1/*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 *  			- Added processor hotplug support
9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 *  			- Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 *  This program is free software; you can redistribute it and/or modify
15 *  it under the terms of the GNU General Public License as published by
16 *  the Free Software Foundation; either version 2 of the License, or (at
17 *  your option) any later version.
18 *
19 *  This program is distributed in the hope that it will be useful, but
20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22 *  General Public License for more details.
23 *
24 *  You should have received a copy of the GNU General Public License along
25 *  with this program; if not, write to the Free Software Foundation, Inc.,
26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31#include <linux/module.h>
32#include <linux/acpi.h>
33#include <linux/dmi.h>
34#include <linux/sched.h>       /* need_resched() */
35#include <linux/tick.h>
36#include <linux/cpuidle.h>
37#include <linux/syscore_ops.h>
38#include <acpi/processor.h>
39
40/*
41 * Include the apic definitions for x86 to have the APIC timer related defines
42 * available also for UP (on SMP it gets magically included via linux/smp.h).
43 * asm/acpi.h is not an option, as it would require more include magic. Also
44 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
45 */
46#ifdef CONFIG_X86
47#include <asm/apic.h>
48#endif
49
50#define PREFIX "ACPI: "
51
52#define ACPI_PROCESSOR_CLASS            "processor"
53#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
54ACPI_MODULE_NAME("processor_idle");
55
56static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
57module_param(max_cstate, uint, 0000);
58static unsigned int nocst __read_mostly;
59module_param(nocst, uint, 0000);
60static int bm_check_disable __read_mostly;
61module_param(bm_check_disable, uint, 0000);
62
63static unsigned int latency_factor __read_mostly = 2;
64module_param(latency_factor, uint, 0644);
65
66static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
67
68static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
69								acpi_cstate);
70
71static int disabled_by_idle_boot_param(void)
72{
73	return boot_option_idle_override == IDLE_POLL ||
74		boot_option_idle_override == IDLE_HALT;
75}
76
77/*
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
80 *
81 * To skip this limit, boot/load with a large max_cstate limit.
82 */
83static int set_max_cstate(const struct dmi_system_id *id)
84{
85	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86		return 0;
87
88	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
90	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92	max_cstate = (long)id->driver_data;
93
94	return 0;
95}
96
97static struct dmi_system_id processor_power_dmi_table[] = {
98	{ set_max_cstate, "Clevo 5600D", {
99	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101	 (void *)2},
102	{ set_max_cstate, "Pavilion zv5000", {
103	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105	 (void *)1},
106	{ set_max_cstate, "Asus L8400B", {
107	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109	 (void *)1},
110	{},
111};
112
113
114/*
115 * Callers should disable interrupts before the call and enable
116 * interrupts after return.
117 */
118static void acpi_safe_halt(void)
119{
120	if (!tif_need_resched()) {
121		safe_halt();
122		local_irq_disable();
123	}
124}
125
126#ifdef ARCH_APICTIMER_STOPS_ON_C3
127
128/*
129 * Some BIOS implementations switch to C3 in the published C2 state.
130 * This seems to be a common problem on AMD boxen, but other vendors
131 * are affected too. We pick the most conservative approach: we assume
132 * that the local APIC stops in both C2 and C3.
133 */
134static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135				   struct acpi_processor_cx *cx)
136{
137	struct acpi_processor_power *pwr = &pr->power;
138	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139
140	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141		return;
142
143	if (amd_e400_c1e_detected)
144		type = ACPI_STATE_C1;
145
146	/*
147	 * Check, if one of the previous states already marked the lapic
148	 * unstable
149	 */
150	if (pwr->timer_broadcast_on_state < state)
151		return;
152
153	if (cx->type >= type)
154		pr->power.timer_broadcast_on_state = state;
155}
156
157static void __lapic_timer_propagate_broadcast(void *arg)
158{
159	struct acpi_processor *pr = (struct acpi_processor *) arg;
160
161	if (pr->power.timer_broadcast_on_state < INT_MAX)
162		tick_broadcast_enable();
163	else
164		tick_broadcast_disable();
165}
166
167static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
168{
169	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
170				 (void *)pr, 1);
171}
172
173/* Power(C) State timer broadcast control */
174static void lapic_timer_state_broadcast(struct acpi_processor *pr,
175				       struct acpi_processor_cx *cx,
176				       int broadcast)
177{
178	int state = cx - pr->power.states;
179
180	if (state >= pr->power.timer_broadcast_on_state) {
181		if (broadcast)
182			tick_broadcast_enter();
183		else
184			tick_broadcast_exit();
185	}
186}
187
188#else
189
190static void lapic_timer_check_state(int state, struct acpi_processor *pr,
191				   struct acpi_processor_cx *cstate) { }
192static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
193static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194				       struct acpi_processor_cx *cx,
195				       int broadcast)
196{
197}
198
199#endif
200
201#ifdef CONFIG_PM_SLEEP
202static u32 saved_bm_rld;
203
204static int acpi_processor_suspend(void)
205{
206	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
207	return 0;
208}
209
210static void acpi_processor_resume(void)
211{
212	u32 resumed_bm_rld = 0;
213
214	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
215	if (resumed_bm_rld == saved_bm_rld)
216		return;
217
218	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
219}
220
221static struct syscore_ops acpi_processor_syscore_ops = {
222	.suspend = acpi_processor_suspend,
223	.resume = acpi_processor_resume,
224};
225
226void acpi_processor_syscore_init(void)
227{
228	register_syscore_ops(&acpi_processor_syscore_ops);
229}
230
231void acpi_processor_syscore_exit(void)
232{
233	unregister_syscore_ops(&acpi_processor_syscore_ops);
234}
235#endif /* CONFIG_PM_SLEEP */
236
237#if defined(CONFIG_X86)
238static void tsc_check_state(int state)
239{
240	switch (boot_cpu_data.x86_vendor) {
241	case X86_VENDOR_AMD:
242	case X86_VENDOR_INTEL:
243		/*
244		 * AMD Fam10h TSC will tick in all
245		 * C/P/S0/S1 states when this bit is set.
246		 */
247		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
248			return;
249
250		/*FALL THROUGH*/
251	default:
252		/* TSC could halt in idle, so notify users */
253		if (state > ACPI_STATE_C1)
254			mark_tsc_unstable("TSC halts in idle");
255	}
256}
257#else
258static void tsc_check_state(int state) { return; }
259#endif
260
261static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
262{
263
264	if (!pr->pblk)
265		return -ENODEV;
266
267	/* if info is obtained from pblk/fadt, type equals state */
268	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
269	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
270
271#ifndef CONFIG_HOTPLUG_CPU
272	/*
273	 * Check for P_LVL2_UP flag before entering C2 and above on
274	 * an SMP system.
275	 */
276	if ((num_online_cpus() > 1) &&
277	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
278		return -ENODEV;
279#endif
280
281	/* determine C2 and C3 address from pblk */
282	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
283	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
284
285	/* determine latencies from FADT */
286	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
287	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
288
289	/*
290	 * FADT specified C2 latency must be less than or equal to
291	 * 100 microseconds.
292	 */
293	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
294		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
295			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
296		/* invalidate C2 */
297		pr->power.states[ACPI_STATE_C2].address = 0;
298	}
299
300	/*
301	 * FADT supplied C3 latency must be less than or equal to
302	 * 1000 microseconds.
303	 */
304	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
305		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
306			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
307		/* invalidate C3 */
308		pr->power.states[ACPI_STATE_C3].address = 0;
309	}
310
311	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
312			  "lvl2[0x%08x] lvl3[0x%08x]\n",
313			  pr->power.states[ACPI_STATE_C2].address,
314			  pr->power.states[ACPI_STATE_C3].address));
315
316	return 0;
317}
318
319static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
320{
321	if (!pr->power.states[ACPI_STATE_C1].valid) {
322		/* set the first C-State to C1 */
323		/* all processors need to support C1 */
324		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
325		pr->power.states[ACPI_STATE_C1].valid = 1;
326		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
327	}
328	/* the C0 state only exists as a filler in our array */
329	pr->power.states[ACPI_STATE_C0].valid = 1;
330	return 0;
331}
332
333static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
334{
335	acpi_status status;
336	u64 count;
337	int current_count;
338	int i, ret = 0;
339	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
340	union acpi_object *cst;
341
342
343	if (nocst)
344		return -ENODEV;
345
346	current_count = 0;
347
348	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
349	if (ACPI_FAILURE(status)) {
350		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
351		return -ENODEV;
352	}
353
354	cst = buffer.pointer;
355
356	/* There must be at least 2 elements */
357	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
358		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
359		ret = -EFAULT;
360		goto end;
361	}
362
363	count = cst->package.elements[0].integer.value;
364
365	/* Validate number of power states. */
366	if (count < 1 || count != cst->package.count - 1) {
367		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
368		ret = -EFAULT;
369		goto end;
370	}
371
372	/* Tell driver that at least _CST is supported. */
373	pr->flags.has_cst = 1;
374
375	for (i = 1; i <= count; i++) {
376		union acpi_object *element;
377		union acpi_object *obj;
378		struct acpi_power_register *reg;
379		struct acpi_processor_cx cx;
380
381		memset(&cx, 0, sizeof(cx));
382
383		element = &(cst->package.elements[i]);
384		if (element->type != ACPI_TYPE_PACKAGE)
385			continue;
386
387		if (element->package.count != 4)
388			continue;
389
390		obj = &(element->package.elements[0]);
391
392		if (obj->type != ACPI_TYPE_BUFFER)
393			continue;
394
395		reg = (struct acpi_power_register *)obj->buffer.pointer;
396
397		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
398		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
399			continue;
400
401		/* There should be an easy way to extract an integer... */
402		obj = &(element->package.elements[1]);
403		if (obj->type != ACPI_TYPE_INTEGER)
404			continue;
405
406		cx.type = obj->integer.value;
407		/*
408		 * Some buggy BIOSes won't list C1 in _CST -
409		 * Let acpi_processor_get_power_info_default() handle them later
410		 */
411		if (i == 1 && cx.type != ACPI_STATE_C1)
412			current_count++;
413
414		cx.address = reg->address;
415		cx.index = current_count + 1;
416
417		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
418		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
419			if (acpi_processor_ffh_cstate_probe
420					(pr->id, &cx, reg) == 0) {
421				cx.entry_method = ACPI_CSTATE_FFH;
422			} else if (cx.type == ACPI_STATE_C1) {
423				/*
424				 * C1 is a special case where FIXED_HARDWARE
425				 * can be handled in non-MWAIT way as well.
426				 * In that case, save this _CST entry info.
427				 * Otherwise, ignore this info and continue.
428				 */
429				cx.entry_method = ACPI_CSTATE_HALT;
430				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
431			} else {
432				continue;
433			}
434			if (cx.type == ACPI_STATE_C1 &&
435			    (boot_option_idle_override == IDLE_NOMWAIT)) {
436				/*
437				 * In most cases the C1 space_id obtained from
438				 * _CST object is FIXED_HARDWARE access mode.
439				 * But when the option of idle=halt is added,
440				 * the entry_method type should be changed from
441				 * CSTATE_FFH to CSTATE_HALT.
442				 * When the option of idle=nomwait is added,
443				 * the C1 entry_method type should be
444				 * CSTATE_HALT.
445				 */
446				cx.entry_method = ACPI_CSTATE_HALT;
447				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
448			}
449		} else {
450			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
451				 cx.address);
452		}
453
454		if (cx.type == ACPI_STATE_C1) {
455			cx.valid = 1;
456		}
457
458		obj = &(element->package.elements[2]);
459		if (obj->type != ACPI_TYPE_INTEGER)
460			continue;
461
462		cx.latency = obj->integer.value;
463
464		obj = &(element->package.elements[3]);
465		if (obj->type != ACPI_TYPE_INTEGER)
466			continue;
467
468		current_count++;
469		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
470
471		/*
472		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
473		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
474		 */
475		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
476			printk(KERN_WARNING
477			       "Limiting number of power states to max (%d)\n",
478			       ACPI_PROCESSOR_MAX_POWER);
479			printk(KERN_WARNING
480			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
481			break;
482		}
483	}
484
485	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
486			  current_count));
487
488	/* Validate number of power states discovered */
489	if (current_count < 2)
490		ret = -EFAULT;
491
492      end:
493	kfree(buffer.pointer);
494
495	return ret;
496}
497
498static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
499					   struct acpi_processor_cx *cx)
500{
501	static int bm_check_flag = -1;
502	static int bm_control_flag = -1;
503
504
505	if (!cx->address)
506		return;
507
508	/*
509	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
510	 * DMA transfers are used by any ISA device to avoid livelock.
511	 * Note that we could disable Type-F DMA (as recommended by
512	 * the erratum), but this is known to disrupt certain ISA
513	 * devices thus we take the conservative approach.
514	 */
515	else if (errata.piix4.fdma) {
516		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
517				  "C3 not supported on PIIX4 with Type-F DMA\n"));
518		return;
519	}
520
521	/* All the logic here assumes flags.bm_check is same across all CPUs */
522	if (bm_check_flag == -1) {
523		/* Determine whether bm_check is needed based on CPU  */
524		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
525		bm_check_flag = pr->flags.bm_check;
526		bm_control_flag = pr->flags.bm_control;
527	} else {
528		pr->flags.bm_check = bm_check_flag;
529		pr->flags.bm_control = bm_control_flag;
530	}
531
532	if (pr->flags.bm_check) {
533		if (!pr->flags.bm_control) {
534			if (pr->flags.has_cst != 1) {
535				/* bus mastering control is necessary */
536				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
537					"C3 support requires BM control\n"));
538				return;
539			} else {
540				/* Here we enter C3 without bus mastering */
541				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
542					"C3 support without BM control\n"));
543			}
544		}
545	} else {
546		/*
547		 * WBINVD should be set in fadt, for C3 state to be
548		 * supported on when bm_check is not required.
549		 */
550		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
551			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
552					  "Cache invalidation should work properly"
553					  " for C3 to be enabled on SMP systems\n"));
554			return;
555		}
556	}
557
558	/*
559	 * Otherwise we've met all of our C3 requirements.
560	 * Normalize the C3 latency to expidite policy.  Enable
561	 * checking of bus mastering status (bm_check) so we can
562	 * use this in our C3 policy
563	 */
564	cx->valid = 1;
565
566	/*
567	 * On older chipsets, BM_RLD needs to be set
568	 * in order for Bus Master activity to wake the
569	 * system from C3.  Newer chipsets handle DMA
570	 * during C3 automatically and BM_RLD is a NOP.
571	 * In either case, the proper way to
572	 * handle BM_RLD is to set it and leave it set.
573	 */
574	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
575
576	return;
577}
578
579static int acpi_processor_power_verify(struct acpi_processor *pr)
580{
581	unsigned int i;
582	unsigned int working = 0;
583
584	pr->power.timer_broadcast_on_state = INT_MAX;
585
586	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
587		struct acpi_processor_cx *cx = &pr->power.states[i];
588
589		switch (cx->type) {
590		case ACPI_STATE_C1:
591			cx->valid = 1;
592			break;
593
594		case ACPI_STATE_C2:
595			if (!cx->address)
596				break;
597			cx->valid = 1;
598			break;
599
600		case ACPI_STATE_C3:
601			acpi_processor_power_verify_c3(pr, cx);
602			break;
603		}
604		if (!cx->valid)
605			continue;
606
607		lapic_timer_check_state(i, pr, cx);
608		tsc_check_state(cx->type);
609		working++;
610	}
611
612	lapic_timer_propagate_broadcast(pr);
613
614	return (working);
615}
616
617static int acpi_processor_get_power_info(struct acpi_processor *pr)
618{
619	unsigned int i;
620	int result;
621
622
623	/* NOTE: the idle thread may not be running while calling
624	 * this function */
625
626	/* Zero initialize all the C-states info. */
627	memset(pr->power.states, 0, sizeof(pr->power.states));
628
629	result = acpi_processor_get_power_info_cst(pr);
630	if (result == -ENODEV)
631		result = acpi_processor_get_power_info_fadt(pr);
632
633	if (result)
634		return result;
635
636	acpi_processor_get_power_info_default(pr);
637
638	pr->power.count = acpi_processor_power_verify(pr);
639
640	/*
641	 * if one state of type C2 or C3 is available, mark this
642	 * CPU as being "idle manageable"
643	 */
644	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
645		if (pr->power.states[i].valid) {
646			pr->power.count = i;
647			if (pr->power.states[i].type >= ACPI_STATE_C2)
648				pr->flags.power = 1;
649		}
650	}
651
652	return 0;
653}
654
655/**
656 * acpi_idle_bm_check - checks if bus master activity was detected
657 */
658static int acpi_idle_bm_check(void)
659{
660	u32 bm_status = 0;
661
662	if (bm_check_disable)
663		return 0;
664
665	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
666	if (bm_status)
667		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
668	/*
669	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
670	 * the true state of bus mastering activity; forcing us to
671	 * manually check the BMIDEA bit of each IDE channel.
672	 */
673	else if (errata.piix4.bmisx) {
674		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
675		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
676			bm_status = 1;
677	}
678	return bm_status;
679}
680
681/**
682 * acpi_idle_do_entry - enter idle state using the appropriate method
683 * @cx: cstate data
684 *
685 * Caller disables interrupt before call and enables interrupt after return.
686 */
687static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
688{
689	if (cx->entry_method == ACPI_CSTATE_FFH) {
690		/* Call into architectural FFH based C-state */
691		acpi_processor_ffh_cstate_enter(cx);
692	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
693		acpi_safe_halt();
694	} else {
695		/* IO port based C-state */
696		inb(cx->address);
697		/* Dummy wait op - must do something useless after P_LVL2 read
698		   because chipsets cannot guarantee that STPCLK# signal
699		   gets asserted in time to freeze execution properly. */
700		inl(acpi_gbl_FADT.xpm_timer_block.address);
701	}
702}
703
704/**
705 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
706 * @dev: the target CPU
707 * @index: the index of suggested state
708 */
709static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
710{
711	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
712
713	ACPI_FLUSH_CPU_CACHE();
714
715	while (1) {
716
717		if (cx->entry_method == ACPI_CSTATE_HALT)
718			safe_halt();
719		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
720			inb(cx->address);
721			/* See comment in acpi_idle_do_entry() */
722			inl(acpi_gbl_FADT.xpm_timer_block.address);
723		} else
724			return -ENODEV;
725	}
726
727	/* Never reached */
728	return 0;
729}
730
731static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
732{
733	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
734		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
735}
736
737static int c3_cpu_count;
738static DEFINE_RAW_SPINLOCK(c3_lock);
739
740/**
741 * acpi_idle_enter_bm - enters C3 with proper BM handling
742 * @pr: Target processor
743 * @cx: Target state context
744 * @timer_bc: Whether or not to change timer mode to broadcast
745 */
746static void acpi_idle_enter_bm(struct acpi_processor *pr,
747			       struct acpi_processor_cx *cx, bool timer_bc)
748{
749	acpi_unlazy_tlb(smp_processor_id());
750
751	/*
752	 * Must be done before busmaster disable as we might need to
753	 * access HPET !
754	 */
755	if (timer_bc)
756		lapic_timer_state_broadcast(pr, cx, 1);
757
758	/*
759	 * disable bus master
760	 * bm_check implies we need ARB_DIS
761	 * bm_control implies whether we can do ARB_DIS
762	 *
763	 * That leaves a case where bm_check is set and bm_control is
764	 * not set. In that case we cannot do much, we enter C3
765	 * without doing anything.
766	 */
767	if (pr->flags.bm_control) {
768		raw_spin_lock(&c3_lock);
769		c3_cpu_count++;
770		/* Disable bus master arbitration when all CPUs are in C3 */
771		if (c3_cpu_count == num_online_cpus())
772			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
773		raw_spin_unlock(&c3_lock);
774	}
775
776	acpi_idle_do_entry(cx);
777
778	/* Re-enable bus master arbitration */
779	if (pr->flags.bm_control) {
780		raw_spin_lock(&c3_lock);
781		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
782		c3_cpu_count--;
783		raw_spin_unlock(&c3_lock);
784	}
785
786	if (timer_bc)
787		lapic_timer_state_broadcast(pr, cx, 0);
788}
789
790static int acpi_idle_enter(struct cpuidle_device *dev,
791			   struct cpuidle_driver *drv, int index)
792{
793	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
794	struct acpi_processor *pr;
795
796	pr = __this_cpu_read(processors);
797	if (unlikely(!pr))
798		return -EINVAL;
799
800	if (cx->type != ACPI_STATE_C1) {
801		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
802			index = CPUIDLE_DRIVER_STATE_START;
803			cx = per_cpu(acpi_cstate[index], dev->cpu);
804		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
805			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
806				acpi_idle_enter_bm(pr, cx, true);
807				return index;
808			} else if (drv->safe_state_index >= 0) {
809				index = drv->safe_state_index;
810				cx = per_cpu(acpi_cstate[index], dev->cpu);
811			} else {
812				acpi_safe_halt();
813				return -EBUSY;
814			}
815		}
816	}
817
818	lapic_timer_state_broadcast(pr, cx, 1);
819
820	if (cx->type == ACPI_STATE_C3)
821		ACPI_FLUSH_CPU_CACHE();
822
823	acpi_idle_do_entry(cx);
824
825	lapic_timer_state_broadcast(pr, cx, 0);
826
827	return index;
828}
829
830static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
831				   struct cpuidle_driver *drv, int index)
832{
833	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
834
835	if (cx->type == ACPI_STATE_C3) {
836		struct acpi_processor *pr = __this_cpu_read(processors);
837
838		if (unlikely(!pr))
839			return;
840
841		if (pr->flags.bm_check) {
842			acpi_idle_enter_bm(pr, cx, false);
843			return;
844		} else {
845			ACPI_FLUSH_CPU_CACHE();
846		}
847	}
848	acpi_idle_do_entry(cx);
849}
850
851struct cpuidle_driver acpi_idle_driver = {
852	.name =		"acpi_idle",
853	.owner =	THIS_MODULE,
854};
855
856/**
857 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
858 * device i.e. per-cpu data
859 *
860 * @pr: the ACPI processor
861 * @dev : the cpuidle device
862 */
863static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
864					   struct cpuidle_device *dev)
865{
866	int i, count = CPUIDLE_DRIVER_STATE_START;
867	struct acpi_processor_cx *cx;
868
869	if (!pr->flags.power_setup_done)
870		return -EINVAL;
871
872	if (pr->flags.power == 0) {
873		return -EINVAL;
874	}
875
876	if (!dev)
877		return -EINVAL;
878
879	dev->cpu = pr->id;
880
881	if (max_cstate == 0)
882		max_cstate = 1;
883
884	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
885		cx = &pr->power.states[i];
886
887		if (!cx->valid)
888			continue;
889
890		per_cpu(acpi_cstate[count], dev->cpu) = cx;
891
892		count++;
893		if (count == CPUIDLE_STATE_MAX)
894			break;
895	}
896
897	if (!count)
898		return -EINVAL;
899
900	return 0;
901}
902
903/**
904 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
905 * global state data i.e. idle routines
906 *
907 * @pr: the ACPI processor
908 */
909static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
910{
911	int i, count = CPUIDLE_DRIVER_STATE_START;
912	struct acpi_processor_cx *cx;
913	struct cpuidle_state *state;
914	struct cpuidle_driver *drv = &acpi_idle_driver;
915
916	if (!pr->flags.power_setup_done)
917		return -EINVAL;
918
919	if (pr->flags.power == 0)
920		return -EINVAL;
921
922	drv->safe_state_index = -1;
923	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
924		drv->states[i].name[0] = '\0';
925		drv->states[i].desc[0] = '\0';
926	}
927
928	if (max_cstate == 0)
929		max_cstate = 1;
930
931	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
932		cx = &pr->power.states[i];
933
934		if (!cx->valid)
935			continue;
936
937		state = &drv->states[count];
938		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
939		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
940		state->exit_latency = cx->latency;
941		state->target_residency = cx->latency * latency_factor;
942		state->enter = acpi_idle_enter;
943
944		state->flags = 0;
945		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
946			state->enter_dead = acpi_idle_play_dead;
947			drv->safe_state_index = count;
948		}
949		/*
950		 * Halt-induced C1 is not good for ->enter_freeze, because it
951		 * re-enables interrupts on exit.  Moreover, C1 is generally not
952		 * particularly interesting from the suspend-to-idle angle, so
953		 * avoid C1 and the situations in which we may need to fall back
954		 * to it altogether.
955		 */
956		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
957			state->enter_freeze = acpi_idle_enter_freeze;
958
959		count++;
960		if (count == CPUIDLE_STATE_MAX)
961			break;
962	}
963
964	drv->state_count = count;
965
966	if (!count)
967		return -EINVAL;
968
969	return 0;
970}
971
972int acpi_processor_hotplug(struct acpi_processor *pr)
973{
974	int ret = 0;
975	struct cpuidle_device *dev;
976
977	if (disabled_by_idle_boot_param())
978		return 0;
979
980	if (nocst)
981		return -ENODEV;
982
983	if (!pr->flags.power_setup_done)
984		return -ENODEV;
985
986	dev = per_cpu(acpi_cpuidle_device, pr->id);
987	cpuidle_pause_and_lock();
988	cpuidle_disable_device(dev);
989	acpi_processor_get_power_info(pr);
990	if (pr->flags.power) {
991		acpi_processor_setup_cpuidle_cx(pr, dev);
992		ret = cpuidle_enable_device(dev);
993	}
994	cpuidle_resume_and_unlock();
995
996	return ret;
997}
998
999int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1000{
1001	int cpu;
1002	struct acpi_processor *_pr;
1003	struct cpuidle_device *dev;
1004
1005	if (disabled_by_idle_boot_param())
1006		return 0;
1007
1008	if (nocst)
1009		return -ENODEV;
1010
1011	if (!pr->flags.power_setup_done)
1012		return -ENODEV;
1013
1014	/*
1015	 * FIXME:  Design the ACPI notification to make it once per
1016	 * system instead of once per-cpu.  This condition is a hack
1017	 * to make the code that updates C-States be called once.
1018	 */
1019
1020	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1021
1022		/* Protect against cpu-hotplug */
1023		get_online_cpus();
1024		cpuidle_pause_and_lock();
1025
1026		/* Disable all cpuidle devices */
1027		for_each_online_cpu(cpu) {
1028			_pr = per_cpu(processors, cpu);
1029			if (!_pr || !_pr->flags.power_setup_done)
1030				continue;
1031			dev = per_cpu(acpi_cpuidle_device, cpu);
1032			cpuidle_disable_device(dev);
1033		}
1034
1035		/* Populate Updated C-state information */
1036		acpi_processor_get_power_info(pr);
1037		acpi_processor_setup_cpuidle_states(pr);
1038
1039		/* Enable all cpuidle devices */
1040		for_each_online_cpu(cpu) {
1041			_pr = per_cpu(processors, cpu);
1042			if (!_pr || !_pr->flags.power_setup_done)
1043				continue;
1044			acpi_processor_get_power_info(_pr);
1045			if (_pr->flags.power) {
1046				dev = per_cpu(acpi_cpuidle_device, cpu);
1047				acpi_processor_setup_cpuidle_cx(_pr, dev);
1048				cpuidle_enable_device(dev);
1049			}
1050		}
1051		cpuidle_resume_and_unlock();
1052		put_online_cpus();
1053	}
1054
1055	return 0;
1056}
1057
1058static int acpi_processor_registered;
1059
1060int acpi_processor_power_init(struct acpi_processor *pr)
1061{
1062	acpi_status status;
1063	int retval;
1064	struct cpuidle_device *dev;
1065	static int first_run;
1066
1067	if (disabled_by_idle_boot_param())
1068		return 0;
1069
1070	if (!first_run) {
1071		dmi_check_system(processor_power_dmi_table);
1072		max_cstate = acpi_processor_cstate_check(max_cstate);
1073		if (max_cstate < ACPI_C_STATES_MAX)
1074			printk(KERN_NOTICE
1075			       "ACPI: processor limited to max C-state %d\n",
1076			       max_cstate);
1077		first_run++;
1078	}
1079
1080	if (acpi_gbl_FADT.cst_control && !nocst) {
1081		status =
1082		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1083		if (ACPI_FAILURE(status)) {
1084			ACPI_EXCEPTION((AE_INFO, status,
1085					"Notifying BIOS of _CST ability failed"));
1086		}
1087	}
1088
1089	acpi_processor_get_power_info(pr);
1090	pr->flags.power_setup_done = 1;
1091
1092	/*
1093	 * Install the idle handler if processor power management is supported.
1094	 * Note that we use previously set idle handler will be used on
1095	 * platforms that only support C1.
1096	 */
1097	if (pr->flags.power) {
1098		/* Register acpi_idle_driver if not already registered */
1099		if (!acpi_processor_registered) {
1100			acpi_processor_setup_cpuidle_states(pr);
1101			retval = cpuidle_register_driver(&acpi_idle_driver);
1102			if (retval)
1103				return retval;
1104			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1105					acpi_idle_driver.name);
1106		}
1107
1108		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1109		if (!dev)
1110			return -ENOMEM;
1111		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1112
1113		acpi_processor_setup_cpuidle_cx(pr, dev);
1114
1115		/* Register per-cpu cpuidle_device. Cpuidle driver
1116		 * must already be registered before registering device
1117		 */
1118		retval = cpuidle_register_device(dev);
1119		if (retval) {
1120			if (acpi_processor_registered == 0)
1121				cpuidle_unregister_driver(&acpi_idle_driver);
1122			return retval;
1123		}
1124		acpi_processor_registered++;
1125	}
1126	return 0;
1127}
1128
1129int acpi_processor_power_exit(struct acpi_processor *pr)
1130{
1131	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1132
1133	if (disabled_by_idle_boot_param())
1134		return 0;
1135
1136	if (pr->flags.power) {
1137		cpuidle_unregister_device(dev);
1138		acpi_processor_registered--;
1139		if (acpi_processor_registered == 0)
1140			cpuidle_unregister_driver(&acpi_idle_driver);
1141	}
1142
1143	pr->flags.power_setup_done = 0;
1144	return 0;
1145}
1146