMIO_PF_INVALID))
720			return r;
721
722		/*
723		 * page fault with PFEC.RSVD  = 1 is caused by shadow
724		 * page fault, should not be used to walk guest page
725		 * table.
726		 */
727		error_code &= ~PFERR_RSVD_MASK;
728	};
729
730	r = mmu_topup_memory_caches(vcpu);
731	if (r)
732		return r;
733
734	/*
735	 * Look up the guest pte for the faulting address.
736	 */
737	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
738
739	/*
740	 * The page is not mapped by the guest.  Let the guest handle it.
741	 */
742	if (!r) {
743		pgprintk("%s: guest page fault\n", __func__);
744		if (!prefault)
745			inject_page_fault(vcpu, &walker.fault);
746
747		return 0;
748	}
749
750	vcpu->arch.write_fault_to_shadow_pgtable = false;
751
752	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
753	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
754
755	if (walker.level >= PT_DIRECTORY_LEVEL)
756		force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
757		   || is_self_change_mapping;
758	else
759		force_pt_level = 1;
760	if (!force_pt_level) {
761		level = min(walker.level, mapping_level(vcpu, walker.gfn));
762		walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
763	}
764
765	mmu_seq = vcpu->kvm->mmu_notifier_seq;
766	smp_rmb();
767
768	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
769			 &map_writable))
770		return 0;
771
772	if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
773				walker.gfn, pfn, walker.pte_access, &r))
774		return r;
775
776	/*
777	 * Do not change pte_access if the pfn is a mmio page, otherwise
778	 * we will cache the incorrect access into mmio spte.
779	 */
780	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
781	     !is_write_protection(vcpu) && !user_fault &&
782	      !is_noslot_pfn(pfn)) {
783		walker.pte_access |= ACC_WRITE_MASK;
784		walker.pte_access &= ~ACC_USER_MASK;
785
786		/*
787		 * If we converted a user page to a kernel page,
788		 * so that the kernel can write to it when cr0.wp=0,
789		 * then we should prevent the kernel from executing it
790		 * if SMEP is enabled.
791		 */
792		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
793			walker.pte_access &= ~ACC_EXEC_MASK;
794	}
795
796	spin_lock(&vcpu->kvm->mmu_lock);
797	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
798		goto out_unlock;
799
800	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
801	make_mmu_pages_available(vcpu);
802	if (!force_pt_level)
803		transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
804	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
805			 level, pfn, map_writable, prefault);
806	++vcpu->stat.pf_fixed;
807	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
808	spin_unlock(&vcpu->kvm->mmu_lock);
809
810	return r;
811
812out_unlock:
813	spin_unlock(&vcpu->kvm->mmu_lock);
814	kvm_release_pfn_clean(pfn);
815	return 0;
816}
817
818static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
819{
820	int offset = 0;
821
822	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
823
824	if (PTTYPE == 32)
825		offset = sp->role.quadrant << PT64_LEVEL_BITS;
826
827	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
828}
829
830static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
831{
832	struct kvm_shadow_walk_iterator iterator;
833	struct kvm_mmu_page *sp;
834	int level;
835	u64 *sptep;
836
837	vcpu_clear_mmio_info(vcpu, gva);
838
839	/*
840	 * No need to check return value here, rmap_can_add() can
841	 * help us to skip pte prefetch later.
842	 */
843	mmu_topup_memory_caches(vcpu);
844
845	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
846		WARN_ON(1);
847		return;
848	}
849
850	spin_lock(&vcpu->kvm->mmu_lock);
851	for_each_shadow_entry(vcpu, gva, iterator) {
852		level = iterator.level;
853		sptep = iterator.sptep;
854
855		sp = page_header(__pa(sptep));
856		if (is_last_spte(*sptep, level)) {
857			pt_element_t gpte;
858			gpa_t pte_gpa;
859
860			if (!sp->unsync)
861				break;
862
863			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
864			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
865
866			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
867				kvm_flush_remote_tlbs(vcpu->kvm);
868
869			if (!rmap_can_add(vcpu))
870				break;
871
872			if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
873						  sizeof(pt_element_t)))
874				break;
875
876			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
877		}
878
879		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
880			break;
881	}
882	spin_unlock(&vcpu->kvm->mmu_lock);
883}
884
885static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
886			       struct x86_exception *exception)
887{
888	struct guest_walker walker;
889	gpa_t gpa = UNMAPPED_GVA;
890	int r;
891
892	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
893
894	if (r) {
895		gpa = gfn_to_gpa(walker.gfn);
896		gpa |= vaddr & ~PAGE_MASK;
897	} else if (exception)
898		*exception = walker.fault;
899
900	return gpa;
901}
902
903#if PTTYPE != PTTYPE_EPT
904static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
905				      u32 access,
906				      struct x86_exception *exception)
907{
908	struct guest_walker walker;
909	gpa_t gpa = UNMAPPED_GVA;
910	int r;
911
912	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
913
914	if (r) {
915		gpa = gfn_to_gpa(walker.gfn);
916		gpa |= vaddr & ~PAGE_MASK;
917	} else if (exception)
918		*exception = walker.fault;
919
920	return gpa;
921}
922#endif
923
924/*
925 * Using the cached information from sp->gfns is safe because:
926 * - The spte has a reference to the struct page, so the pfn for a given gfn
927 *   can't change unless all sptes pointing to it are nuked first.
928 *
929 * Note:
930 *   We should flush all tlbs if spte is dropped even though guest is
931 *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
932 *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
933 *   used by guest then tlbs are not flushed, so guest is allowed to access the
934 *   freed pages.
935 *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
936 */
937static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
938{
939	int i, nr_present = 0;
940	bool host_writable;
941	gpa_t first_pte_gpa;
942
943	/* direct kvm_mmu_page can not be unsync. */
944	BUG_ON(sp->role.direct);
945
946	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
947
948	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
949		unsigned pte_access;
950		pt_element_t gpte;
951		gpa_t pte_gpa;
952		gfn_t gfn;
953
954		if (!sp->spt[i])
955			continue;
956
957		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
958
959		if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
960					  sizeof(pt_element_t)))
961			return -EINVAL;
962
963		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
964			vcpu->kvm->tlbs_dirty++;
965			continue;
966		}
967
968		gfn = gpte_to_gfn(gpte);
969		pte_access = sp->role.access;
970		pte_access &= FNAME(gpte_access)(vcpu, gpte);
971		FNAME(protect_clean_gpte)(&pte_access, gpte);
972
973		if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
974		      &nr_present))
975			continue;
976
977		if (gfn != sp->gfns[i]) {
978			drop_spte(vcpu->kvm, &sp->spt[i]);
979			vcpu->kvm->tlbs_dirty++;
980			continue;
981		}
982
983		nr_present++;
984
985		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
986
987		set_spte(vcpu, &sp->spt[i], pte_access,
988			 PT_PAGE_TABLE_LEVEL, gfn,
989			 spte_to_pfn(sp->spt[i]), true, false,
990			 host_writable);
991	}
992
993	return !nr_present;
994}
995
996#undef pt_element_t
997#undef guest_walker
998#undef FNAME
999#undef PT_BASE_ADDR_MASK
1000#undef PT_INDEX
1001#undef PT_LVL_ADDR_MASK
1002#undef PT_LVL_OFFSET_MASK
1003#undef PT_LEVEL_BITS
1004#undef PT_MAX_FULL_LEVELS
1005#undef gpte_to_gfn
1006#undef gpte_to_gfn_lvl
1007#undef CMPXCHG
1008#undef PT_GUEST_ACCESSED_MASK
1009#undef PT_GUEST_DIRTY_MASK
1010#undef PT_GUEST_DIRTY_SHIFT
1011#undef PT_GUEST_ACCESSED_SHIFT
1012