1/*
2 * CCI cache coherent interconnect driver
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/arm-cci.h>
18#include <linux/io.h>
19#include <linux/interrupt.h>
20#include <linux/module.h>
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
23#include <linux/of_platform.h>
24#include <linux/perf_event.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29#include <asm/cacheflush.h>
30#include <asm/smp_plat.h>
31
32static void __iomem *cci_ctrl_base;
33static unsigned long cci_ctrl_phys;
34
35#ifdef CONFIG_ARM_CCI400_PORT_CTRL
36struct cci_nb_ports {
37	unsigned int nb_ace;
38	unsigned int nb_ace_lite;
39};
40
41static const struct cci_nb_ports cci400_ports = {
42	.nb_ace = 2,
43	.nb_ace_lite = 3
44};
45
46#define CCI400_PORTS_DATA	(&cci400_ports)
47#else
48#define CCI400_PORTS_DATA	(NULL)
49#endif
50
51static const struct of_device_id arm_cci_matches[] = {
52#ifdef CONFIG_ARM_CCI400_COMMON
53	{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
54#endif
55	{},
56};
57
58#ifdef CONFIG_ARM_CCI400_PMU
59
60#define DRIVER_NAME		"CCI-400"
61#define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
62
63#define CCI_PMCR		0x0100
64#define CCI_PID2		0x0fe8
65
66#define CCI_PMCR_CEN		0x00000001
67#define CCI_PMCR_NCNT_MASK	0x0000f800
68#define CCI_PMCR_NCNT_SHIFT	11
69
70#define CCI_PID2_REV_MASK	0xf0
71#define CCI_PID2_REV_SHIFT	4
72
73#define CCI_PMU_EVT_SEL		0x000
74#define CCI_PMU_CNTR		0x004
75#define CCI_PMU_CNTR_CTRL	0x008
76#define CCI_PMU_OVRFLW		0x00c
77
78#define CCI_PMU_OVRFLW_FLAG	1
79
80#define CCI_PMU_CNTR_BASE(idx)	((idx) * SZ_4K)
81
82#define CCI_PMU_CNTR_MASK	((1ULL << 32) -1)
83
84#define CCI_PMU_EVENT_MASK		0xffUL
85#define CCI_PMU_EVENT_SOURCE(event)	((event >> 5) & 0x7)
86#define CCI_PMU_EVENT_CODE(event)	(event & 0x1f)
87
88#define CCI_PMU_MAX_HW_EVENTS 5   /* CCI PMU has 4 counters + 1 cycle counter */
89
90/* Types of interfaces that can generate events */
91enum {
92	CCI_IF_SLAVE,
93	CCI_IF_MASTER,
94	CCI_IF_MAX,
95};
96
97struct event_range {
98	u32 min;
99	u32 max;
100};
101
102struct cci_pmu_hw_events {
103	struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
104	unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
105	raw_spinlock_t pmu_lock;
106};
107
108struct cci_pmu_model {
109	char *name;
110	struct event_range event_ranges[CCI_IF_MAX];
111};
112
113static struct cci_pmu_model cci_pmu_models[];
114
115struct cci_pmu {
116	void __iomem *base;
117	struct pmu pmu;
118	int nr_irqs;
119	int irqs[CCI_PMU_MAX_HW_EVENTS];
120	unsigned long active_irqs;
121	const struct cci_pmu_model *model;
122	struct cci_pmu_hw_events hw_events;
123	struct platform_device *plat_device;
124	int num_events;
125	atomic_t active_events;
126	struct mutex reserve_mutex;
127	cpumask_t cpus;
128};
129static struct cci_pmu *pmu;
130
131#define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
132
133/* Port ids */
134#define CCI_PORT_S0	0
135#define CCI_PORT_S1	1
136#define CCI_PORT_S2	2
137#define CCI_PORT_S3	3
138#define CCI_PORT_S4	4
139#define CCI_PORT_M0	5
140#define CCI_PORT_M1	6
141#define CCI_PORT_M2	7
142
143#define CCI_REV_R0		0
144#define CCI_REV_R1		1
145#define CCI_REV_R1_PX		5
146
147/*
148 * Instead of an event id to monitor CCI cycles, a dedicated counter is
149 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
150 * make use of this event in hardware.
151 */
152enum cci400_perf_events {
153	CCI_PMU_CYCLES = 0xff
154};
155
156#define CCI_PMU_CYCLE_CNTR_IDX		0
157#define CCI_PMU_CNTR0_IDX		1
158#define CCI_PMU_CNTR_LAST(cci_pmu)	(CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
159
160/*
161 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
162 * ports and bits 4:0 are event codes. There are different event codes
163 * associated with each port type.
164 *
165 * Additionally, the range of events associated with the port types changed
166 * between Rev0 and Rev1.
167 *
168 * The constants below define the range of valid codes for each port type for
169 * the different revisions and are used to validate the event to be monitored.
170 */
171
172#define CCI_REV_R0_SLAVE_PORT_MIN_EV	0x00
173#define CCI_REV_R0_SLAVE_PORT_MAX_EV	0x13
174#define CCI_REV_R0_MASTER_PORT_MIN_EV	0x14
175#define CCI_REV_R0_MASTER_PORT_MAX_EV	0x1a
176
177#define CCI_REV_R1_SLAVE_PORT_MIN_EV	0x00
178#define CCI_REV_R1_SLAVE_PORT_MAX_EV	0x14
179#define CCI_REV_R1_MASTER_PORT_MIN_EV	0x00
180#define CCI_REV_R1_MASTER_PORT_MAX_EV	0x11
181
182static int pmu_validate_hw_event(unsigned long hw_event)
183{
184	u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
185	u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
186	int if_type;
187
188	if (hw_event & ~CCI_PMU_EVENT_MASK)
189		return -ENOENT;
190
191	switch (ev_source) {
192	case CCI_PORT_S0:
193	case CCI_PORT_S1:
194	case CCI_PORT_S2:
195	case CCI_PORT_S3:
196	case CCI_PORT_S4:
197		/* Slave Interface */
198		if_type = CCI_IF_SLAVE;
199		break;
200	case CCI_PORT_M0:
201	case CCI_PORT_M1:
202	case CCI_PORT_M2:
203		/* Master Interface */
204		if_type = CCI_IF_MASTER;
205		break;
206	default:
207		return -ENOENT;
208	}
209
210	if (ev_code >= pmu->model->event_ranges[if_type].min &&
211		ev_code <= pmu->model->event_ranges[if_type].max)
212		return hw_event;
213
214	return -ENOENT;
215}
216
217static int probe_cci_revision(void)
218{
219	int rev;
220	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
221	rev >>= CCI_PID2_REV_SHIFT;
222
223	if (rev < CCI_REV_R1_PX)
224		return CCI_REV_R0;
225	else
226		return CCI_REV_R1;
227}
228
229static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
230{
231	if (platform_has_secure_cci_access())
232		return &cci_pmu_models[probe_cci_revision()];
233	return NULL;
234}
235
236static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
237{
238	return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
239		idx <= CCI_PMU_CNTR_LAST(cci_pmu);
240}
241
242static u32 pmu_read_register(int idx, unsigned int offset)
243{
244	return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
245}
246
247static void pmu_write_register(u32 value, int idx, unsigned int offset)
248{
249	return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
250}
251
252static void pmu_disable_counter(int idx)
253{
254	pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
255}
256
257static void pmu_enable_counter(int idx)
258{
259	pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
260}
261
262static void pmu_set_event(int idx, unsigned long event)
263{
264	pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
265}
266
267static u32 pmu_get_max_counters(void)
268{
269	u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
270		      CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
271
272	/* add 1 for cycle counter */
273	return n_cnts + 1;
274}
275
276static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
277{
278	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
279	struct hw_perf_event *hw_event = &event->hw;
280	unsigned long cci_event = hw_event->config_base;
281	int idx;
282
283	if (cci_event == CCI_PMU_CYCLES) {
284		if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
285			return -EAGAIN;
286
287		return CCI_PMU_CYCLE_CNTR_IDX;
288	}
289
290	for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
291		if (!test_and_set_bit(idx, hw->used_mask))
292			return idx;
293
294	/* No counters available */
295	return -EAGAIN;
296}
297
298static int pmu_map_event(struct perf_event *event)
299{
300	int mapping;
301	unsigned long config = event->attr.config;
302
303	if (event->attr.type < PERF_TYPE_MAX)
304		return -ENOENT;
305
306	if (config == CCI_PMU_CYCLES)
307		mapping = config;
308	else
309		mapping = pmu_validate_hw_event(config);
310
311	return mapping;
312}
313
314static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
315{
316	int i;
317	struct platform_device *pmu_device = cci_pmu->plat_device;
318
319	if (unlikely(!pmu_device))
320		return -ENODEV;
321
322	if (pmu->nr_irqs < 1) {
323		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
324		return -ENODEV;
325	}
326
327	/*
328	 * Register all available CCI PMU interrupts. In the interrupt handler
329	 * we iterate over the counters checking for interrupt source (the
330	 * overflowing counter) and clear it.
331	 *
332	 * This should allow handling of non-unique interrupt for the counters.
333	 */
334	for (i = 0; i < pmu->nr_irqs; i++) {
335		int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
336				"arm-cci-pmu", cci_pmu);
337		if (err) {
338			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
339				pmu->irqs[i]);
340			return err;
341		}
342
343		set_bit(i, &pmu->active_irqs);
344	}
345
346	return 0;
347}
348
349static void pmu_free_irq(struct cci_pmu *cci_pmu)
350{
351	int i;
352
353	for (i = 0; i < pmu->nr_irqs; i++) {
354		if (!test_and_clear_bit(i, &pmu->active_irqs))
355			continue;
356
357		free_irq(pmu->irqs[i], cci_pmu);
358	}
359}
360
361static u32 pmu_read_counter(struct perf_event *event)
362{
363	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
364	struct hw_perf_event *hw_counter = &event->hw;
365	int idx = hw_counter->idx;
366	u32 value;
367
368	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
369		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
370		return 0;
371	}
372	value = pmu_read_register(idx, CCI_PMU_CNTR);
373
374	return value;
375}
376
377static void pmu_write_counter(struct perf_event *event, u32 value)
378{
379	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
380	struct hw_perf_event *hw_counter = &event->hw;
381	int idx = hw_counter->idx;
382
383	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
384		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
385	else
386		pmu_write_register(value, idx, CCI_PMU_CNTR);
387}
388
389static u64 pmu_event_update(struct perf_event *event)
390{
391	struct hw_perf_event *hwc = &event->hw;
392	u64 delta, prev_raw_count, new_raw_count;
393
394	do {
395		prev_raw_count = local64_read(&hwc->prev_count);
396		new_raw_count = pmu_read_counter(event);
397	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
398		 new_raw_count) != prev_raw_count);
399
400	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
401
402	local64_add(delta, &event->count);
403
404	return new_raw_count;
405}
406
407static void pmu_read(struct perf_event *event)
408{
409	pmu_event_update(event);
410}
411
412void pmu_event_set_period(struct perf_event *event)
413{
414	struct hw_perf_event *hwc = &event->hw;
415	/*
416	 * The CCI PMU counters have a period of 2^32. To account for the
417	 * possiblity of extreme interrupt latency we program for a period of
418	 * half that. Hopefully we can handle the interrupt before another 2^31
419	 * events occur and the counter overtakes its previous value.
420	 */
421	u64 val = 1ULL << 31;
422	local64_set(&hwc->prev_count, val);
423	pmu_write_counter(event, val);
424}
425
426static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
427{
428	unsigned long flags;
429	struct cci_pmu *cci_pmu = dev;
430	struct cci_pmu_hw_events *events = &pmu->hw_events;
431	int idx, handled = IRQ_NONE;
432
433	raw_spin_lock_irqsave(&events->pmu_lock, flags);
434	/*
435	 * Iterate over counters and update the corresponding perf events.
436	 * This should work regardless of whether we have per-counter overflow
437	 * interrupt or a combined overflow interrupt.
438	 */
439	for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
440		struct perf_event *event = events->events[idx];
441		struct hw_perf_event *hw_counter;
442
443		if (!event)
444			continue;
445
446		hw_counter = &event->hw;
447
448		/* Did this counter overflow? */
449		if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
450		      CCI_PMU_OVRFLW_FLAG))
451			continue;
452
453		pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
454
455		pmu_event_update(event);
456		pmu_event_set_period(event);
457		handled = IRQ_HANDLED;
458	}
459	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
460
461	return IRQ_RETVAL(handled);
462}
463
464static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
465{
466	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
467	if (ret) {
468		pmu_free_irq(cci_pmu);
469		return ret;
470	}
471	return 0;
472}
473
474static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
475{
476	pmu_free_irq(cci_pmu);
477}
478
479static void hw_perf_event_destroy(struct perf_event *event)
480{
481	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
482	atomic_t *active_events = &cci_pmu->active_events;
483	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
484
485	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
486		cci_pmu_put_hw(cci_pmu);
487		mutex_unlock(reserve_mutex);
488	}
489}
490
491static void cci_pmu_enable(struct pmu *pmu)
492{
493	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
494	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
495	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events);
496	unsigned long flags;
497	u32 val;
498
499	if (!enabled)
500		return;
501
502	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
503
504	/* Enable all the PMU counters. */
505	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
506	writel(val, cci_ctrl_base + CCI_PMCR);
507	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
508
509}
510
511static void cci_pmu_disable(struct pmu *pmu)
512{
513	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
514	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
515	unsigned long flags;
516	u32 val;
517
518	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
519
520	/* Disable all the PMU counters. */
521	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
522	writel(val, cci_ctrl_base + CCI_PMCR);
523	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
524}
525
526static void cci_pmu_start(struct perf_event *event, int pmu_flags)
527{
528	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
529	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
530	struct hw_perf_event *hwc = &event->hw;
531	int idx = hwc->idx;
532	unsigned long flags;
533
534	/*
535	 * To handle interrupt latency, we always reprogram the period
536	 * regardlesss of PERF_EF_RELOAD.
537	 */
538	if (pmu_flags & PERF_EF_RELOAD)
539		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
540
541	hwc->state = 0;
542
543	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
544		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
545		return;
546	}
547
548	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
549
550	/* Configure the event to count, unless you are counting cycles */
551	if (idx != CCI_PMU_CYCLE_CNTR_IDX)
552		pmu_set_event(idx, hwc->config_base);
553
554	pmu_event_set_period(event);
555	pmu_enable_counter(idx);
556
557	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
558}
559
560static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
561{
562	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
563	struct hw_perf_event *hwc = &event->hw;
564	int idx = hwc->idx;
565
566	if (hwc->state & PERF_HES_STOPPED)
567		return;
568
569	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
570		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
571		return;
572	}
573
574	/*
575	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
576	 * cci_pmu_start()
577	 */
578	pmu_disable_counter(idx);
579	pmu_event_update(event);
580	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
581}
582
583static int cci_pmu_add(struct perf_event *event, int flags)
584{
585	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
586	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
587	struct hw_perf_event *hwc = &event->hw;
588	int idx;
589	int err = 0;
590
591	perf_pmu_disable(event->pmu);
592
593	/* If we don't have a space for the counter then finish early. */
594	idx = pmu_get_event_idx(hw_events, event);
595	if (idx < 0) {
596		err = idx;
597		goto out;
598	}
599
600	event->hw.idx = idx;
601	hw_events->events[idx] = event;
602
603	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
604	if (flags & PERF_EF_START)
605		cci_pmu_start(event, PERF_EF_RELOAD);
606
607	/* Propagate our changes to the userspace mapping. */
608	perf_event_update_userpage(event);
609
610out:
611	perf_pmu_enable(event->pmu);
612	return err;
613}
614
615static void cci_pmu_del(struct perf_event *event, int flags)
616{
617	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
618	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
619	struct hw_perf_event *hwc = &event->hw;
620	int idx = hwc->idx;
621
622	cci_pmu_stop(event, PERF_EF_UPDATE);
623	hw_events->events[idx] = NULL;
624	clear_bit(idx, hw_events->used_mask);
625
626	perf_event_update_userpage(event);
627}
628
629static int
630validate_event(struct pmu *cci_pmu,
631               struct cci_pmu_hw_events *hw_events,
632               struct perf_event *event)
633{
634	if (is_software_event(event))
635		return 1;
636
637	/*
638	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
639	 * core perf code won't check that the pmu->ctx == leader->ctx
640	 * until after pmu->event_init(event).
641	 */
642	if (event->pmu != cci_pmu)
643		return 0;
644
645	if (event->state < PERF_EVENT_STATE_OFF)
646		return 1;
647
648	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
649		return 1;
650
651	return pmu_get_event_idx(hw_events, event) >= 0;
652}
653
654static int
655validate_group(struct perf_event *event)
656{
657	struct perf_event *sibling, *leader = event->group_leader;
658	struct cci_pmu_hw_events fake_pmu = {
659		/*
660		 * Initialise the fake PMU. We only need to populate the
661		 * used_mask for the purposes of validation.
662		 */
663		.used_mask = { 0 },
664	};
665
666	if (!validate_event(event->pmu, &fake_pmu, leader))
667		return -EINVAL;
668
669	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
670		if (!validate_event(event->pmu, &fake_pmu, sibling))
671			return -EINVAL;
672	}
673
674	if (!validate_event(event->pmu, &fake_pmu, event))
675		return -EINVAL;
676
677	return 0;
678}
679
680static int
681__hw_perf_event_init(struct perf_event *event)
682{
683	struct hw_perf_event *hwc = &event->hw;
684	int mapping;
685
686	mapping = pmu_map_event(event);
687
688	if (mapping < 0) {
689		pr_debug("event %x:%llx not supported\n", event->attr.type,
690			 event->attr.config);
691		return mapping;
692	}
693
694	/*
695	 * We don't assign an index until we actually place the event onto
696	 * hardware. Use -1 to signify that we haven't decided where to put it
697	 * yet.
698	 */
699	hwc->idx		= -1;
700	hwc->config_base	= 0;
701	hwc->config		= 0;
702	hwc->event_base		= 0;
703
704	/*
705	 * Store the event encoding into the config_base field.
706	 */
707	hwc->config_base	    |= (unsigned long)mapping;
708
709	/*
710	 * Limit the sample_period to half of the counter width. That way, the
711	 * new counter value is far less likely to overtake the previous one
712	 * unless you have some serious IRQ latency issues.
713	 */
714	hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
715	hwc->last_period    = hwc->sample_period;
716	local64_set(&hwc->period_left, hwc->sample_period);
717
718	if (event->group_leader != event) {
719		if (validate_group(event) != 0)
720			return -EINVAL;
721	}
722
723	return 0;
724}
725
726static int cci_pmu_event_init(struct perf_event *event)
727{
728	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
729	atomic_t *active_events = &cci_pmu->active_events;
730	int err = 0;
731	int cpu;
732
733	if (event->attr.type != event->pmu->type)
734		return -ENOENT;
735
736	/* Shared by all CPUs, no meaningful state to sample */
737	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
738		return -EOPNOTSUPP;
739
740	/* We have no filtering of any kind */
741	if (event->attr.exclude_user	||
742	    event->attr.exclude_kernel	||
743	    event->attr.exclude_hv	||
744	    event->attr.exclude_idle	||
745	    event->attr.exclude_host	||
746	    event->attr.exclude_guest)
747		return -EINVAL;
748
749	/*
750	 * Following the example set by other "uncore" PMUs, we accept any CPU
751	 * and rewrite its affinity dynamically rather than having perf core
752	 * handle cpu == -1 and pid == -1 for this case.
753	 *
754	 * The perf core will pin online CPUs for the duration of this call and
755	 * the event being installed into its context, so the PMU's CPU can't
756	 * change under our feet.
757	 */
758	cpu = cpumask_first(&cci_pmu->cpus);
759	if (event->cpu < 0 || cpu < 0)
760		return -EINVAL;
761	event->cpu = cpu;
762
763	event->destroy = hw_perf_event_destroy;
764	if (!atomic_inc_not_zero(active_events)) {
765		mutex_lock(&cci_pmu->reserve_mutex);
766		if (atomic_read(active_events) == 0)
767			err = cci_pmu_get_hw(cci_pmu);
768		if (!err)
769			atomic_inc(active_events);
770		mutex_unlock(&cci_pmu->reserve_mutex);
771	}
772	if (err)
773		return err;
774
775	err = __hw_perf_event_init(event);
776	if (err)
777		hw_perf_event_destroy(event);
778
779	return err;
780}
781
782static ssize_t pmu_attr_cpumask_show(struct device *dev,
783				     struct device_attribute *attr, char *buf)
784{
785	int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
786			  cpumask_pr_args(&pmu->cpus));
787	buf[n++] = '\n';
788	buf[n] = '\0';
789	return n;
790}
791
792static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL);
793
794static struct attribute *pmu_attrs[] = {
795	&dev_attr_cpumask.attr,
796	NULL,
797};
798
799static struct attribute_group pmu_attr_group = {
800	.attrs = pmu_attrs,
801};
802
803static const struct attribute_group *pmu_attr_groups[] = {
804	&pmu_attr_group,
805	NULL
806};
807
808static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
809{
810	char *name = cci_pmu->model->name;
811	cci_pmu->pmu = (struct pmu) {
812		.name		= cci_pmu->model->name,
813		.task_ctx_nr	= perf_invalid_context,
814		.pmu_enable	= cci_pmu_enable,
815		.pmu_disable	= cci_pmu_disable,
816		.event_init	= cci_pmu_event_init,
817		.add		= cci_pmu_add,
818		.del		= cci_pmu_del,
819		.start		= cci_pmu_start,
820		.stop		= cci_pmu_stop,
821		.read		= pmu_read,
822		.attr_groups	= pmu_attr_groups,
823	};
824
825	cci_pmu->plat_device = pdev;
826	cci_pmu->num_events = pmu_get_max_counters();
827
828	return perf_pmu_register(&cci_pmu->pmu, name, -1);
829}
830
831static int cci_pmu_cpu_notifier(struct notifier_block *self,
832				unsigned long action, void *hcpu)
833{
834	unsigned int cpu = (long)hcpu;
835	unsigned int target;
836
837	switch (action & ~CPU_TASKS_FROZEN) {
838	case CPU_DOWN_PREPARE:
839		if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus))
840			break;
841		target = cpumask_any_but(cpu_online_mask, cpu);
842		if (target < 0) // UP, last CPU
843			break;
844		/*
845		 * TODO: migrate context once core races on event->ctx have
846		 * been fixed.
847		 */
848		cpumask_set_cpu(target, &pmu->cpus);
849	default:
850		break;
851	}
852
853	return NOTIFY_OK;
854}
855
856static struct notifier_block cci_pmu_cpu_nb = {
857	.notifier_call	= cci_pmu_cpu_notifier,
858	/*
859	 * to migrate uncore events, our notifier should be executed
860	 * before perf core's notifier.
861	 */
862	.priority	= CPU_PRI_PERF + 1,
863};
864
865static struct cci_pmu_model cci_pmu_models[] = {
866	[CCI_REV_R0] = {
867		.name = "CCI_400",
868		.event_ranges = {
869			[CCI_IF_SLAVE] = {
870				CCI_REV_R0_SLAVE_PORT_MIN_EV,
871				CCI_REV_R0_SLAVE_PORT_MAX_EV,
872			},
873			[CCI_IF_MASTER] = {
874				CCI_REV_R0_MASTER_PORT_MIN_EV,
875				CCI_REV_R0_MASTER_PORT_MAX_EV,
876			},
877		},
878	},
879	[CCI_REV_R1] = {
880		.name = "CCI_400_r1",
881		.event_ranges = {
882			[CCI_IF_SLAVE] = {
883				CCI_REV_R1_SLAVE_PORT_MIN_EV,
884				CCI_REV_R1_SLAVE_PORT_MAX_EV,
885			},
886			[CCI_IF_MASTER] = {
887				CCI_REV_R1_MASTER_PORT_MIN_EV,
888				CCI_REV_R1_MASTER_PORT_MAX_EV,
889			},
890		},
891	},
892};
893
894static const struct of_device_id arm_cci_pmu_matches[] = {
895	{
896		.compatible = "arm,cci-400-pmu",
897		.data	= NULL,
898	},
899	{
900		.compatible = "arm,cci-400-pmu,r0",
901		.data	= &cci_pmu_models[CCI_REV_R0],
902	},
903	{
904		.compatible = "arm,cci-400-pmu,r1",
905		.data	= &cci_pmu_models[CCI_REV_R1],
906	},
907	{},
908};
909
910static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
911{
912	const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
913							pdev->dev.of_node);
914	if (!match)
915		return NULL;
916	if (match->data)
917		return match->data;
918
919	dev_warn(&pdev->dev, "DEPRECATED compatible property,"
920			 "requires secure access to CCI registers");
921	return probe_cci_model(pdev);
922}
923
924static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
925{
926	int i;
927
928	for (i = 0; i < nr_irqs; i++)
929		if (irq == irqs[i])
930			return true;
931
932	return false;
933}
934
935static int cci_pmu_probe(struct platform_device *pdev)
936{
937	struct resource *res;
938	int i, ret, irq;
939	const struct cci_pmu_model *model;
940
941	model = get_cci_model(pdev);
942	if (!model) {
943		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
944		return -ENODEV;
945	}
946
947	pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
948	if (!pmu)
949		return -ENOMEM;
950
951	pmu->model = model;
952	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
953	pmu->base = devm_ioremap_resource(&pdev->dev, res);
954	if (IS_ERR(pmu->base))
955		return -ENOMEM;
956
957	/*
958	 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
959	 * together to a common interrupt.
960	 */
961	pmu->nr_irqs = 0;
962	for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
963		irq = platform_get_irq(pdev, i);
964		if (irq < 0)
965			break;
966
967		if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
968			continue;
969
970		pmu->irqs[pmu->nr_irqs++] = irq;
971	}
972
973	/*
974	 * Ensure that the device tree has as many interrupts as the number
975	 * of counters.
976	 */
977	if (i < CCI_PMU_MAX_HW_EVENTS) {
978		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
979			i, CCI_PMU_MAX_HW_EVENTS);
980		return -EINVAL;
981	}
982
983	raw_spin_lock_init(&pmu->hw_events.pmu_lock);
984	mutex_init(&pmu->reserve_mutex);
985	atomic_set(&pmu->active_events, 0);
986	cpumask_set_cpu(smp_processor_id(), &pmu->cpus);
987
988	ret = register_cpu_notifier(&cci_pmu_cpu_nb);
989	if (ret)
990		return ret;
991
992	ret = cci_pmu_init(pmu, pdev);
993	if (ret)
994		return ret;
995
996	pr_info("ARM %s PMU driver probed", pmu->model->name);
997	return 0;
998}
999
1000static int cci_platform_probe(struct platform_device *pdev)
1001{
1002	if (!cci_probed())
1003		return -ENODEV;
1004
1005	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1006}
1007
1008static struct platform_driver cci_pmu_driver = {
1009	.driver = {
1010		   .name = DRIVER_NAME_PMU,
1011		   .of_match_table = arm_cci_pmu_matches,
1012		  },
1013	.probe = cci_pmu_probe,
1014};
1015
1016static struct platform_driver cci_platform_driver = {
1017	.driver = {
1018		   .name = DRIVER_NAME,
1019		   .of_match_table = arm_cci_matches,
1020		  },
1021	.probe = cci_platform_probe,
1022};
1023
1024static int __init cci_platform_init(void)
1025{
1026	int ret;
1027
1028	ret = platform_driver_register(&cci_pmu_driver);
1029	if (ret)
1030		return ret;
1031
1032	return platform_driver_register(&cci_platform_driver);
1033}
1034
1035#else /* !CONFIG_ARM_CCI400_PMU */
1036
1037static int __init cci_platform_init(void)
1038{
1039	return 0;
1040}
1041
1042#endif /* CONFIG_ARM_CCI400_PMU */
1043
1044#ifdef CONFIG_ARM_CCI400_PORT_CTRL
1045
1046#define CCI_PORT_CTRL		0x0
1047#define CCI_CTRL_STATUS		0xc
1048
1049#define CCI_ENABLE_SNOOP_REQ	0x1
1050#define CCI_ENABLE_DVM_REQ	0x2
1051#define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1052
1053enum cci_ace_port_type {
1054	ACE_INVALID_PORT = 0x0,
1055	ACE_PORT,
1056	ACE_LITE_PORT,
1057};
1058
1059struct cci_ace_port {
1060	void __iomem *base;
1061	unsigned long phys;
1062	enum cci_ace_port_type type;
1063	struct device_node *dn;
1064};
1065
1066static struct cci_ace_port *ports;
1067static unsigned int nb_cci_ports;
1068
1069struct cpu_port {
1070	u64 mpidr;
1071	u32 port;
1072};
1073
1074/*
1075 * Use the port MSB as valid flag, shift can be made dynamic
1076 * by computing number of bits required for port indexes.
1077 * Code disabling CCI cpu ports runs with D-cache invalidated
1078 * and SCTLR bit clear so data accesses must be kept to a minimum
1079 * to improve performance; for now shift is left static to
1080 * avoid one more data access while disabling the CCI port.
1081 */
1082#define PORT_VALID_SHIFT	31
1083#define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
1084
1085static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1086{
1087	port->port = PORT_VALID | index;
1088	port->mpidr = mpidr;
1089}
1090
1091static inline bool cpu_port_is_valid(struct cpu_port *port)
1092{
1093	return !!(port->port & PORT_VALID);
1094}
1095
1096static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1097{
1098	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1099}
1100
1101static struct cpu_port cpu_port[NR_CPUS];
1102
1103/**
1104 * __cci_ace_get_port - Function to retrieve the port index connected to
1105 *			a cpu or device.
1106 *
1107 * @dn: device node of the device to look-up
1108 * @type: port type
1109 *
1110 * Return value:
1111 *	- CCI port index if success
1112 *	- -ENODEV if failure
1113 */
1114static int __cci_ace_get_port(struct device_node *dn, int type)
1115{
1116	int i;
1117	bool ace_match;
1118	struct device_node *cci_portn;
1119
1120	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1121	for (i = 0; i < nb_cci_ports; i++) {
1122		ace_match = ports[i].type == type;
1123		if (ace_match && cci_portn == ports[i].dn)
1124			return i;
1125	}
1126	return -ENODEV;
1127}
1128
1129int cci_ace_get_port(struct device_node *dn)
1130{
1131	return __cci_ace_get_port(dn, ACE_LITE_PORT);
1132}
1133EXPORT_SYMBOL_GPL(cci_ace_get_port);
1134
1135static void cci_ace_init_ports(void)
1136{
1137	int port, cpu;
1138	struct device_node *cpun;
1139
1140	/*
1141	 * Port index look-up speeds up the function disabling ports by CPU,
1142	 * since the logical to port index mapping is done once and does
1143	 * not change after system boot.
1144	 * The stashed index array is initialized for all possible CPUs
1145	 * at probe time.
1146	 */
1147	for_each_possible_cpu(cpu) {
1148		/* too early to use cpu->of_node */
1149		cpun = of_get_cpu_node(cpu, NULL);
1150
1151		if (WARN(!cpun, "Missing cpu device node\n"))
1152			continue;
1153
1154		port = __cci_ace_get_port(cpun, ACE_PORT);
1155		if (port < 0)
1156			continue;
1157
1158		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1159	}
1160
1161	for_each_possible_cpu(cpu) {
1162		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1163			"CPU %u does not have an associated CCI port\n",
1164			cpu);
1165	}
1166}
1167/*
1168 * Functions to enable/disable a CCI interconnect slave port
1169 *
1170 * They are called by low-level power management code to disable slave
1171 * interfaces snoops and DVM broadcast.
1172 * Since they may execute with cache data allocation disabled and
1173 * after the caches have been cleaned and invalidated the functions provide
1174 * no explicit locking since they may run with D-cache disabled, so normal
1175 * cacheable kernel locks based on ldrex/strex may not work.
1176 * Locking has to be provided by BSP implementations to ensure proper
1177 * operations.
1178 */
1179
1180/**
1181 * cci_port_control() - function to control a CCI port
1182 *
1183 * @port: index of the port to setup
1184 * @enable: if true enables the port, if false disables it
1185 */
1186static void notrace cci_port_control(unsigned int port, bool enable)
1187{
1188	void __iomem *base = ports[port].base;
1189
1190	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1191	/*
1192	 * This function is called from power down procedures
1193	 * and must not execute any instruction that might
1194	 * cause the processor to be put in a quiescent state
1195	 * (eg wfi). Hence, cpu_relax() can not be added to this
1196	 * read loop to optimize power, since it might hide possibly
1197	 * disruptive operations.
1198	 */
1199	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1200			;
1201}
1202
1203/**
1204 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1205 *			       reference
1206 *
1207 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1208 *
1209 * Disabling a CCI port for a CPU implies disabling the CCI port
1210 * controlling that CPU cluster. Code disabling CPU CCI ports
1211 * must make sure that the CPU running the code is the last active CPU
1212 * in the cluster ie all other CPUs are quiescent in a low power state.
1213 *
1214 * Return:
1215 *	0 on success
1216 *	-ENODEV on port look-up failure
1217 */
1218int notrace cci_disable_port_by_cpu(u64 mpidr)
1219{
1220	int cpu;
1221	bool is_valid;
1222	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1223		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1224		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1225			cci_port_control(cpu_port[cpu].port, false);
1226			return 0;
1227		}
1228	}
1229	return -ENODEV;
1230}
1231EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1232
1233/**
1234 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1235 *
1236 * Enabling a CCI port for the calling CPU implies enabling the CCI
1237 * port controlling that CPU's cluster. Caller must make sure that the
1238 * CPU running the code is the first active CPU in the cluster and all
1239 * other CPUs are quiescent in a low power state  or waiting for this CPU
1240 * to complete the CCI initialization.
1241 *
1242 * Because this is called when the MMU is still off and with no stack,
1243 * the code must be position independent and ideally rely on callee
1244 * clobbered registers only.  To achieve this we must code this function
1245 * entirely in assembler.
1246 *
1247 * On success this returns with the proper CCI port enabled.  In case of
1248 * any failure this never returns as the inability to enable the CCI is
1249 * fatal and there is no possible recovery at this stage.
1250 */
1251asmlinkage void __naked cci_enable_port_for_self(void)
1252{
1253	asm volatile ("\n"
1254"	.arch armv7-a\n"
1255"	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
1256"	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1257"	adr	r1, 5f \n"
1258"	ldr	r2, [r1] \n"
1259"	add	r1, r1, r2		@ &cpu_port \n"
1260"	add	ip, r1, %[sizeof_cpu_port] \n"
1261
1262	/* Loop over the cpu_port array looking for a matching MPIDR */
1263"1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1264"	cmp	r2, r0 			@ compare MPIDR \n"
1265"	bne	2f \n"
1266
1267	/* Found a match, now test port validity */
1268"	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
1269"	tst	r3, #"__stringify(PORT_VALID)" \n"
1270"	bne	3f \n"
1271
1272	/* no match, loop with the next cpu_port entry */
1273"2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
1274"	cmp	r1, ip			@ done? \n"
1275"	blo	1b \n"
1276
1277	/* CCI port not found -- cheaply try to stall this CPU */
1278"cci_port_not_found: \n"
1279"	wfi \n"
1280"	wfe \n"
1281"	b	cci_port_not_found \n"
1282
1283	/* Use matched port index to look up the corresponding ports entry */
1284"3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
1285"	adr	r0, 6f \n"
1286"	ldmia	r0, {r1, r2} \n"
1287"	sub	r1, r1, r0 		@ virt - phys \n"
1288"	ldr	r0, [r0, r2] 		@ *(&ports) \n"
1289"	mov	r2, %[sizeof_struct_ace_port] \n"
1290"	mla	r0, r2, r3, r0		@ &ports[index] \n"
1291"	sub	r0, r0, r1		@ virt_to_phys() \n"
1292
1293	/* Enable the CCI port */
1294"	ldr	r0, [r0, %[offsetof_port_phys]] \n"
1295"	mov	r3, %[cci_enable_req]\n"
1296"	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1297
1298	/* poll the status reg for completion */
1299"	adr	r1, 7f \n"
1300"	ldr	r0, [r1] \n"
1301"	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
1302"4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
1303"	tst	r1, %[cci_control_status_bits] \n"
1304"	bne	4b \n"
1305
1306"	mov	r0, #0 \n"
1307"	bx	lr \n"
1308
1309"	.align	2 \n"
1310"5:	.word	cpu_port - . \n"
1311"6:	.word	. \n"
1312"	.word	ports - 6b \n"
1313"7:	.word	cci_ctrl_phys - . \n"
1314	: :
1315	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
1316	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1317	[cci_control_status_bits] "i" cpu_to_le32(1),
1318#ifndef __ARMEB__
1319	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1320#else
1321	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1322#endif
1323	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1324	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1325	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1326	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1327
1328	unreachable();
1329}
1330
1331/**
1332 * __cci_control_port_by_device() - function to control a CCI port by device
1333 *				    reference
1334 *
1335 * @dn: device node pointer of the device whose CCI port should be
1336 *      controlled
1337 * @enable: if true enables the port, if false disables it
1338 *
1339 * Return:
1340 *	0 on success
1341 *	-ENODEV on port look-up failure
1342 */
1343int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1344{
1345	int port;
1346
1347	if (!dn)
1348		return -ENODEV;
1349
1350	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1351	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1352				dn->full_name))
1353		return -ENODEV;
1354	cci_port_control(port, enable);
1355	return 0;
1356}
1357EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1358
1359/**
1360 * __cci_control_port_by_index() - function to control a CCI port by port index
1361 *
1362 * @port: port index previously retrieved with cci_ace_get_port()
1363 * @enable: if true enables the port, if false disables it
1364 *
1365 * Return:
1366 *	0 on success
1367 *	-ENODEV on port index out of range
1368 *	-EPERM if operation carried out on an ACE PORT
1369 */
1370int notrace __cci_control_port_by_index(u32 port, bool enable)
1371{
1372	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1373		return -ENODEV;
1374	/*
1375	 * CCI control for ports connected to CPUS is extremely fragile
1376	 * and must be made to go through a specific and controlled
1377	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1378	 * indexing is therefore disabled for ACE ports.
1379	 */
1380	if (ports[port].type == ACE_PORT)
1381		return -EPERM;
1382
1383	cci_port_control(port, enable);
1384	return 0;
1385}
1386EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1387
1388static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1389	{.compatible = "arm,cci-400-ctrl-if", },
1390	{},
1391};
1392
1393static int cci_probe_ports(struct device_node *np)
1394{
1395	struct cci_nb_ports const *cci_config;
1396	int ret, i, nb_ace = 0, nb_ace_lite = 0;
1397	struct device_node *cp;
1398	struct resource res;
1399	const char *match_str;
1400	bool is_ace;
1401
1402
1403	cci_config = of_match_node(arm_cci_matches, np)->data;
1404	if (!cci_config)
1405		return -ENODEV;
1406
1407	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1408
1409	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
1410	if (!ports)
1411		return -ENOMEM;
1412
1413	for_each_child_of_node(np, cp) {
1414		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1415			continue;
1416
1417		i = nb_ace + nb_ace_lite;
1418
1419		if (i >= nb_cci_ports)
1420			break;
1421
1422		if (of_property_read_string(cp, "interface-type",
1423					&match_str)) {
1424			WARN(1, "node %s missing interface-type property\n",
1425				  cp->full_name);
1426			continue;
1427		}
1428		is_ace = strcmp(match_str, "ace") == 0;
1429		if (!is_ace && strcmp(match_str, "ace-lite")) {
1430			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1431					cp->full_name);
1432			continue;
1433		}
1434
1435		ret = of_address_to_resource(cp, 0, &res);
1436		if (!ret) {
1437			ports[i].base = ioremap(res.start, resource_size(&res));
1438			ports[i].phys = res.start;
1439		}
1440		if (ret || !ports[i].base) {
1441			WARN(1, "unable to ioremap CCI port %d\n", i);
1442			continue;
1443		}
1444
1445		if (is_ace) {
1446			if (WARN_ON(nb_ace >= cci_config->nb_ace))
1447				continue;
1448			ports[i].type = ACE_PORT;
1449			++nb_ace;
1450		} else {
1451			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1452				continue;
1453			ports[i].type = ACE_LITE_PORT;
1454			++nb_ace_lite;
1455		}
1456		ports[i].dn = cp;
1457	}
1458
1459	 /* initialize a stashed array of ACE ports to speed-up look-up */
1460	cci_ace_init_ports();
1461
1462	/*
1463	 * Multi-cluster systems may need this data when non-coherent, during
1464	 * cluster power-up/power-down. Make sure it reaches main memory.
1465	 */
1466	sync_cache_w(&cci_ctrl_base);
1467	sync_cache_w(&cci_ctrl_phys);
1468	sync_cache_w(&ports);
1469	sync_cache_w(&cpu_port);
1470	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1471	pr_info("ARM CCI driver probed\n");
1472
1473	return 0;
1474}
1475#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
1476static inline int cci_probe_ports(struct device_node *np)
1477{
1478	return 0;
1479}
1480#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
1481
1482static int cci_probe(void)
1483{
1484	int ret;
1485	struct device_node *np;
1486	struct resource res;
1487
1488	np = of_find_matching_node(NULL, arm_cci_matches);
1489	if(!np || !of_device_is_available(np))
1490		return -ENODEV;
1491
1492	ret = of_address_to_resource(np, 0, &res);
1493	if (!ret) {
1494		cci_ctrl_base = ioremap(res.start, resource_size(&res));
1495		cci_ctrl_phys =	res.start;
1496	}
1497	if (ret || !cci_ctrl_base) {
1498		WARN(1, "unable to ioremap CCI ctrl\n");
1499		return -ENXIO;
1500	}
1501
1502	return cci_probe_ports(np);
1503}
1504
1505static int cci_init_status = -EAGAIN;
1506static DEFINE_MUTEX(cci_probing);
1507
1508static int cci_init(void)
1509{
1510	if (cci_init_status != -EAGAIN)
1511		return cci_init_status;
1512
1513	mutex_lock(&cci_probing);
1514	if (cci_init_status == -EAGAIN)
1515		cci_init_status = cci_probe();
1516	mutex_unlock(&cci_probing);
1517	return cci_init_status;
1518}
1519
1520/*
1521 * To sort out early init calls ordering a helper function is provided to
1522 * check if the CCI driver has beed initialized. Function check if the driver
1523 * has been initialized, if not it calls the init function that probes
1524 * the driver and updates the return value.
1525 */
1526bool cci_probed(void)
1527{
1528	return cci_init() == 0;
1529}
1530EXPORT_SYMBOL_GPL(cci_probed);
1531
1532early_initcall(cci_init);
1533core_initcall(cci_platform_init);
1534MODULE_LICENSE("GPL");
1535MODULE_DESCRIPTION("ARM CCI support");
1536