1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23#include <linux/crash_dump.h>
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42	unsigned int i;
43
44	for (i = 0; i < hctx->ctx_map.size; i++)
45		if (hctx->ctx_map.map[i].word)
46			return true;
47
48	return false;
49}
50
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52					      struct blk_mq_ctx *ctx)
53{
54	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx)	\
58	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64				     struct blk_mq_ctx *ctx)
65{
66	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73				      struct blk_mq_ctx *ctx)
74{
75	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78}
79
80static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81{
82	while (true) {
83		int ret;
84
85		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86			return 0;
87
88		if (!(gfp & __GFP_WAIT))
89			return -EBUSY;
90
91		ret = wait_event_interruptible(q->mq_freeze_wq,
92				!q->mq_freeze_depth || blk_queue_dying(q));
93		if (blk_queue_dying(q))
94			return -ENODEV;
95		if (ret)
96			return ret;
97	}
98}
99
100static void blk_mq_queue_exit(struct request_queue *q)
101{
102	percpu_ref_put(&q->mq_usage_counter);
103}
104
105static void blk_mq_usage_counter_release(struct percpu_ref *ref)
106{
107	struct request_queue *q =
108		container_of(ref, struct request_queue, mq_usage_counter);
109
110	wake_up_all(&q->mq_freeze_wq);
111}
112
113void blk_mq_freeze_queue_start(struct request_queue *q)
114{
115	bool freeze;
116
117	spin_lock_irq(q->queue_lock);
118	freeze = !q->mq_freeze_depth++;
119	spin_unlock_irq(q->queue_lock);
120
121	if (freeze) {
122		percpu_ref_kill(&q->mq_usage_counter);
123		blk_mq_run_hw_queues(q, false);
124	}
125}
126EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
127
128static void blk_mq_freeze_queue_wait(struct request_queue *q)
129{
130	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
131}
132
133/*
134 * Guarantee no request is in use, so we can change any data structure of
135 * the queue afterward.
136 */
137void blk_mq_freeze_queue(struct request_queue *q)
138{
139	blk_mq_freeze_queue_start(q);
140	blk_mq_freeze_queue_wait(q);
141}
142EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144void blk_mq_unfreeze_queue(struct request_queue *q)
145{
146	bool wake;
147
148	spin_lock_irq(q->queue_lock);
149	wake = !--q->mq_freeze_depth;
150	WARN_ON_ONCE(q->mq_freeze_depth < 0);
151	spin_unlock_irq(q->queue_lock);
152	if (wake) {
153		percpu_ref_reinit(&q->mq_usage_counter);
154		wake_up_all(&q->mq_freeze_wq);
155	}
156}
157EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
158
159void blk_mq_wake_waiters(struct request_queue *q)
160{
161	struct blk_mq_hw_ctx *hctx;
162	unsigned int i;
163
164	queue_for_each_hw_ctx(q, hctx, i)
165		if (blk_mq_hw_queue_mapped(hctx))
166			blk_mq_tag_wakeup_all(hctx->tags, true);
167
168	/*
169	 * If we are called because the queue has now been marked as
170	 * dying, we need to ensure that processes currently waiting on
171	 * the queue are notified as well.
172	 */
173	wake_up_all(&q->mq_freeze_wq);
174}
175
176bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
177{
178	return blk_mq_has_free_tags(hctx->tags);
179}
180EXPORT_SYMBOL(blk_mq_can_queue);
181
182static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
183			       struct request *rq, unsigned int rw_flags)
184{
185	if (blk_queue_io_stat(q))
186		rw_flags |= REQ_IO_STAT;
187
188	INIT_LIST_HEAD(&rq->queuelist);
189	/* csd/requeue_work/fifo_time is initialized before use */
190	rq->q = q;
191	rq->mq_ctx = ctx;
192	rq->cmd_flags |= rw_flags;
193	/* do not touch atomic flags, it needs atomic ops against the timer */
194	rq->cpu = -1;
195	INIT_HLIST_NODE(&rq->hash);
196	RB_CLEAR_NODE(&rq->rb_node);
197	rq->rq_disk = NULL;
198	rq->part = NULL;
199	rq->start_time = jiffies;
200#ifdef CONFIG_BLK_CGROUP
201	rq->rl = NULL;
202	set_start_time_ns(rq);
203	rq->io_start_time_ns = 0;
204#endif
205	rq->nr_phys_segments = 0;
206#if defined(CONFIG_BLK_DEV_INTEGRITY)
207	rq->nr_integrity_segments = 0;
208#endif
209	rq->special = NULL;
210	/* tag was already set */
211	rq->errors = 0;
212
213	rq->cmd = rq->__cmd;
214
215	rq->extra_len = 0;
216	rq->sense_len = 0;
217	rq->resid_len = 0;
218	rq->sense = NULL;
219
220	INIT_LIST_HEAD(&rq->timeout_list);
221	rq->timeout = 0;
222
223	rq->end_io = NULL;
224	rq->end_io_data = NULL;
225	rq->next_rq = NULL;
226
227	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228}
229
230static struct request *
231__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
232{
233	struct request *rq;
234	unsigned int tag;
235
236	tag = blk_mq_get_tag(data);
237	if (tag != BLK_MQ_TAG_FAIL) {
238		rq = data->hctx->tags->rqs[tag];
239
240		if (blk_mq_tag_busy(data->hctx)) {
241			rq->cmd_flags = REQ_MQ_INFLIGHT;
242			atomic_inc(&data->hctx->nr_active);
243		}
244
245		rq->tag = tag;
246		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
247		return rq;
248	}
249
250	return NULL;
251}
252
253struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
254		bool reserved)
255{
256	struct blk_mq_ctx *ctx;
257	struct blk_mq_hw_ctx *hctx;
258	struct request *rq;
259	struct blk_mq_alloc_data alloc_data;
260	int ret;
261
262	ret = blk_mq_queue_enter(q, gfp);
263	if (ret)
264		return ERR_PTR(ret);
265
266	ctx = blk_mq_get_ctx(q);
267	hctx = q->mq_ops->map_queue(q, ctx->cpu);
268	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
269			reserved, ctx, hctx);
270
271	rq = __blk_mq_alloc_request(&alloc_data, rw);
272	if (!rq && (gfp & __GFP_WAIT)) {
273		__blk_mq_run_hw_queue(hctx);
274		blk_mq_put_ctx(ctx);
275
276		ctx = blk_mq_get_ctx(q);
277		hctx = q->mq_ops->map_queue(q, ctx->cpu);
278		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
279				hctx);
280		rq =  __blk_mq_alloc_request(&alloc_data, rw);
281		ctx = alloc_data.ctx;
282	}
283	blk_mq_put_ctx(ctx);
284	if (!rq) {
285		blk_mq_queue_exit(q);
286		return ERR_PTR(-EWOULDBLOCK);
287	}
288	return rq;
289}
290EXPORT_SYMBOL(blk_mq_alloc_request);
291
292static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
293				  struct blk_mq_ctx *ctx, struct request *rq)
294{
295	const int tag = rq->tag;
296	struct request_queue *q = rq->q;
297
298	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
299		atomic_dec(&hctx->nr_active);
300	rq->cmd_flags = 0;
301
302	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
303	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
304	blk_mq_queue_exit(q);
305}
306
307void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
308{
309	struct blk_mq_ctx *ctx = rq->mq_ctx;
310
311	ctx->rq_completed[rq_is_sync(rq)]++;
312	__blk_mq_free_request(hctx, ctx, rq);
313
314}
315EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
316
317void blk_mq_free_request(struct request *rq)
318{
319	struct blk_mq_hw_ctx *hctx;
320	struct request_queue *q = rq->q;
321
322	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
323	blk_mq_free_hctx_request(hctx, rq);
324}
325EXPORT_SYMBOL_GPL(blk_mq_free_request);
326
327inline void __blk_mq_end_request(struct request *rq, int error)
328{
329	blk_account_io_done(rq);
330
331	if (rq->end_io) {
332		rq->end_io(rq, error);
333	} else {
334		if (unlikely(blk_bidi_rq(rq)))
335			blk_mq_free_request(rq->next_rq);
336		blk_mq_free_request(rq);
337	}
338}
339EXPORT_SYMBOL(__blk_mq_end_request);
340
341void blk_mq_end_request(struct request *rq, int error)
342{
343	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344		BUG();
345	__blk_mq_end_request(rq, error);
346}
347EXPORT_SYMBOL(blk_mq_end_request);
348
349static void __blk_mq_complete_request_remote(void *data)
350{
351	struct request *rq = data;
352
353	rq->q->softirq_done_fn(rq);
354}
355
356static void blk_mq_ipi_complete_request(struct request *rq)
357{
358	struct blk_mq_ctx *ctx = rq->mq_ctx;
359	bool shared = false;
360	int cpu;
361
362	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
363		rq->q->softirq_done_fn(rq);
364		return;
365	}
366
367	cpu = get_cpu();
368	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
369		shared = cpus_share_cache(cpu, ctx->cpu);
370
371	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
372		rq->csd.func = __blk_mq_complete_request_remote;
373		rq->csd.info = rq;
374		rq->csd.flags = 0;
375		smp_call_function_single_async(ctx->cpu, &rq->csd);
376	} else {
377		rq->q->softirq_done_fn(rq);
378	}
379	put_cpu();
380}
381
382void __blk_mq_complete_request(struct request *rq)
383{
384	struct request_queue *q = rq->q;
385
386	if (!q->softirq_done_fn)
387		blk_mq_end_request(rq, rq->errors);
388	else
389		blk_mq_ipi_complete_request(rq);
390}
391
392/**
393 * blk_mq_complete_request - end I/O on a request
394 * @rq:		the request being processed
395 *
396 * Description:
397 *	Ends all I/O on a request. It does not handle partial completions.
398 *	The actual completion happens out-of-order, through a IPI handler.
399 **/
400void blk_mq_complete_request(struct request *rq)
401{
402	struct request_queue *q = rq->q;
403
404	if (unlikely(blk_should_fake_timeout(q)))
405		return;
406	if (!blk_mark_rq_complete(rq))
407		__blk_mq_complete_request(rq);
408}
409EXPORT_SYMBOL(blk_mq_complete_request);
410
411int blk_mq_request_started(struct request *rq)
412{
413	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414}
415EXPORT_SYMBOL_GPL(blk_mq_request_started);
416
417void blk_mq_start_request(struct request *rq)
418{
419	struct request_queue *q = rq->q;
420
421	trace_block_rq_issue(q, rq);
422
423	rq->resid_len = blk_rq_bytes(rq);
424	if (unlikely(blk_bidi_rq(rq)))
425		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426
427	blk_add_timer(rq);
428
429	/*
430	 * Ensure that ->deadline is visible before set the started
431	 * flag and clear the completed flag.
432	 */
433	smp_mb__before_atomic();
434
435	/*
436	 * Mark us as started and clear complete. Complete might have been
437	 * set if requeue raced with timeout, which then marked it as
438	 * complete. So be sure to clear complete again when we start
439	 * the request, otherwise we'll ignore the completion event.
440	 */
441	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
445
446	if (q->dma_drain_size && blk_rq_bytes(rq)) {
447		/*
448		 * Make sure space for the drain appears.  We know we can do
449		 * this because max_hw_segments has been adjusted to be one
450		 * fewer than the device can handle.
451		 */
452		rq->nr_phys_segments++;
453	}
454}
455EXPORT_SYMBOL(blk_mq_start_request);
456
457static void __blk_mq_requeue_request(struct request *rq)
458{
459	struct request_queue *q = rq->q;
460
461	trace_block_rq_requeue(q, rq);
462
463	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464		if (q->dma_drain_size && blk_rq_bytes(rq))
465			rq->nr_phys_segments--;
466	}
467}
468
469void blk_mq_requeue_request(struct request *rq)
470{
471	__blk_mq_requeue_request(rq);
472
473	BUG_ON(blk_queued_rq(rq));
474	blk_mq_add_to_requeue_list(rq, true);
475}
476EXPORT_SYMBOL(blk_mq_requeue_request);
477
478static void blk_mq_requeue_work(struct work_struct *work)
479{
480	struct request_queue *q =
481		container_of(work, struct request_queue, requeue_work);
482	LIST_HEAD(rq_list);
483	struct request *rq, *next;
484	unsigned long flags;
485
486	spin_lock_irqsave(&q->requeue_lock, flags);
487	list_splice_init(&q->requeue_list, &rq_list);
488	spin_unlock_irqrestore(&q->requeue_lock, flags);
489
490	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
492			continue;
493
494		rq->cmd_flags &= ~REQ_SOFTBARRIER;
495		list_del_init(&rq->queuelist);
496		blk_mq_insert_request(rq, true, false, false);
497	}
498
499	while (!list_empty(&rq_list)) {
500		rq = list_entry(rq_list.next, struct request, queuelist);
501		list_del_init(&rq->queuelist);
502		blk_mq_insert_request(rq, false, false, false);
503	}
504
505	/*
506	 * Use the start variant of queue running here, so that running
507	 * the requeue work will kick stopped queues.
508	 */
509	blk_mq_start_hw_queues(q);
510}
511
512void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
513{
514	struct request_queue *q = rq->q;
515	unsigned long flags;
516
517	/*
518	 * We abuse this flag that is otherwise used by the I/O scheduler to
519	 * request head insertation from the workqueue.
520	 */
521	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
522
523	spin_lock_irqsave(&q->requeue_lock, flags);
524	if (at_head) {
525		rq->cmd_flags |= REQ_SOFTBARRIER;
526		list_add(&rq->queuelist, &q->requeue_list);
527	} else {
528		list_add_tail(&rq->queuelist, &q->requeue_list);
529	}
530	spin_unlock_irqrestore(&q->requeue_lock, flags);
531}
532EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
533
534void blk_mq_cancel_requeue_work(struct request_queue *q)
535{
536	cancel_work_sync(&q->requeue_work);
537}
538EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
539
540void blk_mq_kick_requeue_list(struct request_queue *q)
541{
542	kblockd_schedule_work(&q->requeue_work);
543}
544EXPORT_SYMBOL(blk_mq_kick_requeue_list);
545
546void blk_mq_abort_requeue_list(struct request_queue *q)
547{
548	unsigned long flags;
549	LIST_HEAD(rq_list);
550
551	spin_lock_irqsave(&q->requeue_lock, flags);
552	list_splice_init(&q->requeue_list, &rq_list);
553	spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555	while (!list_empty(&rq_list)) {
556		struct request *rq;
557
558		rq = list_first_entry(&rq_list, struct request, queuelist);
559		list_del_init(&rq->queuelist);
560		rq->errors = -EIO;
561		blk_mq_end_request(rq, rq->errors);
562	}
563}
564EXPORT_SYMBOL(blk_mq_abort_requeue_list);
565
566static inline bool is_flush_request(struct request *rq,
567		struct blk_flush_queue *fq, unsigned int tag)
568{
569	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
570			fq->flush_rq->tag == tag);
571}
572
573struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574{
575	struct request *rq = tags->rqs[tag];
576	/* mq_ctx of flush rq is always cloned from the corresponding req */
577	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
578
579	if (!is_flush_request(rq, fq, tag))
580		return rq;
581
582	return fq->flush_rq;
583}
584EXPORT_SYMBOL(blk_mq_tag_to_rq);
585
586struct blk_mq_timeout_data {
587	unsigned long next;
588	unsigned int next_set;
589};
590
591void blk_mq_rq_timed_out(struct request *req, bool reserved)
592{
593	struct blk_mq_ops *ops = req->q->mq_ops;
594	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595
596	/*
597	 * We know that complete is set at this point. If STARTED isn't set
598	 * anymore, then the request isn't active and the "timeout" should
599	 * just be ignored. This can happen due to the bitflag ordering.
600	 * Timeout first checks if STARTED is set, and if it is, assumes
601	 * the request is active. But if we race with completion, then
602	 * we both flags will get cleared. So check here again, and ignore
603	 * a timeout event with a request that isn't active.
604	 */
605	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606		return;
607
608	if (ops->timeout)
609		ret = ops->timeout(req, reserved);
610
611	switch (ret) {
612	case BLK_EH_HANDLED:
613		__blk_mq_complete_request(req);
614		break;
615	case BLK_EH_RESET_TIMER:
616		blk_add_timer(req);
617		blk_clear_rq_complete(req);
618		break;
619	case BLK_EH_NOT_HANDLED:
620		break;
621	default:
622		printk(KERN_ERR "block: bad eh return: %d\n", ret);
623		break;
624	}
625}
626
627static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628		struct request *rq, void *priv, bool reserved)
629{
630	struct blk_mq_timeout_data *data = priv;
631
632	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
633		/*
634		 * If a request wasn't started before the queue was
635		 * marked dying, kill it here or it'll go unnoticed.
636		 */
637		if (unlikely(blk_queue_dying(rq->q))) {
638			rq->errors = -EIO;
639			blk_mq_complete_request(rq);
640		}
641		return;
642	}
643	if (rq->cmd_flags & REQ_NO_TIMEOUT)
644		return;
645
646	if (time_after_eq(jiffies, rq->deadline)) {
647		if (!blk_mark_rq_complete(rq))
648			blk_mq_rq_timed_out(rq, reserved);
649	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
650		data->next = rq->deadline;
651		data->next_set = 1;
652	}
653}
654
655static void blk_mq_rq_timer(unsigned long priv)
656{
657	struct request_queue *q = (struct request_queue *)priv;
658	struct blk_mq_timeout_data data = {
659		.next		= 0,
660		.next_set	= 0,
661	};
662	struct blk_mq_hw_ctx *hctx;
663	int i;
664
665	queue_for_each_hw_ctx(q, hctx, i) {
666		/*
667		 * If not software queues are currently mapped to this
668		 * hardware queue, there's nothing to check
669		 */
670		if (!blk_mq_hw_queue_mapped(hctx))
671			continue;
672
673		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
674	}
675
676	if (data.next_set) {
677		data.next = blk_rq_timeout(round_jiffies_up(data.next));
678		mod_timer(&q->timeout, data.next);
679	} else {
680		queue_for_each_hw_ctx(q, hctx, i) {
681			/* the hctx may be unmapped, so check it here */
682			if (blk_mq_hw_queue_mapped(hctx))
683				blk_mq_tag_idle(hctx);
684		}
685	}
686}
687
688/*
689 * Reverse check our software queue for entries that we could potentially
690 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691 * too much time checking for merges.
692 */
693static bool blk_mq_attempt_merge(struct request_queue *q,
694				 struct blk_mq_ctx *ctx, struct bio *bio)
695{
696	struct request *rq;
697	int checked = 8;
698
699	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
700		int el_ret;
701
702		if (!checked--)
703			break;
704
705		if (!blk_rq_merge_ok(rq, bio))
706			continue;
707
708		el_ret = blk_try_merge(rq, bio);
709		if (el_ret == ELEVATOR_BACK_MERGE) {
710			if (bio_attempt_back_merge(q, rq, bio)) {
711				ctx->rq_merged++;
712				return true;
713			}
714			break;
715		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
716			if (bio_attempt_front_merge(q, rq, bio)) {
717				ctx->rq_merged++;
718				return true;
719			}
720			break;
721		}
722	}
723
724	return false;
725}
726
727/*
728 * Process software queues that have been marked busy, splicing them
729 * to the for-dispatch
730 */
731static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
732{
733	struct blk_mq_ctx *ctx;
734	int i;
735
736	for (i = 0; i < hctx->ctx_map.size; i++) {
737		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
738		unsigned int off, bit;
739
740		if (!bm->word)
741			continue;
742
743		bit = 0;
744		off = i * hctx->ctx_map.bits_per_word;
745		do {
746			bit = find_next_bit(&bm->word, bm->depth, bit);
747			if (bit >= bm->depth)
748				break;
749
750			ctx = hctx->ctxs[bit + off];
751			clear_bit(bit, &bm->word);
752			spin_lock(&ctx->lock);
753			list_splice_tail_init(&ctx->rq_list, list);
754			spin_unlock(&ctx->lock);
755
756			bit++;
757		} while (1);
758	}
759}
760
761/*
762 * Run this hardware queue, pulling any software queues mapped to it in.
763 * Note that this function currently has various problems around ordering
764 * of IO. In particular, we'd like FIFO behaviour on handling existing
765 * items on the hctx->dispatch list. Ignore that for now.
766 */
767static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
768{
769	struct request_queue *q = hctx->queue;
770	struct request *rq;
771	LIST_HEAD(rq_list);
772	LIST_HEAD(driver_list);
773	struct list_head *dptr;
774	int queued;
775
776	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
777
778	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
779		return;
780
781	hctx->run++;
782
783	/*
784	 * Touch any software queue that has pending entries.
785	 */
786	flush_busy_ctxs(hctx, &rq_list);
787
788	/*
789	 * If we have previous entries on our dispatch list, grab them
790	 * and stuff them at the front for more fair dispatch.
791	 */
792	if (!list_empty_careful(&hctx->dispatch)) {
793		spin_lock(&hctx->lock);
794		if (!list_empty(&hctx->dispatch))
795			list_splice_init(&hctx->dispatch, &rq_list);
796		spin_unlock(&hctx->lock);
797	}
798
799	/*
800	 * Start off with dptr being NULL, so we start the first request
801	 * immediately, even if we have more pending.
802	 */
803	dptr = NULL;
804
805	/*
806	 * Now process all the entries, sending them to the driver.
807	 */
808	queued = 0;
809	while (!list_empty(&rq_list)) {
810		struct blk_mq_queue_data bd;
811		int ret;
812
813		rq = list_first_entry(&rq_list, struct request, queuelist);
814		list_del_init(&rq->queuelist);
815
816		bd.rq = rq;
817		bd.list = dptr;
818		bd.last = list_empty(&rq_list);
819
820		ret = q->mq_ops->queue_rq(hctx, &bd);
821		switch (ret) {
822		case BLK_MQ_RQ_QUEUE_OK:
823			queued++;
824			continue;
825		case BLK_MQ_RQ_QUEUE_BUSY:
826			list_add(&rq->queuelist, &rq_list);
827			__blk_mq_requeue_request(rq);
828			break;
829		default:
830			pr_err("blk-mq: bad return on queue: %d\n", ret);
831		case BLK_MQ_RQ_QUEUE_ERROR:
832			rq->errors = -EIO;
833			blk_mq_end_request(rq, rq->errors);
834			break;
835		}
836
837		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
838			break;
839
840		/*
841		 * We've done the first request. If we have more than 1
842		 * left in the list, set dptr to defer issue.
843		 */
844		if (!dptr && rq_list.next != rq_list.prev)
845			dptr = &driver_list;
846	}
847
848	if (!queued)
849		hctx->dispatched[0]++;
850	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
851		hctx->dispatched[ilog2(queued) + 1]++;
852
853	/*
854	 * Any items that need requeuing? Stuff them into hctx->dispatch,
855	 * that is where we will continue on next queue run.
856	 */
857	if (!list_empty(&rq_list)) {
858		spin_lock(&hctx->lock);
859		list_splice(&rq_list, &hctx->dispatch);
860		spin_unlock(&hctx->lock);
861		/*
862		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
863		 * it's possible the queue is stopped and restarted again
864		 * before this. Queue restart will dispatch requests. And since
865		 * requests in rq_list aren't added into hctx->dispatch yet,
866		 * the requests in rq_list might get lost.
867		 *
868		 * blk_mq_run_hw_queue() already checks the STOPPED bit
869		 **/
870		blk_mq_run_hw_queue(hctx, true);
871	}
872}
873
874/*
875 * It'd be great if the workqueue API had a way to pass
876 * in a mask and had some smarts for more clever placement.
877 * For now we just round-robin here, switching for every
878 * BLK_MQ_CPU_WORK_BATCH queued items.
879 */
880static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
881{
882	if (hctx->queue->nr_hw_queues == 1)
883		return WORK_CPU_UNBOUND;
884
885	if (--hctx->next_cpu_batch <= 0) {
886		int cpu = hctx->next_cpu, next_cpu;
887
888		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
889		if (next_cpu >= nr_cpu_ids)
890			next_cpu = cpumask_first(hctx->cpumask);
891
892		hctx->next_cpu = next_cpu;
893		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
894
895		return cpu;
896	}
897
898	return hctx->next_cpu;
899}
900
901void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
902{
903	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
904	    !blk_mq_hw_queue_mapped(hctx)))
905		return;
906
907	if (!async) {
908		int cpu = get_cpu();
909		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
910			__blk_mq_run_hw_queue(hctx);
911			put_cpu();
912			return;
913		}
914
915		put_cpu();
916	}
917
918	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
919			&hctx->run_work, 0);
920}
921
922void blk_mq_run_hw_queues(struct request_queue *q, bool async)
923{
924	struct blk_mq_hw_ctx *hctx;
925	int i;
926
927	queue_for_each_hw_ctx(q, hctx, i) {
928		if ((!blk_mq_hctx_has_pending(hctx) &&
929		    list_empty_careful(&hctx->dispatch)) ||
930		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
931			continue;
932
933		blk_mq_run_hw_queue(hctx, async);
934	}
935}
936EXPORT_SYMBOL(blk_mq_run_hw_queues);
937
938void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
939{
940	cancel_delayed_work(&hctx->run_work);
941	cancel_delayed_work(&hctx->delay_work);
942	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
943}
944EXPORT_SYMBOL(blk_mq_stop_hw_queue);
945
946void blk_mq_stop_hw_queues(struct request_queue *q)
947{
948	struct blk_mq_hw_ctx *hctx;
949	int i;
950
951	queue_for_each_hw_ctx(q, hctx, i)
952		blk_mq_stop_hw_queue(hctx);
953}
954EXPORT_SYMBOL(blk_mq_stop_hw_queues);
955
956void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
957{
958	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
959
960	blk_mq_run_hw_queue(hctx, false);
961}
962EXPORT_SYMBOL(blk_mq_start_hw_queue);
963
964void blk_mq_start_hw_queues(struct request_queue *q)
965{
966	struct blk_mq_hw_ctx *hctx;
967	int i;
968
969	queue_for_each_hw_ctx(q, hctx, i)
970		blk_mq_start_hw_queue(hctx);
971}
972EXPORT_SYMBOL(blk_mq_start_hw_queues);
973
974void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
975{
976	struct blk_mq_hw_ctx *hctx;
977	int i;
978
979	queue_for_each_hw_ctx(q, hctx, i) {
980		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
981			continue;
982
983		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
984		blk_mq_run_hw_queue(hctx, async);
985	}
986}
987EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
988
989static void blk_mq_run_work_fn(struct work_struct *work)
990{
991	struct blk_mq_hw_ctx *hctx;
992
993	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
994
995	__blk_mq_run_hw_queue(hctx);
996}
997
998static void blk_mq_delay_work_fn(struct work_struct *work)
999{
1000	struct blk_mq_hw_ctx *hctx;
1001
1002	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1003
1004	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1005		__blk_mq_run_hw_queue(hctx);
1006}
1007
1008void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1009{
1010	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1011		return;
1012
1013	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1014			&hctx->delay_work, msecs_to_jiffies(msecs));
1015}
1016EXPORT_SYMBOL(blk_mq_delay_queue);
1017
1018static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1019				    struct request *rq, bool at_head)
1020{
1021	struct blk_mq_ctx *ctx = rq->mq_ctx;
1022
1023	trace_block_rq_insert(hctx->queue, rq);
1024
1025	if (at_head)
1026		list_add(&rq->queuelist, &ctx->rq_list);
1027	else
1028		list_add_tail(&rq->queuelist, &ctx->rq_list);
1029
1030	blk_mq_hctx_mark_pending(hctx, ctx);
1031}
1032
1033void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1034		bool async)
1035{
1036	struct request_queue *q = rq->q;
1037	struct blk_mq_hw_ctx *hctx;
1038	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1039
1040	current_ctx = blk_mq_get_ctx(q);
1041	if (!cpu_online(ctx->cpu))
1042		rq->mq_ctx = ctx = current_ctx;
1043
1044	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1045
1046	spin_lock(&ctx->lock);
1047	__blk_mq_insert_request(hctx, rq, at_head);
1048	spin_unlock(&ctx->lock);
1049
1050	if (run_queue)
1051		blk_mq_run_hw_queue(hctx, async);
1052
1053	blk_mq_put_ctx(current_ctx);
1054}
1055
1056static void blk_mq_insert_requests(struct request_queue *q,
1057				     struct blk_mq_ctx *ctx,
1058				     struct list_head *list,
1059				     int depth,
1060				     bool from_schedule)
1061
1062{
1063	struct blk_mq_hw_ctx *hctx;
1064	struct blk_mq_ctx *current_ctx;
1065
1066	trace_block_unplug(q, depth, !from_schedule);
1067
1068	current_ctx = blk_mq_get_ctx(q);
1069
1070	if (!cpu_online(ctx->cpu))
1071		ctx = current_ctx;
1072	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1073
1074	/*
1075	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1076	 * offline now
1077	 */
1078	spin_lock(&ctx->lock);
1079	while (!list_empty(list)) {
1080		struct request *rq;
1081
1082		rq = list_first_entry(list, struct request, queuelist);
1083		list_del_init(&rq->queuelist);
1084		rq->mq_ctx = ctx;
1085		__blk_mq_insert_request(hctx, rq, false);
1086	}
1087	spin_unlock(&ctx->lock);
1088
1089	blk_mq_run_hw_queue(hctx, from_schedule);
1090	blk_mq_put_ctx(current_ctx);
1091}
1092
1093static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1094{
1095	struct request *rqa = container_of(a, struct request, queuelist);
1096	struct request *rqb = container_of(b, struct request, queuelist);
1097
1098	return !(rqa->mq_ctx < rqb->mq_ctx ||
1099		 (rqa->mq_ctx == rqb->mq_ctx &&
1100		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1101}
1102
1103void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1104{
1105	struct blk_mq_ctx *this_ctx;
1106	struct request_queue *this_q;
1107	struct request *rq;
1108	LIST_HEAD(list);
1109	LIST_HEAD(ctx_list);
1110	unsigned int depth;
1111
1112	list_splice_init(&plug->mq_list, &list);
1113
1114	list_sort(NULL, &list, plug_ctx_cmp);
1115
1116	this_q = NULL;
1117	this_ctx = NULL;
1118	depth = 0;
1119
1120	while (!list_empty(&list)) {
1121		rq = list_entry_rq(list.next);
1122		list_del_init(&rq->queuelist);
1123		BUG_ON(!rq->q);
1124		if (rq->mq_ctx != this_ctx) {
1125			if (this_ctx) {
1126				blk_mq_insert_requests(this_q, this_ctx,
1127							&ctx_list, depth,
1128							from_schedule);
1129			}
1130
1131			this_ctx = rq->mq_ctx;
1132			this_q = rq->q;
1133			depth = 0;
1134		}
1135
1136		depth++;
1137		list_add_tail(&rq->queuelist, &ctx_list);
1138	}
1139
1140	/*
1141	 * If 'this_ctx' is set, we know we have entries to complete
1142	 * on 'ctx_list'. Do those.
1143	 */
1144	if (this_ctx) {
1145		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1146				       from_schedule);
1147	}
1148}
1149
1150static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1151{
1152	init_request_from_bio(rq, bio);
1153
1154	if (blk_do_io_stat(rq))
1155		blk_account_io_start(rq, 1);
1156}
1157
1158static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1159{
1160	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1161		!blk_queue_nomerges(hctx->queue);
1162}
1163
1164static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1165					 struct blk_mq_ctx *ctx,
1166					 struct request *rq, struct bio *bio)
1167{
1168	if (!hctx_allow_merges(hctx)) {
1169		blk_mq_bio_to_request(rq, bio);
1170		spin_lock(&ctx->lock);
1171insert_rq:
1172		__blk_mq_insert_request(hctx, rq, false);
1173		spin_unlock(&ctx->lock);
1174		return false;
1175	} else {
1176		struct request_queue *q = hctx->queue;
1177
1178		spin_lock(&ctx->lock);
1179		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1180			blk_mq_bio_to_request(rq, bio);
1181			goto insert_rq;
1182		}
1183
1184		spin_unlock(&ctx->lock);
1185		__blk_mq_free_request(hctx, ctx, rq);
1186		return true;
1187	}
1188}
1189
1190struct blk_map_ctx {
1191	struct blk_mq_hw_ctx *hctx;
1192	struct blk_mq_ctx *ctx;
1193};
1194
1195static struct request *blk_mq_map_request(struct request_queue *q,
1196					  struct bio *bio,
1197					  struct blk_map_ctx *data)
1198{
1199	struct blk_mq_hw_ctx *hctx;
1200	struct blk_mq_ctx *ctx;
1201	struct request *rq;
1202	int rw = bio_data_dir(bio);
1203	struct blk_mq_alloc_data alloc_data;
1204
1205	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1206		bio_endio(bio, -EIO);
1207		return NULL;
1208	}
1209
1210	ctx = blk_mq_get_ctx(q);
1211	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1212
1213	if (rw_is_sync(bio->bi_rw))
1214		rw |= REQ_SYNC;
1215
1216	trace_block_getrq(q, bio, rw);
1217	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1218			hctx);
1219	rq = __blk_mq_alloc_request(&alloc_data, rw);
1220	if (unlikely(!rq)) {
1221		__blk_mq_run_hw_queue(hctx);
1222		blk_mq_put_ctx(ctx);
1223		trace_block_sleeprq(q, bio, rw);
1224
1225		ctx = blk_mq_get_ctx(q);
1226		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1227		blk_mq_set_alloc_data(&alloc_data, q,
1228				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1229		rq = __blk_mq_alloc_request(&alloc_data, rw);
1230		ctx = alloc_data.ctx;
1231		hctx = alloc_data.hctx;
1232	}
1233
1234	hctx->queued++;
1235	data->hctx = hctx;
1236	data->ctx = ctx;
1237	return rq;
1238}
1239
1240/*
1241 * Multiple hardware queue variant. This will not use per-process plugs,
1242 * but will attempt to bypass the hctx queueing if we can go straight to
1243 * hardware for SYNC IO.
1244 */
1245static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1246{
1247	const int is_sync = rw_is_sync(bio->bi_rw);
1248	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1249	struct blk_map_ctx data;
1250	struct request *rq;
1251
1252	blk_queue_bounce(q, &bio);
1253
1254	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1255		bio_endio(bio, -EIO);
1256		return;
1257	}
1258
1259	rq = blk_mq_map_request(q, bio, &data);
1260	if (unlikely(!rq))
1261		return;
1262
1263	if (unlikely(is_flush_fua)) {
1264		blk_mq_bio_to_request(rq, bio);
1265		blk_insert_flush(rq);
1266		goto run_queue;
1267	}
1268
1269	/*
1270	 * If the driver supports defer issued based on 'last', then
1271	 * queue it up like normal since we can potentially save some
1272	 * CPU this way.
1273	 */
1274	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1275		struct blk_mq_queue_data bd = {
1276			.rq = rq,
1277			.list = NULL,
1278			.last = 1
1279		};
1280		int ret;
1281
1282		blk_mq_bio_to_request(rq, bio);
1283
1284		/*
1285		 * For OK queue, we are done. For error, kill it. Any other
1286		 * error (busy), just add it to our list as we previously
1287		 * would have done
1288		 */
1289		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1290		if (ret == BLK_MQ_RQ_QUEUE_OK)
1291			goto done;
1292		else {
1293			__blk_mq_requeue_request(rq);
1294
1295			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1296				rq->errors = -EIO;
1297				blk_mq_end_request(rq, rq->errors);
1298				goto done;
1299			}
1300		}
1301	}
1302
1303	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1304		/*
1305		 * For a SYNC request, send it to the hardware immediately. For
1306		 * an ASYNC request, just ensure that we run it later on. The
1307		 * latter allows for merging opportunities and more efficient
1308		 * dispatching.
1309		 */
1310run_queue:
1311		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1312	}
1313done:
1314	blk_mq_put_ctx(data.ctx);
1315}
1316
1317/*
1318 * Single hardware queue variant. This will attempt to use any per-process
1319 * plug for merging and IO deferral.
1320 */
1321static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1322{
1323	const int is_sync = rw_is_sync(bio->bi_rw);
1324	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1325	unsigned int use_plug, request_count = 0;
1326	struct blk_map_ctx data;
1327	struct request *rq;
1328
1329	/*
1330	 * If we have multiple hardware queues, just go directly to
1331	 * one of those for sync IO.
1332	 */
1333	use_plug = !is_flush_fua && !is_sync;
1334
1335	blk_queue_bounce(q, &bio);
1336
1337	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1338		bio_endio(bio, -EIO);
1339		return;
1340	}
1341
1342	if (use_plug && !blk_queue_nomerges(q) &&
1343	    blk_attempt_plug_merge(q, bio, &request_count))
1344		return;
1345
1346	rq = blk_mq_map_request(q, bio, &data);
1347	if (unlikely(!rq))
1348		return;
1349
1350	if (unlikely(is_flush_fua)) {
1351		blk_mq_bio_to_request(rq, bio);
1352		blk_insert_flush(rq);
1353		goto run_queue;
1354	}
1355
1356	/*
1357	 * A task plug currently exists. Since this is completely lockless,
1358	 * utilize that to temporarily store requests until the task is
1359	 * either done or scheduled away.
1360	 */
1361	if (use_plug) {
1362		struct blk_plug *plug = current->plug;
1363
1364		if (plug) {
1365			blk_mq_bio_to_request(rq, bio);
1366			if (list_empty(&plug->mq_list))
1367				trace_block_plug(q);
1368			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1369				blk_flush_plug_list(plug, false);
1370				trace_block_plug(q);
1371			}
1372			list_add_tail(&rq->queuelist, &plug->mq_list);
1373			blk_mq_put_ctx(data.ctx);
1374			return;
1375		}
1376	}
1377
1378	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1379		/*
1380		 * For a SYNC request, send it to the hardware immediately. For
1381		 * an ASYNC request, just ensure that we run it later on. The
1382		 * latter allows for merging opportunities and more efficient
1383		 * dispatching.
1384		 */
1385run_queue:
1386		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1387	}
1388
1389	blk_mq_put_ctx(data.ctx);
1390}
1391
1392/*
1393 * Default mapping to a software queue, since we use one per CPU.
1394 */
1395struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1396{
1397	return q->queue_hw_ctx[q->mq_map[cpu]];
1398}
1399EXPORT_SYMBOL(blk_mq_map_queue);
1400
1401static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1402		struct blk_mq_tags *tags, unsigned int hctx_idx)
1403{
1404	struct page *page;
1405
1406	if (tags->rqs && set->ops->exit_request) {
1407		int i;
1408
1409		for (i = 0; i < tags->nr_tags; i++) {
1410			if (!tags->rqs[i])
1411				continue;
1412			set->ops->exit_request(set->driver_data, tags->rqs[i],
1413						hctx_idx, i);
1414			tags->rqs[i] = NULL;
1415		}
1416	}
1417
1418	while (!list_empty(&tags->page_list)) {
1419		page = list_first_entry(&tags->page_list, struct page, lru);
1420		list_del_init(&page->lru);
1421		__free_pages(page, page->private);
1422	}
1423
1424	kfree(tags->rqs);
1425
1426	blk_mq_free_tags(tags);
1427}
1428
1429static size_t order_to_size(unsigned int order)
1430{
1431	return (size_t)PAGE_SIZE << order;
1432}
1433
1434static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1435		unsigned int hctx_idx)
1436{
1437	struct blk_mq_tags *tags;
1438	unsigned int i, j, entries_per_page, max_order = 4;
1439	size_t rq_size, left;
1440
1441	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1442				set->numa_node,
1443				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1444	if (!tags)
1445		return NULL;
1446
1447	INIT_LIST_HEAD(&tags->page_list);
1448
1449	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1450				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1451				 set->numa_node);
1452	if (!tags->rqs) {
1453		blk_mq_free_tags(tags);
1454		return NULL;
1455	}
1456
1457	/*
1458	 * rq_size is the size of the request plus driver payload, rounded
1459	 * to the cacheline size
1460	 */
1461	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1462				cache_line_size());
1463	left = rq_size * set->queue_depth;
1464
1465	for (i = 0; i < set->queue_depth; ) {
1466		int this_order = max_order;
1467		struct page *page;
1468		int to_do;
1469		void *p;
1470
1471		while (left < order_to_size(this_order - 1) && this_order)
1472			this_order--;
1473
1474		do {
1475			page = alloc_pages_node(set->numa_node,
1476				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1477				this_order);
1478			if (page)
1479				break;
1480			if (!this_order--)
1481				break;
1482			if (order_to_size(this_order) < rq_size)
1483				break;
1484		} while (1);
1485
1486		if (!page)
1487			goto fail;
1488
1489		page->private = this_order;
1490		list_add_tail(&page->lru, &tags->page_list);
1491
1492		p = page_address(page);
1493		entries_per_page = order_to_size(this_order) / rq_size;
1494		to_do = min(entries_per_page, set->queue_depth - i);
1495		left -= to_do * rq_size;
1496		for (j = 0; j < to_do; j++) {
1497			tags->rqs[i] = p;
1498			if (set->ops->init_request) {
1499				if (set->ops->init_request(set->driver_data,
1500						tags->rqs[i], hctx_idx, i,
1501						set->numa_node)) {
1502					tags->rqs[i] = NULL;
1503					goto fail;
1504				}
1505			}
1506
1507			p += rq_size;
1508			i++;
1509		}
1510	}
1511
1512	return tags;
1513
1514fail:
1515	blk_mq_free_rq_map(set, tags, hctx_idx);
1516	return NULL;
1517}
1518
1519static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1520{
1521	kfree(bitmap->map);
1522}
1523
1524static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1525{
1526	unsigned int bpw = 8, total, num_maps, i;
1527
1528	bitmap->bits_per_word = bpw;
1529
1530	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1531	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1532					GFP_KERNEL, node);
1533	if (!bitmap->map)
1534		return -ENOMEM;
1535
1536	total = nr_cpu_ids;
1537	for (i = 0; i < num_maps; i++) {
1538		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1539		total -= bitmap->map[i].depth;
1540	}
1541
1542	return 0;
1543}
1544
1545static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1546{
1547	struct request_queue *q = hctx->queue;
1548	struct blk_mq_ctx *ctx;
1549	LIST_HEAD(tmp);
1550
1551	/*
1552	 * Move ctx entries to new CPU, if this one is going away.
1553	 */
1554	ctx = __blk_mq_get_ctx(q, cpu);
1555
1556	spin_lock(&ctx->lock);
1557	if (!list_empty(&ctx->rq_list)) {
1558		list_splice_init(&ctx->rq_list, &tmp);
1559		blk_mq_hctx_clear_pending(hctx, ctx);
1560	}
1561	spin_unlock(&ctx->lock);
1562
1563	if (list_empty(&tmp))
1564		return NOTIFY_OK;
1565
1566	ctx = blk_mq_get_ctx(q);
1567	spin_lock(&ctx->lock);
1568
1569	while (!list_empty(&tmp)) {
1570		struct request *rq;
1571
1572		rq = list_first_entry(&tmp, struct request, queuelist);
1573		rq->mq_ctx = ctx;
1574		list_move_tail(&rq->queuelist, &ctx->rq_list);
1575	}
1576
1577	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1578	blk_mq_hctx_mark_pending(hctx, ctx);
1579
1580	spin_unlock(&ctx->lock);
1581
1582	blk_mq_run_hw_queue(hctx, true);
1583	blk_mq_put_ctx(ctx);
1584	return NOTIFY_OK;
1585}
1586
1587static int blk_mq_hctx_notify(void *data, unsigned long action,
1588			      unsigned int cpu)
1589{
1590	struct blk_mq_hw_ctx *hctx = data;
1591
1592	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1593		return blk_mq_hctx_cpu_offline(hctx, cpu);
1594
1595	/*
1596	 * In case of CPU online, tags may be reallocated
1597	 * in blk_mq_map_swqueue() after mapping is updated.
1598	 */
1599
1600	return NOTIFY_OK;
1601}
1602
1603/* hctx->ctxs will be freed in queue's release handler */
1604static void blk_mq_exit_hctx(struct request_queue *q,
1605		struct blk_mq_tag_set *set,
1606		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1607{
1608	unsigned flush_start_tag = set->queue_depth;
1609
1610	blk_mq_tag_idle(hctx);
1611
1612	if (set->ops->exit_request)
1613		set->ops->exit_request(set->driver_data,
1614				       hctx->fq->flush_rq, hctx_idx,
1615				       flush_start_tag + hctx_idx);
1616
1617	if (set->ops->exit_hctx)
1618		set->ops->exit_hctx(hctx, hctx_idx);
1619
1620	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1621	blk_free_flush_queue(hctx->fq);
1622	blk_mq_free_bitmap(&hctx->ctx_map);
1623}
1624
1625static void blk_mq_exit_hw_queues(struct request_queue *q,
1626		struct blk_mq_tag_set *set, int nr_queue)
1627{
1628	struct blk_mq_hw_ctx *hctx;
1629	unsigned int i;
1630
1631	queue_for_each_hw_ctx(q, hctx, i) {
1632		if (i == nr_queue)
1633			break;
1634		blk_mq_exit_hctx(q, set, hctx, i);
1635	}
1636}
1637
1638static void blk_mq_free_hw_queues(struct request_queue *q,
1639		struct blk_mq_tag_set *set)
1640{
1641	struct blk_mq_hw_ctx *hctx;
1642	unsigned int i;
1643
1644	queue_for_each_hw_ctx(q, hctx, i)
1645		free_cpumask_var(hctx->cpumask);
1646}
1647
1648static int blk_mq_init_hctx(struct request_queue *q,
1649		struct blk_mq_tag_set *set,
1650		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1651{
1652	int node;
1653	unsigned flush_start_tag = set->queue_depth;
1654
1655	node = hctx->numa_node;
1656	if (node == NUMA_NO_NODE)
1657		node = hctx->numa_node = set->numa_node;
1658
1659	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1660	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1661	spin_lock_init(&hctx->lock);
1662	INIT_LIST_HEAD(&hctx->dispatch);
1663	hctx->queue = q;
1664	hctx->queue_num = hctx_idx;
1665	hctx->flags = set->flags;
1666
1667	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1668					blk_mq_hctx_notify, hctx);
1669	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1670
1671	hctx->tags = set->tags[hctx_idx];
1672
1673	/*
1674	 * Allocate space for all possible cpus to avoid allocation at
1675	 * runtime
1676	 */
1677	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1678					GFP_KERNEL, node);
1679	if (!hctx->ctxs)
1680		goto unregister_cpu_notifier;
1681
1682	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1683		goto free_ctxs;
1684
1685	hctx->nr_ctx = 0;
1686
1687	if (set->ops->init_hctx &&
1688	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1689		goto free_bitmap;
1690
1691	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1692	if (!hctx->fq)
1693		goto exit_hctx;
1694
1695	if (set->ops->init_request &&
1696	    set->ops->init_request(set->driver_data,
1697				   hctx->fq->flush_rq, hctx_idx,
1698				   flush_start_tag + hctx_idx, node))
1699		goto free_fq;
1700
1701	return 0;
1702
1703 free_fq:
1704	kfree(hctx->fq);
1705 exit_hctx:
1706	if (set->ops->exit_hctx)
1707		set->ops->exit_hctx(hctx, hctx_idx);
1708 free_bitmap:
1709	blk_mq_free_bitmap(&hctx->ctx_map);
1710 free_ctxs:
1711	kfree(hctx->ctxs);
1712 unregister_cpu_notifier:
1713	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1714
1715	return -1;
1716}
1717
1718static int blk_mq_init_hw_queues(struct request_queue *q,
1719		struct blk_mq_tag_set *set)
1720{
1721	struct blk_mq_hw_ctx *hctx;
1722	unsigned int i;
1723
1724	/*
1725	 * Initialize hardware queues
1726	 */
1727	queue_for_each_hw_ctx(q, hctx, i) {
1728		if (blk_mq_init_hctx(q, set, hctx, i))
1729			break;
1730	}
1731
1732	if (i == q->nr_hw_queues)
1733		return 0;
1734
1735	/*
1736	 * Init failed
1737	 */
1738	blk_mq_exit_hw_queues(q, set, i);
1739
1740	return 1;
1741}
1742
1743static void blk_mq_init_cpu_queues(struct request_queue *q,
1744				   unsigned int nr_hw_queues)
1745{
1746	unsigned int i;
1747
1748	for_each_possible_cpu(i) {
1749		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1750		struct blk_mq_hw_ctx *hctx;
1751
1752		memset(__ctx, 0, sizeof(*__ctx));
1753		__ctx->cpu = i;
1754		spin_lock_init(&__ctx->lock);
1755		INIT_LIST_HEAD(&__ctx->rq_list);
1756		__ctx->queue = q;
1757
1758		/* If the cpu isn't online, the cpu is mapped to first hctx */
1759		if (!cpu_online(i))
1760			continue;
1761
1762		hctx = q->mq_ops->map_queue(q, i);
1763
1764		/*
1765		 * Set local node, IFF we have more than one hw queue. If
1766		 * not, we remain on the home node of the device
1767		 */
1768		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1769			hctx->numa_node = cpu_to_node(i);
1770	}
1771}
1772
1773static void blk_mq_map_swqueue(struct request_queue *q)
1774{
1775	unsigned int i;
1776	struct blk_mq_hw_ctx *hctx;
1777	struct blk_mq_ctx *ctx;
1778	struct blk_mq_tag_set *set = q->tag_set;
1779
1780	queue_for_each_hw_ctx(q, hctx, i) {
1781		cpumask_clear(hctx->cpumask);
1782		hctx->nr_ctx = 0;
1783	}
1784
1785	/*
1786	 * Map software to hardware queues
1787	 */
1788	queue_for_each_ctx(q, ctx, i) {
1789		/* If the cpu isn't online, the cpu is mapped to first hctx */
1790		if (!cpu_online(i))
1791			continue;
1792
1793		hctx = q->mq_ops->map_queue(q, i);
1794		cpumask_set_cpu(i, hctx->cpumask);
1795		ctx->index_hw = hctx->nr_ctx;
1796		hctx->ctxs[hctx->nr_ctx++] = ctx;
1797	}
1798
1799	queue_for_each_hw_ctx(q, hctx, i) {
1800		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1801
1802		/*
1803		 * If no software queues are mapped to this hardware queue,
1804		 * disable it and free the request entries.
1805		 */
1806		if (!hctx->nr_ctx) {
1807			if (set->tags[i]) {
1808				blk_mq_free_rq_map(set, set->tags[i], i);
1809				set->tags[i] = NULL;
1810			}
1811			hctx->tags = NULL;
1812			continue;
1813		}
1814
1815		/* unmapped hw queue can be remapped after CPU topo changed */
1816		if (!set->tags[i])
1817			set->tags[i] = blk_mq_init_rq_map(set, i);
1818		hctx->tags = set->tags[i];
1819		WARN_ON(!hctx->tags);
1820
1821		/*
1822		 * Set the map size to the number of mapped software queues.
1823		 * This is more accurate and more efficient than looping
1824		 * over all possibly mapped software queues.
1825		 */
1826		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1827
1828		/*
1829		 * Initialize batch roundrobin counts
1830		 */
1831		hctx->next_cpu = cpumask_first(hctx->cpumask);
1832		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1833	}
1834}
1835
1836static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1837{
1838	struct blk_mq_hw_ctx *hctx;
1839	struct request_queue *q;
1840	bool shared;
1841	int i;
1842
1843	if (set->tag_list.next == set->tag_list.prev)
1844		shared = false;
1845	else
1846		shared = true;
1847
1848	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1849		blk_mq_freeze_queue(q);
1850
1851		queue_for_each_hw_ctx(q, hctx, i) {
1852			if (shared)
1853				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1854			else
1855				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1856		}
1857		blk_mq_unfreeze_queue(q);
1858	}
1859}
1860
1861static void blk_mq_del_queue_tag_set(struct request_queue *q)
1862{
1863	struct blk_mq_tag_set *set = q->tag_set;
1864
1865	mutex_lock(&set->tag_list_lock);
1866	list_del_init(&q->tag_set_list);
1867	blk_mq_update_tag_set_depth(set);
1868	mutex_unlock(&set->tag_list_lock);
1869}
1870
1871static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1872				     struct request_queue *q)
1873{
1874	q->tag_set = set;
1875
1876	mutex_lock(&set->tag_list_lock);
1877	list_add_tail(&q->tag_set_list, &set->tag_list);
1878	blk_mq_update_tag_set_depth(set);
1879	mutex_unlock(&set->tag_list_lock);
1880}
1881
1882/*
1883 * It is the actual release handler for mq, but we do it from
1884 * request queue's release handler for avoiding use-after-free
1885 * and headache because q->mq_kobj shouldn't have been introduced,
1886 * but we can't group ctx/kctx kobj without it.
1887 */
1888void blk_mq_release(struct request_queue *q)
1889{
1890	struct blk_mq_hw_ctx *hctx;
1891	unsigned int i;
1892
1893	/* hctx kobj stays in hctx */
1894	queue_for_each_hw_ctx(q, hctx, i) {
1895		if (!hctx)
1896			continue;
1897		kfree(hctx->ctxs);
1898		kfree(hctx);
1899	}
1900
1901	kfree(q->queue_hw_ctx);
1902
1903	/* ctx kobj stays in queue_ctx */
1904	free_percpu(q->queue_ctx);
1905}
1906
1907struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1908{
1909	struct request_queue *uninit_q, *q;
1910
1911	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1912	if (!uninit_q)
1913		return ERR_PTR(-ENOMEM);
1914
1915	q = blk_mq_init_allocated_queue(set, uninit_q);
1916	if (IS_ERR(q))
1917		blk_cleanup_queue(uninit_q);
1918
1919	return q;
1920}
1921EXPORT_SYMBOL(blk_mq_init_queue);
1922
1923struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1924						  struct request_queue *q)
1925{
1926	struct blk_mq_hw_ctx **hctxs;
1927	struct blk_mq_ctx __percpu *ctx;
1928	unsigned int *map;
1929	int i;
1930
1931	ctx = alloc_percpu(struct blk_mq_ctx);
1932	if (!ctx)
1933		return ERR_PTR(-ENOMEM);
1934
1935	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1936			set->numa_node);
1937
1938	if (!hctxs)
1939		goto err_percpu;
1940
1941	map = blk_mq_make_queue_map(set);
1942	if (!map)
1943		goto err_map;
1944
1945	for (i = 0; i < set->nr_hw_queues; i++) {
1946		int node = blk_mq_hw_queue_to_node(map, i);
1947
1948		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1949					GFP_KERNEL, node);
1950		if (!hctxs[i])
1951			goto err_hctxs;
1952
1953		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1954						node))
1955			goto err_hctxs;
1956
1957		atomic_set(&hctxs[i]->nr_active, 0);
1958		hctxs[i]->numa_node = node;
1959		hctxs[i]->queue_num = i;
1960	}
1961
1962	/*
1963	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1964	 * See blk_register_queue() for details.
1965	 */
1966	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1967			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1968		goto err_hctxs;
1969
1970	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1971	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1972
1973	q->nr_queues = nr_cpu_ids;
1974	q->nr_hw_queues = set->nr_hw_queues;
1975	q->mq_map = map;
1976
1977	q->queue_ctx = ctx;
1978	q->queue_hw_ctx = hctxs;
1979
1980	q->mq_ops = set->ops;
1981	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1982
1983	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1984		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1985
1986	q->sg_reserved_size = INT_MAX;
1987
1988	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1989	INIT_LIST_HEAD(&q->requeue_list);
1990	spin_lock_init(&q->requeue_lock);
1991
1992	if (q->nr_hw_queues > 1)
1993		blk_queue_make_request(q, blk_mq_make_request);
1994	else
1995		blk_queue_make_request(q, blk_sq_make_request);
1996
1997	/*
1998	 * Do this after blk_queue_make_request() overrides it...
1999	 */
2000	q->nr_requests = set->queue_depth;
2001
2002	if (set->ops->complete)
2003		blk_queue_softirq_done(q, set->ops->complete);
2004
2005	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2006
2007	if (blk_mq_init_hw_queues(q, set))
2008		goto err_hctxs;
2009
2010	mutex_lock(&all_q_mutex);
2011	list_add_tail(&q->all_q_node, &all_q_list);
2012	mutex_unlock(&all_q_mutex);
2013
2014	blk_mq_add_queue_tag_set(set, q);
2015
2016	blk_mq_map_swqueue(q);
2017
2018	return q;
2019
2020err_hctxs:
2021	kfree(map);
2022	for (i = 0; i < set->nr_hw_queues; i++) {
2023		if (!hctxs[i])
2024			break;
2025		free_cpumask_var(hctxs[i]->cpumask);
2026		kfree(hctxs[i]);
2027	}
2028err_map:
2029	kfree(hctxs);
2030err_percpu:
2031	free_percpu(ctx);
2032	return ERR_PTR(-ENOMEM);
2033}
2034EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2035
2036void blk_mq_free_queue(struct request_queue *q)
2037{
2038	struct blk_mq_tag_set	*set = q->tag_set;
2039
2040	blk_mq_del_queue_tag_set(q);
2041
2042	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2043	blk_mq_free_hw_queues(q, set);
2044
2045	percpu_ref_exit(&q->mq_usage_counter);
2046
2047	kfree(q->mq_map);
2048
2049	q->mq_map = NULL;
2050
2051	mutex_lock(&all_q_mutex);
2052	list_del_init(&q->all_q_node);
2053	mutex_unlock(&all_q_mutex);
2054}
2055
2056/* Basically redo blk_mq_init_queue with queue frozen */
2057static void blk_mq_queue_reinit(struct request_queue *q)
2058{
2059	WARN_ON_ONCE(!q->mq_freeze_depth);
2060
2061	blk_mq_sysfs_unregister(q);
2062
2063	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2064
2065	/*
2066	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2067	 * we should change hctx numa_node according to new topology (this
2068	 * involves free and re-allocate memory, worthy doing?)
2069	 */
2070
2071	blk_mq_map_swqueue(q);
2072
2073	blk_mq_sysfs_register(q);
2074}
2075
2076static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2077				      unsigned long action, void *hcpu)
2078{
2079	struct request_queue *q;
2080
2081	/*
2082	 * Before new mappings are established, hotadded cpu might already
2083	 * start handling requests. This doesn't break anything as we map
2084	 * offline CPUs to first hardware queue. We will re-init the queue
2085	 * below to get optimal settings.
2086	 */
2087	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2088	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2089		return NOTIFY_OK;
2090
2091	mutex_lock(&all_q_mutex);
2092
2093	/*
2094	 * We need to freeze and reinit all existing queues.  Freezing
2095	 * involves synchronous wait for an RCU grace period and doing it
2096	 * one by one may take a long time.  Start freezing all queues in
2097	 * one swoop and then wait for the completions so that freezing can
2098	 * take place in parallel.
2099	 */
2100	list_for_each_entry(q, &all_q_list, all_q_node)
2101		blk_mq_freeze_queue_start(q);
2102	list_for_each_entry(q, &all_q_list, all_q_node) {
2103		blk_mq_freeze_queue_wait(q);
2104
2105		/*
2106		 * timeout handler can't touch hw queue during the
2107		 * reinitialization
2108		 */
2109		del_timer_sync(&q->timeout);
2110	}
2111
2112	list_for_each_entry(q, &all_q_list, all_q_node)
2113		blk_mq_queue_reinit(q);
2114
2115	list_for_each_entry(q, &all_q_list, all_q_node)
2116		blk_mq_unfreeze_queue(q);
2117
2118	mutex_unlock(&all_q_mutex);
2119	return NOTIFY_OK;
2120}
2121
2122static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2123{
2124	int i;
2125
2126	for (i = 0; i < set->nr_hw_queues; i++) {
2127		set->tags[i] = blk_mq_init_rq_map(set, i);
2128		if (!set->tags[i])
2129			goto out_unwind;
2130	}
2131
2132	return 0;
2133
2134out_unwind:
2135	while (--i >= 0)
2136		blk_mq_free_rq_map(set, set->tags[i], i);
2137
2138	return -ENOMEM;
2139}
2140
2141/*
2142 * Allocate the request maps associated with this tag_set. Note that this
2143 * may reduce the depth asked for, if memory is tight. set->queue_depth
2144 * will be updated to reflect the allocated depth.
2145 */
2146static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2147{
2148	unsigned int depth;
2149	int err;
2150
2151	depth = set->queue_depth;
2152	do {
2153		err = __blk_mq_alloc_rq_maps(set);
2154		if (!err)
2155			break;
2156
2157		set->queue_depth >>= 1;
2158		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2159			err = -ENOMEM;
2160			break;
2161		}
2162	} while (set->queue_depth);
2163
2164	if (!set->queue_depth || err) {
2165		pr_err("blk-mq: failed to allocate request map\n");
2166		return -ENOMEM;
2167	}
2168
2169	if (depth != set->queue_depth)
2170		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2171						depth, set->queue_depth);
2172
2173	return 0;
2174}
2175
2176/*
2177 * Alloc a tag set to be associated with one or more request queues.
2178 * May fail with EINVAL for various error conditions. May adjust the
2179 * requested depth down, if if it too large. In that case, the set
2180 * value will be stored in set->queue_depth.
2181 */
2182int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2183{
2184	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2185
2186	if (!set->nr_hw_queues)
2187		return -EINVAL;
2188	if (!set->queue_depth)
2189		return -EINVAL;
2190	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2191		return -EINVAL;
2192
2193	if (!set->ops->queue_rq || !set->ops->map_queue)
2194		return -EINVAL;
2195
2196	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2197		pr_info("blk-mq: reduced tag depth to %u\n",
2198			BLK_MQ_MAX_DEPTH);
2199		set->queue_depth = BLK_MQ_MAX_DEPTH;
2200	}
2201
2202	/*
2203	 * If a crashdump is active, then we are potentially in a very
2204	 * memory constrained environment. Limit us to 1 queue and
2205	 * 64 tags to prevent using too much memory.
2206	 */
2207	if (is_kdump_kernel()) {
2208		set->nr_hw_queues = 1;
2209		set->queue_depth = min(64U, set->queue_depth);
2210	}
2211
2212	set->tags = kmalloc_node(set->nr_hw_queues *
2213				 sizeof(struct blk_mq_tags *),
2214				 GFP_KERNEL, set->numa_node);
2215	if (!set->tags)
2216		return -ENOMEM;
2217
2218	if (blk_mq_alloc_rq_maps(set))
2219		goto enomem;
2220
2221	mutex_init(&set->tag_list_lock);
2222	INIT_LIST_HEAD(&set->tag_list);
2223
2224	return 0;
2225enomem:
2226	kfree(set->tags);
2227	set->tags = NULL;
2228	return -ENOMEM;
2229}
2230EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2231
2232void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2233{
2234	int i;
2235
2236	for (i = 0; i < set->nr_hw_queues; i++) {
2237		if (set->tags[i])
2238			blk_mq_free_rq_map(set, set->tags[i], i);
2239	}
2240
2241	kfree(set->tags);
2242	set->tags = NULL;
2243}
2244EXPORT_SYMBOL(blk_mq_free_tag_set);
2245
2246int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2247{
2248	struct blk_mq_tag_set *set = q->tag_set;
2249	struct blk_mq_hw_ctx *hctx;
2250	int i, ret;
2251
2252	if (!set || nr > set->queue_depth)
2253		return -EINVAL;
2254
2255	ret = 0;
2256	queue_for_each_hw_ctx(q, hctx, i) {
2257		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2258		if (ret)
2259			break;
2260	}
2261
2262	if (!ret)
2263		q->nr_requests = nr;
2264
2265	return ret;
2266}
2267
2268void blk_mq_disable_hotplug(void)
2269{
2270	mutex_lock(&all_q_mutex);
2271}
2272
2273void blk_mq_enable_hotplug(void)
2274{
2275	mutex_unlock(&all_q_mutex);
2276}
2277
2278static int __init blk_mq_init(void)
2279{
2280	blk_mq_cpu_init();
2281
2282	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2283
2284	return 0;
2285}
2286subsys_initcall(blk_mq_init);
2287