1/* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20#include <linux/device.h> 21#include <linux/kallsyms.h> 22#include <linux/export.h> 23#include <linux/mutex.h> 24#include <linux/pm.h> 25#include <linux/pm_runtime.h> 26#include <linux/pm-trace.h> 27#include <linux/interrupt.h> 28#include <linux/sched.h> 29#include <linux/async.h> 30#include <linux/suspend.h> 31#include <trace/events/power.h> 32#include <linux/cpufreq.h> 33#include <linux/cpuidle.h> 34#include <linux/timer.h> 35 36#include "../base.h" 37#include "power.h" 38 39typedef int (*pm_callback_t)(struct device *); 40 41/* 42 * The entries in the dpm_list list are in a depth first order, simply 43 * because children are guaranteed to be discovered after parents, and 44 * are inserted at the back of the list on discovery. 45 * 46 * Since device_pm_add() may be called with a device lock held, 47 * we must never try to acquire a device lock while holding 48 * dpm_list_mutex. 49 */ 50 51LIST_HEAD(dpm_list); 52static LIST_HEAD(dpm_prepared_list); 53static LIST_HEAD(dpm_suspended_list); 54static LIST_HEAD(dpm_late_early_list); 55static LIST_HEAD(dpm_noirq_list); 56 57struct suspend_stats suspend_stats; 58static DEFINE_MUTEX(dpm_list_mtx); 59static pm_message_t pm_transition; 60 61static int async_error; 62 63static char *pm_verb(int event) 64{ 65 switch (event) { 66 case PM_EVENT_SUSPEND: 67 return "suspend"; 68 case PM_EVENT_RESUME: 69 return "resume"; 70 case PM_EVENT_FREEZE: 71 return "freeze"; 72 case PM_EVENT_QUIESCE: 73 return "quiesce"; 74 case PM_EVENT_HIBERNATE: 75 return "hibernate"; 76 case PM_EVENT_THAW: 77 return "thaw"; 78 case PM_EVENT_RESTORE: 79 return "restore"; 80 case PM_EVENT_RECOVER: 81 return "recover"; 82 default: 83 return "(unknown PM event)"; 84 } 85} 86 87/** 88 * device_pm_sleep_init - Initialize system suspend-related device fields. 89 * @dev: Device object being initialized. 90 */ 91void device_pm_sleep_init(struct device *dev) 92{ 93 dev->power.is_prepared = false; 94 dev->power.is_suspended = false; 95 dev->power.is_noirq_suspended = false; 96 dev->power.is_late_suspended = false; 97 init_completion(&dev->power.completion); 98 complete_all(&dev->power.completion); 99 dev->power.wakeup = NULL; 100 INIT_LIST_HEAD(&dev->power.entry); 101} 102 103/** 104 * device_pm_lock - Lock the list of active devices used by the PM core. 105 */ 106void device_pm_lock(void) 107{ 108 mutex_lock(&dpm_list_mtx); 109} 110 111/** 112 * device_pm_unlock - Unlock the list of active devices used by the PM core. 113 */ 114void device_pm_unlock(void) 115{ 116 mutex_unlock(&dpm_list_mtx); 117} 118 119/** 120 * device_pm_add - Add a device to the PM core's list of active devices. 121 * @dev: Device to add to the list. 122 */ 123void device_pm_add(struct device *dev) 124{ 125 pr_debug("PM: Adding info for %s:%s\n", 126 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 127 mutex_lock(&dpm_list_mtx); 128 if (dev->parent && dev->parent->power.is_prepared) 129 dev_warn(dev, "parent %s should not be sleeping\n", 130 dev_name(dev->parent)); 131 list_add_tail(&dev->power.entry, &dpm_list); 132 mutex_unlock(&dpm_list_mtx); 133} 134 135/** 136 * device_pm_remove - Remove a device from the PM core's list of active devices. 137 * @dev: Device to be removed from the list. 138 */ 139void device_pm_remove(struct device *dev) 140{ 141 pr_debug("PM: Removing info for %s:%s\n", 142 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 143 complete_all(&dev->power.completion); 144 mutex_lock(&dpm_list_mtx); 145 list_del_init(&dev->power.entry); 146 mutex_unlock(&dpm_list_mtx); 147 device_wakeup_disable(dev); 148 pm_runtime_remove(dev); 149} 150 151/** 152 * device_pm_move_before - Move device in the PM core's list of active devices. 153 * @deva: Device to move in dpm_list. 154 * @devb: Device @deva should come before. 155 */ 156void device_pm_move_before(struct device *deva, struct device *devb) 157{ 158 pr_debug("PM: Moving %s:%s before %s:%s\n", 159 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 160 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 161 /* Delete deva from dpm_list and reinsert before devb. */ 162 list_move_tail(&deva->power.entry, &devb->power.entry); 163} 164 165/** 166 * device_pm_move_after - Move device in the PM core's list of active devices. 167 * @deva: Device to move in dpm_list. 168 * @devb: Device @deva should come after. 169 */ 170void device_pm_move_after(struct device *deva, struct device *devb) 171{ 172 pr_debug("PM: Moving %s:%s after %s:%s\n", 173 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 174 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 175 /* Delete deva from dpm_list and reinsert after devb. */ 176 list_move(&deva->power.entry, &devb->power.entry); 177} 178 179/** 180 * device_pm_move_last - Move device to end of the PM core's list of devices. 181 * @dev: Device to move in dpm_list. 182 */ 183void device_pm_move_last(struct device *dev) 184{ 185 pr_debug("PM: Moving %s:%s to end of list\n", 186 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 187 list_move_tail(&dev->power.entry, &dpm_list); 188} 189 190static ktime_t initcall_debug_start(struct device *dev) 191{ 192 ktime_t calltime = ktime_set(0, 0); 193 194 if (pm_print_times_enabled) { 195 pr_info("calling %s+ @ %i, parent: %s\n", 196 dev_name(dev), task_pid_nr(current), 197 dev->parent ? dev_name(dev->parent) : "none"); 198 calltime = ktime_get(); 199 } 200 201 return calltime; 202} 203 204static void initcall_debug_report(struct device *dev, ktime_t calltime, 205 int error, pm_message_t state, char *info) 206{ 207 ktime_t rettime; 208 s64 nsecs; 209 210 rettime = ktime_get(); 211 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 212 213 if (pm_print_times_enabled) { 214 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 215 error, (unsigned long long)nsecs >> 10); 216 } 217} 218 219/** 220 * dpm_wait - Wait for a PM operation to complete. 221 * @dev: Device to wait for. 222 * @async: If unset, wait only if the device's power.async_suspend flag is set. 223 */ 224static void dpm_wait(struct device *dev, bool async) 225{ 226 if (!dev) 227 return; 228 229 if (async || (pm_async_enabled && dev->power.async_suspend)) 230 wait_for_completion(&dev->power.completion); 231} 232 233static int dpm_wait_fn(struct device *dev, void *async_ptr) 234{ 235 dpm_wait(dev, *((bool *)async_ptr)); 236 return 0; 237} 238 239static void dpm_wait_for_children(struct device *dev, bool async) 240{ 241 device_for_each_child(dev, &async, dpm_wait_fn); 242} 243 244/** 245 * pm_op - Return the PM operation appropriate for given PM event. 246 * @ops: PM operations to choose from. 247 * @state: PM transition of the system being carried out. 248 */ 249static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 250{ 251 switch (state.event) { 252#ifdef CONFIG_SUSPEND 253 case PM_EVENT_SUSPEND: 254 return ops->suspend; 255 case PM_EVENT_RESUME: 256 return ops->resume; 257#endif /* CONFIG_SUSPEND */ 258#ifdef CONFIG_HIBERNATE_CALLBACKS 259 case PM_EVENT_FREEZE: 260 case PM_EVENT_QUIESCE: 261 return ops->freeze; 262 case PM_EVENT_HIBERNATE: 263 return ops->poweroff; 264 case PM_EVENT_THAW: 265 case PM_EVENT_RECOVER: 266 return ops->thaw; 267 break; 268 case PM_EVENT_RESTORE: 269 return ops->restore; 270#endif /* CONFIG_HIBERNATE_CALLBACKS */ 271 } 272 273 return NULL; 274} 275 276/** 277 * pm_late_early_op - Return the PM operation appropriate for given PM event. 278 * @ops: PM operations to choose from. 279 * @state: PM transition of the system being carried out. 280 * 281 * Runtime PM is disabled for @dev while this function is being executed. 282 */ 283static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 284 pm_message_t state) 285{ 286 switch (state.event) { 287#ifdef CONFIG_SUSPEND 288 case PM_EVENT_SUSPEND: 289 return ops->suspend_late; 290 case PM_EVENT_RESUME: 291 return ops->resume_early; 292#endif /* CONFIG_SUSPEND */ 293#ifdef CONFIG_HIBERNATE_CALLBACKS 294 case PM_EVENT_FREEZE: 295 case PM_EVENT_QUIESCE: 296 return ops->freeze_late; 297 case PM_EVENT_HIBERNATE: 298 return ops->poweroff_late; 299 case PM_EVENT_THAW: 300 case PM_EVENT_RECOVER: 301 return ops->thaw_early; 302 case PM_EVENT_RESTORE: 303 return ops->restore_early; 304#endif /* CONFIG_HIBERNATE_CALLBACKS */ 305 } 306 307 return NULL; 308} 309 310/** 311 * pm_noirq_op - Return the PM operation appropriate for given PM event. 312 * @ops: PM operations to choose from. 313 * @state: PM transition of the system being carried out. 314 * 315 * The driver of @dev will not receive interrupts while this function is being 316 * executed. 317 */ 318static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 319{ 320 switch (state.event) { 321#ifdef CONFIG_SUSPEND 322 case PM_EVENT_SUSPEND: 323 return ops->suspend_noirq; 324 case PM_EVENT_RESUME: 325 return ops->resume_noirq; 326#endif /* CONFIG_SUSPEND */ 327#ifdef CONFIG_HIBERNATE_CALLBACKS 328 case PM_EVENT_FREEZE: 329 case PM_EVENT_QUIESCE: 330 return ops->freeze_noirq; 331 case PM_EVENT_HIBERNATE: 332 return ops->poweroff_noirq; 333 case PM_EVENT_THAW: 334 case PM_EVENT_RECOVER: 335 return ops->thaw_noirq; 336 case PM_EVENT_RESTORE: 337 return ops->restore_noirq; 338#endif /* CONFIG_HIBERNATE_CALLBACKS */ 339 } 340 341 return NULL; 342} 343 344static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 345{ 346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 348 ", may wakeup" : ""); 349} 350 351static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 352 int error) 353{ 354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 355 dev_name(dev), pm_verb(state.event), info, error); 356} 357 358static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 359{ 360 ktime_t calltime; 361 u64 usecs64; 362 int usecs; 363 364 calltime = ktime_get(); 365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 366 do_div(usecs64, NSEC_PER_USEC); 367 usecs = usecs64; 368 if (usecs == 0) 369 usecs = 1; 370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 371 info ?: "", info ? " " : "", pm_verb(state.event), 372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 373} 374 375static int dpm_run_callback(pm_callback_t cb, struct device *dev, 376 pm_message_t state, char *info) 377{ 378 ktime_t calltime; 379 int error; 380 381 if (!cb) 382 return 0; 383 384 calltime = initcall_debug_start(dev); 385 386 pm_dev_dbg(dev, state, info); 387 trace_device_pm_callback_start(dev, info, state.event); 388 error = cb(dev); 389 trace_device_pm_callback_end(dev, error); 390 suspend_report_result(cb, error); 391 392 initcall_debug_report(dev, calltime, error, state, info); 393 394 return error; 395} 396 397#ifdef CONFIG_DPM_WATCHDOG 398struct dpm_watchdog { 399 struct device *dev; 400 struct task_struct *tsk; 401 struct timer_list timer; 402}; 403 404#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 405 struct dpm_watchdog wd 406 407/** 408 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 409 * @data: Watchdog object address. 410 * 411 * Called when a driver has timed out suspending or resuming. 412 * There's not much we can do here to recover so panic() to 413 * capture a crash-dump in pstore. 414 */ 415static void dpm_watchdog_handler(unsigned long data) 416{ 417 struct dpm_watchdog *wd = (void *)data; 418 419 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 420 show_stack(wd->tsk, NULL); 421 panic("%s %s: unrecoverable failure\n", 422 dev_driver_string(wd->dev), dev_name(wd->dev)); 423} 424 425/** 426 * dpm_watchdog_set - Enable pm watchdog for given device. 427 * @wd: Watchdog. Must be allocated on the stack. 428 * @dev: Device to handle. 429 */ 430static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 431{ 432 struct timer_list *timer = &wd->timer; 433 434 wd->dev = dev; 435 wd->tsk = current; 436 437 init_timer_on_stack(timer); 438 /* use same timeout value for both suspend and resume */ 439 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 440 timer->function = dpm_watchdog_handler; 441 timer->data = (unsigned long)wd; 442 add_timer(timer); 443} 444 445/** 446 * dpm_watchdog_clear - Disable suspend/resume watchdog. 447 * @wd: Watchdog to disable. 448 */ 449static void dpm_watchdog_clear(struct dpm_watchdog *wd) 450{ 451 struct timer_list *timer = &wd->timer; 452 453 del_timer_sync(timer); 454 destroy_timer_on_stack(timer); 455} 456#else 457#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 458#define dpm_watchdog_set(x, y) 459#define dpm_watchdog_clear(x) 460#endif 461 462/*------------------------- Resume routines -------------------------*/ 463 464/** 465 * device_resume_noirq - Execute an "early resume" callback for given device. 466 * @dev: Device to handle. 467 * @state: PM transition of the system being carried out. 468 * @async: If true, the device is being resumed asynchronously. 469 * 470 * The driver of @dev will not receive interrupts while this function is being 471 * executed. 472 */ 473static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 474{ 475 pm_callback_t callback = NULL; 476 char *info = NULL; 477 int error = 0; 478 479 TRACE_DEVICE(dev); 480 TRACE_RESUME(0); 481 482 if (dev->power.syscore || dev->power.direct_complete) 483 goto Out; 484 485 if (!dev->power.is_noirq_suspended) 486 goto Out; 487 488 dpm_wait(dev->parent, async); 489 490 if (dev->pm_domain) { 491 info = "noirq power domain "; 492 callback = pm_noirq_op(&dev->pm_domain->ops, state); 493 } else if (dev->type && dev->type->pm) { 494 info = "noirq type "; 495 callback = pm_noirq_op(dev->type->pm, state); 496 } else if (dev->class && dev->class->pm) { 497 info = "noirq class "; 498 callback = pm_noirq_op(dev->class->pm, state); 499 } else if (dev->bus && dev->bus->pm) { 500 info = "noirq bus "; 501 callback = pm_noirq_op(dev->bus->pm, state); 502 } 503 504 if (!callback && dev->driver && dev->driver->pm) { 505 info = "noirq driver "; 506 callback = pm_noirq_op(dev->driver->pm, state); 507 } 508 509 error = dpm_run_callback(callback, dev, state, info); 510 dev->power.is_noirq_suspended = false; 511 512 Out: 513 complete_all(&dev->power.completion); 514 TRACE_RESUME(error); 515 return error; 516} 517 518static bool is_async(struct device *dev) 519{ 520 return dev->power.async_suspend && pm_async_enabled 521 && !pm_trace_is_enabled(); 522} 523 524static void async_resume_noirq(void *data, async_cookie_t cookie) 525{ 526 struct device *dev = (struct device *)data; 527 int error; 528 529 error = device_resume_noirq(dev, pm_transition, true); 530 if (error) 531 pm_dev_err(dev, pm_transition, " async", error); 532 533 put_device(dev); 534} 535 536/** 537 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 538 * @state: PM transition of the system being carried out. 539 * 540 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and 541 * enable device drivers to receive interrupts. 542 */ 543void dpm_resume_noirq(pm_message_t state) 544{ 545 struct device *dev; 546 ktime_t starttime = ktime_get(); 547 548 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 549 mutex_lock(&dpm_list_mtx); 550 pm_transition = state; 551 552 /* 553 * Advanced the async threads upfront, 554 * in case the starting of async threads is 555 * delayed by non-async resuming devices. 556 */ 557 list_for_each_entry(dev, &dpm_noirq_list, power.entry) { 558 reinit_completion(&dev->power.completion); 559 if (is_async(dev)) { 560 get_device(dev); 561 async_schedule(async_resume_noirq, dev); 562 } 563 } 564 565 while (!list_empty(&dpm_noirq_list)) { 566 dev = to_device(dpm_noirq_list.next); 567 get_device(dev); 568 list_move_tail(&dev->power.entry, &dpm_late_early_list); 569 mutex_unlock(&dpm_list_mtx); 570 571 if (!is_async(dev)) { 572 int error; 573 574 error = device_resume_noirq(dev, state, false); 575 if (error) { 576 suspend_stats.failed_resume_noirq++; 577 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 578 dpm_save_failed_dev(dev_name(dev)); 579 pm_dev_err(dev, state, " noirq", error); 580 } 581 } 582 583 mutex_lock(&dpm_list_mtx); 584 put_device(dev); 585 } 586 mutex_unlock(&dpm_list_mtx); 587 async_synchronize_full(); 588 dpm_show_time(starttime, state, "noirq"); 589 resume_device_irqs(); 590 cpuidle_resume(); 591 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 592} 593 594/** 595 * device_resume_early - Execute an "early resume" callback for given device. 596 * @dev: Device to handle. 597 * @state: PM transition of the system being carried out. 598 * @async: If true, the device is being resumed asynchronously. 599 * 600 * Runtime PM is disabled for @dev while this function is being executed. 601 */ 602static int device_resume_early(struct device *dev, pm_message_t state, bool async) 603{ 604 pm_callback_t callback = NULL; 605 char *info = NULL; 606 int error = 0; 607 608 TRACE_DEVICE(dev); 609 TRACE_RESUME(0); 610 611 if (dev->power.syscore || dev->power.direct_complete) 612 goto Out; 613 614 if (!dev->power.is_late_suspended) 615 goto Out; 616 617 dpm_wait(dev->parent, async); 618 619 if (dev->pm_domain) { 620 info = "early power domain "; 621 callback = pm_late_early_op(&dev->pm_domain->ops, state); 622 } else if (dev->type && dev->type->pm) { 623 info = "early type "; 624 callback = pm_late_early_op(dev->type->pm, state); 625 } else if (dev->class && dev->class->pm) { 626 info = "early class "; 627 callback = pm_late_early_op(dev->class->pm, state); 628 } else if (dev->bus && dev->bus->pm) { 629 info = "early bus "; 630 callback = pm_late_early_op(dev->bus->pm, state); 631 } 632 633 if (!callback && dev->driver && dev->driver->pm) { 634 info = "early driver "; 635 callback = pm_late_early_op(dev->driver->pm, state); 636 } 637 638 error = dpm_run_callback(callback, dev, state, info); 639 dev->power.is_late_suspended = false; 640 641 Out: 642 TRACE_RESUME(error); 643 644 pm_runtime_enable(dev); 645 complete_all(&dev->power.completion); 646 return error; 647} 648 649static void async_resume_early(void *data, async_cookie_t cookie) 650{ 651 struct device *dev = (struct device *)data; 652 int error; 653 654 error = device_resume_early(dev, pm_transition, true); 655 if (error) 656 pm_dev_err(dev, pm_transition, " async", error); 657 658 put_device(dev); 659} 660 661/** 662 * dpm_resume_early - Execute "early resume" callbacks for all devices. 663 * @state: PM transition of the system being carried out. 664 */ 665void dpm_resume_early(pm_message_t state) 666{ 667 struct device *dev; 668 ktime_t starttime = ktime_get(); 669 670 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 671 mutex_lock(&dpm_list_mtx); 672 pm_transition = state; 673 674 /* 675 * Advanced the async threads upfront, 676 * in case the starting of async threads is 677 * delayed by non-async resuming devices. 678 */ 679 list_for_each_entry(dev, &dpm_late_early_list, power.entry) { 680 reinit_completion(&dev->power.completion); 681 if (is_async(dev)) { 682 get_device(dev); 683 async_schedule(async_resume_early, dev); 684 } 685 } 686 687 while (!list_empty(&dpm_late_early_list)) { 688 dev = to_device(dpm_late_early_list.next); 689 get_device(dev); 690 list_move_tail(&dev->power.entry, &dpm_suspended_list); 691 mutex_unlock(&dpm_list_mtx); 692 693 if (!is_async(dev)) { 694 int error; 695 696 error = device_resume_early(dev, state, false); 697 if (error) { 698 suspend_stats.failed_resume_early++; 699 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 700 dpm_save_failed_dev(dev_name(dev)); 701 pm_dev_err(dev, state, " early", error); 702 } 703 } 704 mutex_lock(&dpm_list_mtx); 705 put_device(dev); 706 } 707 mutex_unlock(&dpm_list_mtx); 708 async_synchronize_full(); 709 dpm_show_time(starttime, state, "early"); 710 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 711} 712 713/** 714 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 715 * @state: PM transition of the system being carried out. 716 */ 717void dpm_resume_start(pm_message_t state) 718{ 719 dpm_resume_noirq(state); 720 dpm_resume_early(state); 721} 722EXPORT_SYMBOL_GPL(dpm_resume_start); 723 724/** 725 * device_resume - Execute "resume" callbacks for given device. 726 * @dev: Device to handle. 727 * @state: PM transition of the system being carried out. 728 * @async: If true, the device is being resumed asynchronously. 729 */ 730static int device_resume(struct device *dev, pm_message_t state, bool async) 731{ 732 pm_callback_t callback = NULL; 733 char *info = NULL; 734 int error = 0; 735 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 736 737 TRACE_DEVICE(dev); 738 TRACE_RESUME(0); 739 740 if (dev->power.syscore) 741 goto Complete; 742 743 if (dev->power.direct_complete) { 744 /* Match the pm_runtime_disable() in __device_suspend(). */ 745 pm_runtime_enable(dev); 746 goto Complete; 747 } 748 749 dpm_wait(dev->parent, async); 750 dpm_watchdog_set(&wd, dev); 751 device_lock(dev); 752 753 /* 754 * This is a fib. But we'll allow new children to be added below 755 * a resumed device, even if the device hasn't been completed yet. 756 */ 757 dev->power.is_prepared = false; 758 759 if (!dev->power.is_suspended) 760 goto Unlock; 761 762 if (dev->pm_domain) { 763 info = "power domain "; 764 callback = pm_op(&dev->pm_domain->ops, state); 765 goto Driver; 766 } 767 768 if (dev->type && dev->type->pm) { 769 info = "type "; 770 callback = pm_op(dev->type->pm, state); 771 goto Driver; 772 } 773 774 if (dev->class) { 775 if (dev->class->pm) { 776 info = "class "; 777 callback = pm_op(dev->class->pm, state); 778 goto Driver; 779 } else if (dev->class->resume) { 780 info = "legacy class "; 781 callback = dev->class->resume; 782 goto End; 783 } 784 } 785 786 if (dev->bus) { 787 if (dev->bus->pm) { 788 info = "bus "; 789 callback = pm_op(dev->bus->pm, state); 790 } else if (dev->bus->resume) { 791 info = "legacy bus "; 792 callback = dev->bus->resume; 793 goto End; 794 } 795 } 796 797 Driver: 798 if (!callback && dev->driver && dev->driver->pm) { 799 info = "driver "; 800 callback = pm_op(dev->driver->pm, state); 801 } 802 803 End: 804 error = dpm_run_callback(callback, dev, state, info); 805 dev->power.is_suspended = false; 806 807 Unlock: 808 device_unlock(dev); 809 dpm_watchdog_clear(&wd); 810 811 Complete: 812 complete_all(&dev->power.completion); 813 814 TRACE_RESUME(error); 815 816 return error; 817} 818 819static void async_resume(void *data, async_cookie_t cookie) 820{ 821 struct device *dev = (struct device *)data; 822 int error; 823 824 error = device_resume(dev, pm_transition, true); 825 if (error) 826 pm_dev_err(dev, pm_transition, " async", error); 827 put_device(dev); 828} 829 830/** 831 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 832 * @state: PM transition of the system being carried out. 833 * 834 * Execute the appropriate "resume" callback for all devices whose status 835 * indicates that they are suspended. 836 */ 837void dpm_resume(pm_message_t state) 838{ 839 struct device *dev; 840 ktime_t starttime = ktime_get(); 841 842 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 843 might_sleep(); 844 845 mutex_lock(&dpm_list_mtx); 846 pm_transition = state; 847 async_error = 0; 848 849 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 850 reinit_completion(&dev->power.completion); 851 if (is_async(dev)) { 852 get_device(dev); 853 async_schedule(async_resume, dev); 854 } 855 } 856 857 while (!list_empty(&dpm_suspended_list)) { 858 dev = to_device(dpm_suspended_list.next); 859 get_device(dev); 860 if (!is_async(dev)) { 861 int error; 862 863 mutex_unlock(&dpm_list_mtx); 864 865 error = device_resume(dev, state, false); 866 if (error) { 867 suspend_stats.failed_resume++; 868 dpm_save_failed_step(SUSPEND_RESUME); 869 dpm_save_failed_dev(dev_name(dev)); 870 pm_dev_err(dev, state, "", error); 871 } 872 873 mutex_lock(&dpm_list_mtx); 874 } 875 if (!list_empty(&dev->power.entry)) 876 list_move_tail(&dev->power.entry, &dpm_prepared_list); 877 put_device(dev); 878 } 879 mutex_unlock(&dpm_list_mtx); 880 async_synchronize_full(); 881 dpm_show_time(starttime, state, NULL); 882 883 cpufreq_resume(); 884 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 885} 886 887/** 888 * device_complete - Complete a PM transition for given device. 889 * @dev: Device to handle. 890 * @state: PM transition of the system being carried out. 891 */ 892static void device_complete(struct device *dev, pm_message_t state) 893{ 894 void (*callback)(struct device *) = NULL; 895 char *info = NULL; 896 897 if (dev->power.syscore) 898 return; 899 900 device_lock(dev); 901 902 if (dev->pm_domain) { 903 info = "completing power domain "; 904 callback = dev->pm_domain->ops.complete; 905 } else if (dev->type && dev->type->pm) { 906 info = "completing type "; 907 callback = dev->type->pm->complete; 908 } else if (dev->class && dev->class->pm) { 909 info = "completing class "; 910 callback = dev->class->pm->complete; 911 } else if (dev->bus && dev->bus->pm) { 912 info = "completing bus "; 913 callback = dev->bus->pm->complete; 914 } 915 916 if (!callback && dev->driver && dev->driver->pm) { 917 info = "completing driver "; 918 callback = dev->driver->pm->complete; 919 } 920 921 if (callback) { 922 pm_dev_dbg(dev, state, info); 923 trace_device_pm_callback_start(dev, info, state.event); 924 callback(dev); 925 trace_device_pm_callback_end(dev, 0); 926 } 927 928 device_unlock(dev); 929 930 pm_runtime_put(dev); 931} 932 933/** 934 * dpm_complete - Complete a PM transition for all non-sysdev devices. 935 * @state: PM transition of the system being carried out. 936 * 937 * Execute the ->complete() callbacks for all devices whose PM status is not 938 * DPM_ON (this allows new devices to be registered). 939 */ 940void dpm_complete(pm_message_t state) 941{ 942 struct list_head list; 943 944 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 945 might_sleep(); 946 947 INIT_LIST_HEAD(&list); 948 mutex_lock(&dpm_list_mtx); 949 while (!list_empty(&dpm_prepared_list)) { 950 struct device *dev = to_device(dpm_prepared_list.prev); 951 952 get_device(dev); 953 dev->power.is_prepared = false; 954 list_move(&dev->power.entry, &list); 955 mutex_unlock(&dpm_list_mtx); 956 957 device_complete(dev, state); 958 959 mutex_lock(&dpm_list_mtx); 960 put_device(dev); 961 } 962 list_splice(&list, &dpm_list); 963 mutex_unlock(&dpm_list_mtx); 964 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 965} 966 967/** 968 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 969 * @state: PM transition of the system being carried out. 970 * 971 * Execute "resume" callbacks for all devices and complete the PM transition of 972 * the system. 973 */ 974void dpm_resume_end(pm_message_t state) 975{ 976 dpm_resume(state); 977 dpm_complete(state); 978} 979EXPORT_SYMBOL_GPL(dpm_resume_end); 980 981 982/*------------------------- Suspend routines -------------------------*/ 983 984/** 985 * resume_event - Return a "resume" message for given "suspend" sleep state. 986 * @sleep_state: PM message representing a sleep state. 987 * 988 * Return a PM message representing the resume event corresponding to given 989 * sleep state. 990 */ 991static pm_message_t resume_event(pm_message_t sleep_state) 992{ 993 switch (sleep_state.event) { 994 case PM_EVENT_SUSPEND: 995 return PMSG_RESUME; 996 case PM_EVENT_FREEZE: 997 case PM_EVENT_QUIESCE: 998 return PMSG_RECOVER; 999 case PM_EVENT_HIBERNATE: 1000 return PMSG_RESTORE; 1001 } 1002 return PMSG_ON; 1003} 1004 1005/** 1006 * device_suspend_noirq - Execute a "late suspend" callback for given device. 1007 * @dev: Device to handle. 1008 * @state: PM transition of the system being carried out. 1009 * @async: If true, the device is being suspended asynchronously. 1010 * 1011 * The driver of @dev will not receive interrupts while this function is being 1012 * executed. 1013 */ 1014static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1015{ 1016 pm_callback_t callback = NULL; 1017 char *info = NULL; 1018 int error = 0; 1019 1020 TRACE_DEVICE(dev); 1021 TRACE_SUSPEND(0); 1022 1023 if (async_error) 1024 goto Complete; 1025 1026 if (pm_wakeup_pending()) { 1027 async_error = -EBUSY; 1028 goto Complete; 1029 } 1030 1031 if (dev->power.syscore || dev->power.direct_complete) 1032 goto Complete; 1033 1034 dpm_wait_for_children(dev, async); 1035 1036 if (dev->pm_domain) { 1037 info = "noirq power domain "; 1038 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1039 } else if (dev->type && dev->type->pm) { 1040 info = "noirq type "; 1041 callback = pm_noirq_op(dev->type->pm, state); 1042 } else if (dev->class && dev->class->pm) { 1043 info = "noirq class "; 1044 callback = pm_noirq_op(dev->class->pm, state); 1045 } else if (dev->bus && dev->bus->pm) { 1046 info = "noirq bus "; 1047 callback = pm_noirq_op(dev->bus->pm, state); 1048 } 1049 1050 if (!callback && dev->driver && dev->driver->pm) { 1051 info = "noirq driver "; 1052 callback = pm_noirq_op(dev->driver->pm, state); 1053 } 1054 1055 error = dpm_run_callback(callback, dev, state, info); 1056 if (!error) 1057 dev->power.is_noirq_suspended = true; 1058 else 1059 async_error = error; 1060 1061Complete: 1062 complete_all(&dev->power.completion); 1063 TRACE_SUSPEND(error); 1064 return error; 1065} 1066 1067static void async_suspend_noirq(void *data, async_cookie_t cookie) 1068{ 1069 struct device *dev = (struct device *)data; 1070 int error; 1071 1072 error = __device_suspend_noirq(dev, pm_transition, true); 1073 if (error) { 1074 dpm_save_failed_dev(dev_name(dev)); 1075 pm_dev_err(dev, pm_transition, " async", error); 1076 } 1077 1078 put_device(dev); 1079} 1080 1081static int device_suspend_noirq(struct device *dev) 1082{ 1083 reinit_completion(&dev->power.completion); 1084 1085 if (is_async(dev)) { 1086 get_device(dev); 1087 async_schedule(async_suspend_noirq, dev); 1088 return 0; 1089 } 1090 return __device_suspend_noirq(dev, pm_transition, false); 1091} 1092 1093/** 1094 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1095 * @state: PM transition of the system being carried out. 1096 * 1097 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 1098 * handlers for all non-sysdev devices. 1099 */ 1100int dpm_suspend_noirq(pm_message_t state) 1101{ 1102 ktime_t starttime = ktime_get(); 1103 int error = 0; 1104 1105 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1106 cpuidle_pause(); 1107 suspend_device_irqs(); 1108 mutex_lock(&dpm_list_mtx); 1109 pm_transition = state; 1110 async_error = 0; 1111 1112 while (!list_empty(&dpm_late_early_list)) { 1113 struct device *dev = to_device(dpm_late_early_list.prev); 1114 1115 get_device(dev); 1116 mutex_unlock(&dpm_list_mtx); 1117 1118 error = device_suspend_noirq(dev); 1119 1120 mutex_lock(&dpm_list_mtx); 1121 if (error) { 1122 pm_dev_err(dev, state, " noirq", error); 1123 dpm_save_failed_dev(dev_name(dev)); 1124 put_device(dev); 1125 break; 1126 } 1127 if (!list_empty(&dev->power.entry)) 1128 list_move(&dev->power.entry, &dpm_noirq_list); 1129 put_device(dev); 1130 1131 if (async_error) 1132 break; 1133 } 1134 mutex_unlock(&dpm_list_mtx); 1135 async_synchronize_full(); 1136 if (!error) 1137 error = async_error; 1138 1139 if (error) { 1140 suspend_stats.failed_suspend_noirq++; 1141 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1142 dpm_resume_noirq(resume_event(state)); 1143 } else { 1144 dpm_show_time(starttime, state, "noirq"); 1145 } 1146 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1147 return error; 1148} 1149 1150/** 1151 * device_suspend_late - Execute a "late suspend" callback for given device. 1152 * @dev: Device to handle. 1153 * @state: PM transition of the system being carried out. 1154 * @async: If true, the device is being suspended asynchronously. 1155 * 1156 * Runtime PM is disabled for @dev while this function is being executed. 1157 */ 1158static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1159{ 1160 pm_callback_t callback = NULL; 1161 char *info = NULL; 1162 int error = 0; 1163 1164 TRACE_DEVICE(dev); 1165 TRACE_SUSPEND(0); 1166 1167 __pm_runtime_disable(dev, false); 1168 1169 if (async_error) 1170 goto Complete; 1171 1172 if (pm_wakeup_pending()) { 1173 async_error = -EBUSY; 1174 goto Complete; 1175 } 1176 1177 if (dev->power.syscore || dev->power.direct_complete) 1178 goto Complete; 1179 1180 dpm_wait_for_children(dev, async); 1181 1182 if (dev->pm_domain) { 1183 info = "late power domain "; 1184 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1185 } else if (dev->type && dev->type->pm) { 1186 info = "late type "; 1187 callback = pm_late_early_op(dev->type->pm, state); 1188 } else if (dev->class && dev->class->pm) { 1189 info = "late class "; 1190 callback = pm_late_early_op(dev->class->pm, state); 1191 } else if (dev->bus && dev->bus->pm) { 1192 info = "late bus "; 1193 callback = pm_late_early_op(dev->bus->pm, state); 1194 } 1195 1196 if (!callback && dev->driver && dev->driver->pm) { 1197 info = "late driver "; 1198 callback = pm_late_early_op(dev->driver->pm, state); 1199 } 1200 1201 error = dpm_run_callback(callback, dev, state, info); 1202 if (!error) 1203 dev->power.is_late_suspended = true; 1204 else 1205 async_error = error; 1206 1207Complete: 1208 TRACE_SUSPEND(error); 1209 complete_all(&dev->power.completion); 1210 return error; 1211} 1212 1213static void async_suspend_late(void *data, async_cookie_t cookie) 1214{ 1215 struct device *dev = (struct device *)data; 1216 int error; 1217 1218 error = __device_suspend_late(dev, pm_transition, true); 1219 if (error) { 1220 dpm_save_failed_dev(dev_name(dev)); 1221 pm_dev_err(dev, pm_transition, " async", error); 1222 } 1223 put_device(dev); 1224} 1225 1226static int device_suspend_late(struct device *dev) 1227{ 1228 reinit_completion(&dev->power.completion); 1229 1230 if (is_async(dev)) { 1231 get_device(dev); 1232 async_schedule(async_suspend_late, dev); 1233 return 0; 1234 } 1235 1236 return __device_suspend_late(dev, pm_transition, false); 1237} 1238 1239/** 1240 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1241 * @state: PM transition of the system being carried out. 1242 */ 1243int dpm_suspend_late(pm_message_t state) 1244{ 1245 ktime_t starttime = ktime_get(); 1246 int error = 0; 1247 1248 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1249 mutex_lock(&dpm_list_mtx); 1250 pm_transition = state; 1251 async_error = 0; 1252 1253 while (!list_empty(&dpm_suspended_list)) { 1254 struct device *dev = to_device(dpm_suspended_list.prev); 1255 1256 get_device(dev); 1257 mutex_unlock(&dpm_list_mtx); 1258 1259 error = device_suspend_late(dev); 1260 1261 mutex_lock(&dpm_list_mtx); 1262 if (!list_empty(&dev->power.entry)) 1263 list_move(&dev->power.entry, &dpm_late_early_list); 1264 1265 if (error) { 1266 pm_dev_err(dev, state, " late", error); 1267 dpm_save_failed_dev(dev_name(dev)); 1268 put_device(dev); 1269 break; 1270 } 1271 put_device(dev); 1272 1273 if (async_error) 1274 break; 1275 } 1276 mutex_unlock(&dpm_list_mtx); 1277 async_synchronize_full(); 1278 if (!error) 1279 error = async_error; 1280 if (error) { 1281 suspend_stats.failed_suspend_late++; 1282 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1283 dpm_resume_early(resume_event(state)); 1284 } else { 1285 dpm_show_time(starttime, state, "late"); 1286 } 1287 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1288 return error; 1289} 1290 1291/** 1292 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1293 * @state: PM transition of the system being carried out. 1294 */ 1295int dpm_suspend_end(pm_message_t state) 1296{ 1297 int error = dpm_suspend_late(state); 1298 if (error) 1299 return error; 1300 1301 error = dpm_suspend_noirq(state); 1302 if (error) { 1303 dpm_resume_early(resume_event(state)); 1304 return error; 1305 } 1306 1307 return 0; 1308} 1309EXPORT_SYMBOL_GPL(dpm_suspend_end); 1310 1311/** 1312 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1313 * @dev: Device to suspend. 1314 * @state: PM transition of the system being carried out. 1315 * @cb: Suspend callback to execute. 1316 * @info: string description of caller. 1317 */ 1318static int legacy_suspend(struct device *dev, pm_message_t state, 1319 int (*cb)(struct device *dev, pm_message_t state), 1320 char *info) 1321{ 1322 int error; 1323 ktime_t calltime; 1324 1325 calltime = initcall_debug_start(dev); 1326 1327 trace_device_pm_callback_start(dev, info, state.event); 1328 error = cb(dev, state); 1329 trace_device_pm_callback_end(dev, error); 1330 suspend_report_result(cb, error); 1331 1332 initcall_debug_report(dev, calltime, error, state, info); 1333 1334 return error; 1335} 1336 1337/** 1338 * device_suspend - Execute "suspend" callbacks for given device. 1339 * @dev: Device to handle. 1340 * @state: PM transition of the system being carried out. 1341 * @async: If true, the device is being suspended asynchronously. 1342 */ 1343static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1344{ 1345 pm_callback_t callback = NULL; 1346 char *info = NULL; 1347 int error = 0; 1348 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1349 1350 TRACE_DEVICE(dev); 1351 TRACE_SUSPEND(0); 1352 1353 dpm_wait_for_children(dev, async); 1354 1355 if (async_error) 1356 goto Complete; 1357 1358 /* 1359 * If a device configured to wake up the system from sleep states 1360 * has been suspended at run time and there's a resume request pending 1361 * for it, this is equivalent to the device signaling wakeup, so the 1362 * system suspend operation should be aborted. 1363 */ 1364 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1365 pm_wakeup_event(dev, 0); 1366 1367 if (pm_wakeup_pending()) { 1368 async_error = -EBUSY; 1369 goto Complete; 1370 } 1371 1372 if (dev->power.syscore) 1373 goto Complete; 1374 1375 if (dev->power.direct_complete) { 1376 if (pm_runtime_status_suspended(dev)) { 1377 pm_runtime_disable(dev); 1378 if (pm_runtime_suspended_if_enabled(dev)) 1379 goto Complete; 1380 1381 pm_runtime_enable(dev); 1382 } 1383 dev->power.direct_complete = false; 1384 } 1385 1386 dpm_watchdog_set(&wd, dev); 1387 device_lock(dev); 1388 1389 if (dev->pm_domain) { 1390 info = "power domain "; 1391 callback = pm_op(&dev->pm_domain->ops, state); 1392 goto Run; 1393 } 1394 1395 if (dev->type && dev->type->pm) { 1396 info = "type "; 1397 callback = pm_op(dev->type->pm, state); 1398 goto Run; 1399 } 1400 1401 if (dev->class) { 1402 if (dev->class->pm) { 1403 info = "class "; 1404 callback = pm_op(dev->class->pm, state); 1405 goto Run; 1406 } else if (dev->class->suspend) { 1407 pm_dev_dbg(dev, state, "legacy class "); 1408 error = legacy_suspend(dev, state, dev->class->suspend, 1409 "legacy class "); 1410 goto End; 1411 } 1412 } 1413 1414 if (dev->bus) { 1415 if (dev->bus->pm) { 1416 info = "bus "; 1417 callback = pm_op(dev->bus->pm, state); 1418 } else if (dev->bus->suspend) { 1419 pm_dev_dbg(dev, state, "legacy bus "); 1420 error = legacy_suspend(dev, state, dev->bus->suspend, 1421 "legacy bus "); 1422 goto End; 1423 } 1424 } 1425 1426 Run: 1427 if (!callback && dev->driver && dev->driver->pm) { 1428 info = "driver "; 1429 callback = pm_op(dev->driver->pm, state); 1430 } 1431 1432 error = dpm_run_callback(callback, dev, state, info); 1433 1434 End: 1435 if (!error) { 1436 struct device *parent = dev->parent; 1437 1438 dev->power.is_suspended = true; 1439 if (parent) { 1440 spin_lock_irq(&parent->power.lock); 1441 1442 dev->parent->power.direct_complete = false; 1443 if (dev->power.wakeup_path 1444 && !dev->parent->power.ignore_children) 1445 dev->parent->power.wakeup_path = true; 1446 1447 spin_unlock_irq(&parent->power.lock); 1448 } 1449 } 1450 1451 device_unlock(dev); 1452 dpm_watchdog_clear(&wd); 1453 1454 Complete: 1455 complete_all(&dev->power.completion); 1456 if (error) 1457 async_error = error; 1458 1459 TRACE_SUSPEND(error); 1460 return error; 1461} 1462 1463static void async_suspend(void *data, async_cookie_t cookie) 1464{ 1465 struct device *dev = (struct device *)data; 1466 int error; 1467 1468 error = __device_suspend(dev, pm_transition, true); 1469 if (error) { 1470 dpm_save_failed_dev(dev_name(dev)); 1471 pm_dev_err(dev, pm_transition, " async", error); 1472 } 1473 1474 put_device(dev); 1475} 1476 1477static int device_suspend(struct device *dev) 1478{ 1479 reinit_completion(&dev->power.completion); 1480 1481 if (is_async(dev)) { 1482 get_device(dev); 1483 async_schedule(async_suspend, dev); 1484 return 0; 1485 } 1486 1487 return __device_suspend(dev, pm_transition, false); 1488} 1489 1490/** 1491 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1492 * @state: PM transition of the system being carried out. 1493 */ 1494int dpm_suspend(pm_message_t state) 1495{ 1496 ktime_t starttime = ktime_get(); 1497 int error = 0; 1498 1499 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1500 might_sleep(); 1501 1502 cpufreq_suspend(); 1503 1504 mutex_lock(&dpm_list_mtx); 1505 pm_transition = state; 1506 async_error = 0; 1507 while (!list_empty(&dpm_prepared_list)) { 1508 struct device *dev = to_device(dpm_prepared_list.prev); 1509 1510 get_device(dev); 1511 mutex_unlock(&dpm_list_mtx); 1512 1513 error = device_suspend(dev); 1514 1515 mutex_lock(&dpm_list_mtx); 1516 if (error) { 1517 pm_dev_err(dev, state, "", error); 1518 dpm_save_failed_dev(dev_name(dev)); 1519 put_device(dev); 1520 break; 1521 } 1522 if (!list_empty(&dev->power.entry)) 1523 list_move(&dev->power.entry, &dpm_suspended_list); 1524 put_device(dev); 1525 if (async_error) 1526 break; 1527 } 1528 mutex_unlock(&dpm_list_mtx); 1529 async_synchronize_full(); 1530 if (!error) 1531 error = async_error; 1532 if (error) { 1533 suspend_stats.failed_suspend++; 1534 dpm_save_failed_step(SUSPEND_SUSPEND); 1535 } else 1536 dpm_show_time(starttime, state, NULL); 1537 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1538 return error; 1539} 1540 1541/** 1542 * device_prepare - Prepare a device for system power transition. 1543 * @dev: Device to handle. 1544 * @state: PM transition of the system being carried out. 1545 * 1546 * Execute the ->prepare() callback(s) for given device. No new children of the 1547 * device may be registered after this function has returned. 1548 */ 1549static int device_prepare(struct device *dev, pm_message_t state) 1550{ 1551 int (*callback)(struct device *) = NULL; 1552 char *info = NULL; 1553 int ret = 0; 1554 1555 if (dev->power.syscore) 1556 return 0; 1557 1558 /* 1559 * If a device's parent goes into runtime suspend at the wrong time, 1560 * it won't be possible to resume the device. To prevent this we 1561 * block runtime suspend here, during the prepare phase, and allow 1562 * it again during the complete phase. 1563 */ 1564 pm_runtime_get_noresume(dev); 1565 1566 device_lock(dev); 1567 1568 dev->power.wakeup_path = device_may_wakeup(dev); 1569 1570 if (dev->pm_domain) { 1571 info = "preparing power domain "; 1572 callback = dev->pm_domain->ops.prepare; 1573 } else if (dev->type && dev->type->pm) { 1574 info = "preparing type "; 1575 callback = dev->type->pm->prepare; 1576 } else if (dev->class && dev->class->pm) { 1577 info = "preparing class "; 1578 callback = dev->class->pm->prepare; 1579 } else if (dev->bus && dev->bus->pm) { 1580 info = "preparing bus "; 1581 callback = dev->bus->pm->prepare; 1582 } 1583 1584 if (!callback && dev->driver && dev->driver->pm) { 1585 info = "preparing driver "; 1586 callback = dev->driver->pm->prepare; 1587 } 1588 1589 if (callback) { 1590 trace_device_pm_callback_start(dev, info, state.event); 1591 ret = callback(dev); 1592 trace_device_pm_callback_end(dev, ret); 1593 } 1594 1595 device_unlock(dev); 1596 1597 if (ret < 0) { 1598 suspend_report_result(callback, ret); 1599 pm_runtime_put(dev); 1600 return ret; 1601 } 1602 /* 1603 * A positive return value from ->prepare() means "this device appears 1604 * to be runtime-suspended and its state is fine, so if it really is 1605 * runtime-suspended, you can leave it in that state provided that you 1606 * will do the same thing with all of its descendants". This only 1607 * applies to suspend transitions, however. 1608 */ 1609 spin_lock_irq(&dev->power.lock); 1610 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND; 1611 spin_unlock_irq(&dev->power.lock); 1612 return 0; 1613} 1614 1615/** 1616 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1617 * @state: PM transition of the system being carried out. 1618 * 1619 * Execute the ->prepare() callback(s) for all devices. 1620 */ 1621int dpm_prepare(pm_message_t state) 1622{ 1623 int error = 0; 1624 1625 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1626 might_sleep(); 1627 1628 mutex_lock(&dpm_list_mtx); 1629 while (!list_empty(&dpm_list)) { 1630 struct device *dev = to_device(dpm_list.next); 1631 1632 get_device(dev); 1633 mutex_unlock(&dpm_list_mtx); 1634 1635 error = device_prepare(dev, state); 1636 1637 mutex_lock(&dpm_list_mtx); 1638 if (error) { 1639 if (error == -EAGAIN) { 1640 put_device(dev); 1641 error = 0; 1642 continue; 1643 } 1644 printk(KERN_INFO "PM: Device %s not prepared " 1645 "for power transition: code %d\n", 1646 dev_name(dev), error); 1647 put_device(dev); 1648 break; 1649 } 1650 dev->power.is_prepared = true; 1651 if (!list_empty(&dev->power.entry)) 1652 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1653 put_device(dev); 1654 } 1655 mutex_unlock(&dpm_list_mtx); 1656 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1657 return error; 1658} 1659 1660/** 1661 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1662 * @state: PM transition of the system being carried out. 1663 * 1664 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1665 * callbacks for them. 1666 */ 1667int dpm_suspend_start(pm_message_t state) 1668{ 1669 int error; 1670 1671 error = dpm_prepare(state); 1672 if (error) { 1673 suspend_stats.failed_prepare++; 1674 dpm_save_failed_step(SUSPEND_PREPARE); 1675 } else 1676 error = dpm_suspend(state); 1677 return error; 1678} 1679EXPORT_SYMBOL_GPL(dpm_suspend_start); 1680 1681void __suspend_report_result(const char *function, void *fn, int ret) 1682{ 1683 if (ret) 1684 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1685} 1686EXPORT_SYMBOL_GPL(__suspend_report_result); 1687 1688/** 1689 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1690 * @dev: Device to wait for. 1691 * @subordinate: Device that needs to wait for @dev. 1692 */ 1693int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1694{ 1695 dpm_wait(dev, subordinate->power.async_suspend); 1696 return async_error; 1697} 1698EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1699 1700/** 1701 * dpm_for_each_dev - device iterator. 1702 * @data: data for the callback. 1703 * @fn: function to be called for each device. 1704 * 1705 * Iterate over devices in dpm_list, and call @fn for each device, 1706 * passing it @data. 1707 */ 1708void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1709{ 1710 struct device *dev; 1711 1712 if (!fn) 1713 return; 1714 1715 device_pm_lock(); 1716 list_for_each_entry(dev, &dpm_list, power.entry) 1717 fn(dev, data); 1718 device_pm_unlock(); 1719} 1720EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1721