1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 *         Corey Minyard <minyard@mvista.com>
9 *         source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 *  This program is free software; you can redistribute it and/or modify it
15 *  under the terms of the GNU General Public License as published by the
16 *  Free Software Foundation; either version 2 of the License, or (at your
17 *  option) any later version.
18 *
19 *
20 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 *  You should have received a copy of the GNU General Public License along
32 *  with this program; if not, write to the Free Software Foundation, Inc.,
33 *  675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine.  It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <linux/sched.h>
45#include <linux/seq_file.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
54#include <linux/notifier.h>
55#include <linux/mutex.h>
56#include <linux/kthread.h>
57#include <asm/irq.h>
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi.h>
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
64#include <linux/dmi.h>
65#include <linux/string.h>
66#include <linux/ctype.h>
67#include <linux/pnp.h>
68#include <linux/of_device.h>
69#include <linux/of_platform.h>
70#include <linux/of_address.h>
71#include <linux/of_irq.h>
72
73#ifdef CONFIG_PARISC
74#include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75#include <asm/parisc-device.h>
76#endif
77
78#define PFX "ipmi_si: "
79
80/* Measure times between events in the driver. */
81#undef DEBUG_TIMING
82
83/* Call every 10 ms. */
84#define SI_TIMEOUT_TIME_USEC	10000
85#define SI_USEC_PER_JIFFY	(1000000/HZ)
86#define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88				      short timeout */
89
90enum si_intf_state {
91	SI_NORMAL,
92	SI_GETTING_FLAGS,
93	SI_GETTING_EVENTS,
94	SI_CLEARING_FLAGS,
95	SI_GETTING_MESSAGES,
96	SI_CHECKING_ENABLES,
97	SI_SETTING_ENABLES
98	/* FIXME - add watchdog stuff. */
99};
100
101/* Some BT-specific defines we need here. */
102#define IPMI_BT_INTMASK_REG		2
103#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105
106enum si_type {
107    SI_KCS, SI_SMIC, SI_BT
108};
109static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111#define DEVICE_NAME "ipmi_si"
112
113static struct platform_driver ipmi_driver;
114
115/*
116 * Indexes into stats[] in smi_info below.
117 */
118enum si_stat_indexes {
119	/*
120	 * Number of times the driver requested a timer while an operation
121	 * was in progress.
122	 */
123	SI_STAT_short_timeouts = 0,
124
125	/*
126	 * Number of times the driver requested a timer while nothing was in
127	 * progress.
128	 */
129	SI_STAT_long_timeouts,
130
131	/* Number of times the interface was idle while being polled. */
132	SI_STAT_idles,
133
134	/* Number of interrupts the driver handled. */
135	SI_STAT_interrupts,
136
137	/* Number of time the driver got an ATTN from the hardware. */
138	SI_STAT_attentions,
139
140	/* Number of times the driver requested flags from the hardware. */
141	SI_STAT_flag_fetches,
142
143	/* Number of times the hardware didn't follow the state machine. */
144	SI_STAT_hosed_count,
145
146	/* Number of completed messages. */
147	SI_STAT_complete_transactions,
148
149	/* Number of IPMI events received from the hardware. */
150	SI_STAT_events,
151
152	/* Number of watchdog pretimeouts. */
153	SI_STAT_watchdog_pretimeouts,
154
155	/* Number of asynchronous messages received. */
156	SI_STAT_incoming_messages,
157
158
159	/* This *must* remain last, add new values above this. */
160	SI_NUM_STATS
161};
162
163struct smi_info {
164	int                    intf_num;
165	ipmi_smi_t             intf;
166	struct si_sm_data      *si_sm;
167	struct si_sm_handlers  *handlers;
168	enum si_type           si_type;
169	spinlock_t             si_lock;
170	struct ipmi_smi_msg    *waiting_msg;
171	struct ipmi_smi_msg    *curr_msg;
172	enum si_intf_state     si_state;
173
174	/*
175	 * Used to handle the various types of I/O that can occur with
176	 * IPMI
177	 */
178	struct si_sm_io io;
179	int (*io_setup)(struct smi_info *info);
180	void (*io_cleanup)(struct smi_info *info);
181	int (*irq_setup)(struct smi_info *info);
182	void (*irq_cleanup)(struct smi_info *info);
183	unsigned int io_size;
184	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185	void (*addr_source_cleanup)(struct smi_info *info);
186	void *addr_source_data;
187
188	/*
189	 * Per-OEM handler, called from handle_flags().  Returns 1
190	 * when handle_flags() needs to be re-run or 0 indicating it
191	 * set si_state itself.
192	 */
193	int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195	/*
196	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197	 * is set to hold the flags until we are done handling everything
198	 * from the flags.
199	 */
200#define RECEIVE_MSG_AVAIL	0x01
201#define EVENT_MSG_BUFFER_FULL	0x02
202#define WDT_PRE_TIMEOUT_INT	0x08
203#define OEM0_DATA_AVAIL     0x20
204#define OEM1_DATA_AVAIL     0x40
205#define OEM2_DATA_AVAIL     0x80
206#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207			     OEM1_DATA_AVAIL | \
208			     OEM2_DATA_AVAIL)
209	unsigned char       msg_flags;
210
211	/* Does the BMC have an event buffer? */
212	bool		    has_event_buffer;
213
214	/*
215	 * If set to true, this will request events the next time the
216	 * state machine is idle.
217	 */
218	atomic_t            req_events;
219
220	/*
221	 * If true, run the state machine to completion on every send
222	 * call.  Generally used after a panic to make sure stuff goes
223	 * out.
224	 */
225	bool                run_to_completion;
226
227	/* The I/O port of an SI interface. */
228	int                 port;
229
230	/*
231	 * The space between start addresses of the two ports.  For
232	 * instance, if the first port is 0xca2 and the spacing is 4, then
233	 * the second port is 0xca6.
234	 */
235	unsigned int        spacing;
236
237	/* zero if no irq; */
238	int                 irq;
239
240	/* The timer for this si. */
241	struct timer_list   si_timer;
242
243	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
244	bool		    timer_running;
245
246	/* The time (in jiffies) the last timeout occurred at. */
247	unsigned long       last_timeout_jiffies;
248
249	/* Are we waiting for the events, pretimeouts, received msgs? */
250	atomic_t            need_watch;
251
252	/*
253	 * The driver will disable interrupts when it gets into a
254	 * situation where it cannot handle messages due to lack of
255	 * memory.  Once that situation clears up, it will re-enable
256	 * interrupts.
257	 */
258	bool interrupt_disabled;
259
260	/*
261	 * Does the BMC support events?
262	 */
263	bool supports_event_msg_buff;
264
265	/*
266	 * Can we clear the global enables receive irq bit?
267	 */
268	bool cannot_clear_recv_irq_bit;
269
270	/*
271	 * Did we get an attention that we did not handle?
272	 */
273	bool got_attn;
274
275	/* From the get device id response... */
276	struct ipmi_device_id device_id;
277
278	/* Driver model stuff. */
279	struct device *dev;
280	struct platform_device *pdev;
281
282	/*
283	 * True if we allocated the device, false if it came from
284	 * someplace else (like PCI).
285	 */
286	bool dev_registered;
287
288	/* Slave address, could be reported from DMI. */
289	unsigned char slave_addr;
290
291	/* Counters and things for the proc filesystem. */
292	atomic_t stats[SI_NUM_STATS];
293
294	struct task_struct *thread;
295
296	struct list_head link;
297	union ipmi_smi_info_union addr_info;
298};
299
300#define smi_inc_stat(smi, stat) \
301	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
302#define smi_get_stat(smi, stat) \
303	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
304
305#define SI_MAX_PARMS 4
306
307static int force_kipmid[SI_MAX_PARMS];
308static int num_force_kipmid;
309#ifdef CONFIG_PCI
310static bool pci_registered;
311#endif
312#ifdef CONFIG_ACPI
313static bool pnp_registered;
314#endif
315#ifdef CONFIG_PARISC
316static bool parisc_registered;
317#endif
318
319static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
320static int num_max_busy_us;
321
322static bool unload_when_empty = true;
323
324static int add_smi(struct smi_info *smi);
325static int try_smi_init(struct smi_info *smi);
326static void cleanup_one_si(struct smi_info *to_clean);
327static void cleanup_ipmi_si(void);
328
329#ifdef DEBUG_TIMING
330void debug_timestamp(char *msg)
331{
332	struct timespec64 t;
333
334	getnstimeofday64(&t);
335	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
336}
337#else
338#define debug_timestamp(x)
339#endif
340
341static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
342static int register_xaction_notifier(struct notifier_block *nb)
343{
344	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
345}
346
347static void deliver_recv_msg(struct smi_info *smi_info,
348			     struct ipmi_smi_msg *msg)
349{
350	/* Deliver the message to the upper layer. */
351	if (smi_info->intf)
352		ipmi_smi_msg_received(smi_info->intf, msg);
353	else
354		ipmi_free_smi_msg(msg);
355}
356
357static void return_hosed_msg(struct smi_info *smi_info, int cCode)
358{
359	struct ipmi_smi_msg *msg = smi_info->curr_msg;
360
361	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
362		cCode = IPMI_ERR_UNSPECIFIED;
363	/* else use it as is */
364
365	/* Make it a response */
366	msg->rsp[0] = msg->data[0] | 4;
367	msg->rsp[1] = msg->data[1];
368	msg->rsp[2] = cCode;
369	msg->rsp_size = 3;
370
371	smi_info->curr_msg = NULL;
372	deliver_recv_msg(smi_info, msg);
373}
374
375static enum si_sm_result start_next_msg(struct smi_info *smi_info)
376{
377	int              rv;
378
379	if (!smi_info->waiting_msg) {
380		smi_info->curr_msg = NULL;
381		rv = SI_SM_IDLE;
382	} else {
383		int err;
384
385		smi_info->curr_msg = smi_info->waiting_msg;
386		smi_info->waiting_msg = NULL;
387		debug_timestamp("Start2");
388		err = atomic_notifier_call_chain(&xaction_notifier_list,
389				0, smi_info);
390		if (err & NOTIFY_STOP_MASK) {
391			rv = SI_SM_CALL_WITHOUT_DELAY;
392			goto out;
393		}
394		err = smi_info->handlers->start_transaction(
395			smi_info->si_sm,
396			smi_info->curr_msg->data,
397			smi_info->curr_msg->data_size);
398		if (err)
399			return_hosed_msg(smi_info, err);
400
401		rv = SI_SM_CALL_WITHOUT_DELAY;
402	}
403 out:
404	return rv;
405}
406
407static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
408{
409	smi_info->last_timeout_jiffies = jiffies;
410	mod_timer(&smi_info->si_timer, new_val);
411	smi_info->timer_running = true;
412}
413
414/*
415 * Start a new message and (re)start the timer and thread.
416 */
417static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
418			  unsigned int size)
419{
420	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
421
422	if (smi_info->thread)
423		wake_up_process(smi_info->thread);
424
425	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
426}
427
428static void start_check_enables(struct smi_info *smi_info, bool start_timer)
429{
430	unsigned char msg[2];
431
432	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
433	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
434
435	if (start_timer)
436		start_new_msg(smi_info, msg, 2);
437	else
438		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
439	smi_info->si_state = SI_CHECKING_ENABLES;
440}
441
442static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
443{
444	unsigned char msg[3];
445
446	/* Make sure the watchdog pre-timeout flag is not set at startup. */
447	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
448	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
449	msg[2] = WDT_PRE_TIMEOUT_INT;
450
451	if (start_timer)
452		start_new_msg(smi_info, msg, 3);
453	else
454		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
455	smi_info->si_state = SI_CLEARING_FLAGS;
456}
457
458static void start_getting_msg_queue(struct smi_info *smi_info)
459{
460	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
461	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
462	smi_info->curr_msg->data_size = 2;
463
464	start_new_msg(smi_info, smi_info->curr_msg->data,
465		      smi_info->curr_msg->data_size);
466	smi_info->si_state = SI_GETTING_MESSAGES;
467}
468
469static void start_getting_events(struct smi_info *smi_info)
470{
471	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
472	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
473	smi_info->curr_msg->data_size = 2;
474
475	start_new_msg(smi_info, smi_info->curr_msg->data,
476		      smi_info->curr_msg->data_size);
477	smi_info->si_state = SI_GETTING_EVENTS;
478}
479
480/*
481 * When we have a situtaion where we run out of memory and cannot
482 * allocate messages, we just leave them in the BMC and run the system
483 * polled until we can allocate some memory.  Once we have some
484 * memory, we will re-enable the interrupt.
485 *
486 * Note that we cannot just use disable_irq(), since the interrupt may
487 * be shared.
488 */
489static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
490{
491	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
492		smi_info->interrupt_disabled = true;
493		start_check_enables(smi_info, start_timer);
494		return true;
495	}
496	return false;
497}
498
499static inline bool enable_si_irq(struct smi_info *smi_info)
500{
501	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
502		smi_info->interrupt_disabled = false;
503		start_check_enables(smi_info, true);
504		return true;
505	}
506	return false;
507}
508
509/*
510 * Allocate a message.  If unable to allocate, start the interrupt
511 * disable process and return NULL.  If able to allocate but
512 * interrupts are disabled, free the message and return NULL after
513 * starting the interrupt enable process.
514 */
515static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
516{
517	struct ipmi_smi_msg *msg;
518
519	msg = ipmi_alloc_smi_msg();
520	if (!msg) {
521		if (!disable_si_irq(smi_info, true))
522			smi_info->si_state = SI_NORMAL;
523	} else if (enable_si_irq(smi_info)) {
524		ipmi_free_smi_msg(msg);
525		msg = NULL;
526	}
527	return msg;
528}
529
530static void handle_flags(struct smi_info *smi_info)
531{
532 retry:
533	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
534		/* Watchdog pre-timeout */
535		smi_inc_stat(smi_info, watchdog_pretimeouts);
536
537		start_clear_flags(smi_info, true);
538		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
539		if (smi_info->intf)
540			ipmi_smi_watchdog_pretimeout(smi_info->intf);
541	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
542		/* Messages available. */
543		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
544		if (!smi_info->curr_msg)
545			return;
546
547		start_getting_msg_queue(smi_info);
548	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
549		/* Events available. */
550		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
551		if (!smi_info->curr_msg)
552			return;
553
554		start_getting_events(smi_info);
555	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
556		   smi_info->oem_data_avail_handler) {
557		if (smi_info->oem_data_avail_handler(smi_info))
558			goto retry;
559	} else
560		smi_info->si_state = SI_NORMAL;
561}
562
563/*
564 * Global enables we care about.
565 */
566#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
567			     IPMI_BMC_EVT_MSG_INTR)
568
569static u8 current_global_enables(struct smi_info *smi_info, u8 base,
570				 bool *irq_on)
571{
572	u8 enables = 0;
573
574	if (smi_info->supports_event_msg_buff)
575		enables |= IPMI_BMC_EVT_MSG_BUFF;
576
577	if ((smi_info->irq && !smi_info->interrupt_disabled) ||
578	    smi_info->cannot_clear_recv_irq_bit)
579		enables |= IPMI_BMC_RCV_MSG_INTR;
580
581	if (smi_info->supports_event_msg_buff &&
582	    smi_info->irq && !smi_info->interrupt_disabled)
583
584		enables |= IPMI_BMC_EVT_MSG_INTR;
585
586	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
587
588	return enables;
589}
590
591static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
592{
593	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
594
595	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
596
597	if ((bool)irqstate == irq_on)
598		return;
599
600	if (irq_on)
601		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
602				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
603	else
604		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
605}
606
607static void handle_transaction_done(struct smi_info *smi_info)
608{
609	struct ipmi_smi_msg *msg;
610
611	debug_timestamp("Done");
612	switch (smi_info->si_state) {
613	case SI_NORMAL:
614		if (!smi_info->curr_msg)
615			break;
616
617		smi_info->curr_msg->rsp_size
618			= smi_info->handlers->get_result(
619				smi_info->si_sm,
620				smi_info->curr_msg->rsp,
621				IPMI_MAX_MSG_LENGTH);
622
623		/*
624		 * Do this here becase deliver_recv_msg() releases the
625		 * lock, and a new message can be put in during the
626		 * time the lock is released.
627		 */
628		msg = smi_info->curr_msg;
629		smi_info->curr_msg = NULL;
630		deliver_recv_msg(smi_info, msg);
631		break;
632
633	case SI_GETTING_FLAGS:
634	{
635		unsigned char msg[4];
636		unsigned int  len;
637
638		/* We got the flags from the SMI, now handle them. */
639		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
640		if (msg[2] != 0) {
641			/* Error fetching flags, just give up for now. */
642			smi_info->si_state = SI_NORMAL;
643		} else if (len < 4) {
644			/*
645			 * Hmm, no flags.  That's technically illegal, but
646			 * don't use uninitialized data.
647			 */
648			smi_info->si_state = SI_NORMAL;
649		} else {
650			smi_info->msg_flags = msg[3];
651			handle_flags(smi_info);
652		}
653		break;
654	}
655
656	case SI_CLEARING_FLAGS:
657	{
658		unsigned char msg[3];
659
660		/* We cleared the flags. */
661		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
662		if (msg[2] != 0) {
663			/* Error clearing flags */
664			dev_warn(smi_info->dev,
665				 "Error clearing flags: %2.2x\n", msg[2]);
666		}
667		smi_info->si_state = SI_NORMAL;
668		break;
669	}
670
671	case SI_GETTING_EVENTS:
672	{
673		smi_info->curr_msg->rsp_size
674			= smi_info->handlers->get_result(
675				smi_info->si_sm,
676				smi_info->curr_msg->rsp,
677				IPMI_MAX_MSG_LENGTH);
678
679		/*
680		 * Do this here becase deliver_recv_msg() releases the
681		 * lock, and a new message can be put in during the
682		 * time the lock is released.
683		 */
684		msg = smi_info->curr_msg;
685		smi_info->curr_msg = NULL;
686		if (msg->rsp[2] != 0) {
687			/* Error getting event, probably done. */
688			msg->done(msg);
689
690			/* Take off the event flag. */
691			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
692			handle_flags(smi_info);
693		} else {
694			smi_inc_stat(smi_info, events);
695
696			/*
697			 * Do this before we deliver the message
698			 * because delivering the message releases the
699			 * lock and something else can mess with the
700			 * state.
701			 */
702			handle_flags(smi_info);
703
704			deliver_recv_msg(smi_info, msg);
705		}
706		break;
707	}
708
709	case SI_GETTING_MESSAGES:
710	{
711		smi_info->curr_msg->rsp_size
712			= smi_info->handlers->get_result(
713				smi_info->si_sm,
714				smi_info->curr_msg->rsp,
715				IPMI_MAX_MSG_LENGTH);
716
717		/*
718		 * Do this here becase deliver_recv_msg() releases the
719		 * lock, and a new message can be put in during the
720		 * time the lock is released.
721		 */
722		msg = smi_info->curr_msg;
723		smi_info->curr_msg = NULL;
724		if (msg->rsp[2] != 0) {
725			/* Error getting event, probably done. */
726			msg->done(msg);
727
728			/* Take off the msg flag. */
729			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
730			handle_flags(smi_info);
731		} else {
732			smi_inc_stat(smi_info, incoming_messages);
733
734			/*
735			 * Do this before we deliver the message
736			 * because delivering the message releases the
737			 * lock and something else can mess with the
738			 * state.
739			 */
740			handle_flags(smi_info);
741
742			deliver_recv_msg(smi_info, msg);
743		}
744		break;
745	}
746
747	case SI_CHECKING_ENABLES:
748	{
749		unsigned char msg[4];
750		u8 enables;
751		bool irq_on;
752
753		/* We got the flags from the SMI, now handle them. */
754		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
755		if (msg[2] != 0) {
756			dev_warn(smi_info->dev,
757				 "Couldn't get irq info: %x.\n", msg[2]);
758			dev_warn(smi_info->dev,
759				 "Maybe ok, but ipmi might run very slowly.\n");
760			smi_info->si_state = SI_NORMAL;
761			break;
762		}
763		enables = current_global_enables(smi_info, 0, &irq_on);
764		if (smi_info->si_type == SI_BT)
765			/* BT has its own interrupt enable bit. */
766			check_bt_irq(smi_info, irq_on);
767		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
768			/* Enables are not correct, fix them. */
769			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
770			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
771			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
772			smi_info->handlers->start_transaction(
773				smi_info->si_sm, msg, 3);
774			smi_info->si_state = SI_SETTING_ENABLES;
775		} else if (smi_info->supports_event_msg_buff) {
776			smi_info->curr_msg = ipmi_alloc_smi_msg();
777			if (!smi_info->curr_msg) {
778				smi_info->si_state = SI_NORMAL;
779				break;
780			}
781			start_getting_msg_queue(smi_info);
782		} else {
783			smi_info->si_state = SI_NORMAL;
784		}
785		break;
786	}
787
788	case SI_SETTING_ENABLES:
789	{
790		unsigned char msg[4];
791
792		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
793		if (msg[2] != 0)
794			dev_warn(smi_info->dev,
795				 "Could not set the global enables: 0x%x.\n",
796				 msg[2]);
797
798		if (smi_info->supports_event_msg_buff) {
799			smi_info->curr_msg = ipmi_alloc_smi_msg();
800			if (!smi_info->curr_msg) {
801				smi_info->si_state = SI_NORMAL;
802				break;
803			}
804			start_getting_msg_queue(smi_info);
805		} else {
806			smi_info->si_state = SI_NORMAL;
807		}
808		break;
809	}
810	}
811}
812
813/*
814 * Called on timeouts and events.  Timeouts should pass the elapsed
815 * time, interrupts should pass in zero.  Must be called with
816 * si_lock held and interrupts disabled.
817 */
818static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
819					   int time)
820{
821	enum si_sm_result si_sm_result;
822
823 restart:
824	/*
825	 * There used to be a loop here that waited a little while
826	 * (around 25us) before giving up.  That turned out to be
827	 * pointless, the minimum delays I was seeing were in the 300us
828	 * range, which is far too long to wait in an interrupt.  So
829	 * we just run until the state machine tells us something
830	 * happened or it needs a delay.
831	 */
832	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
833	time = 0;
834	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
835		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
836
837	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
838		smi_inc_stat(smi_info, complete_transactions);
839
840		handle_transaction_done(smi_info);
841		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
842	} else if (si_sm_result == SI_SM_HOSED) {
843		smi_inc_stat(smi_info, hosed_count);
844
845		/*
846		 * Do the before return_hosed_msg, because that
847		 * releases the lock.
848		 */
849		smi_info->si_state = SI_NORMAL;
850		if (smi_info->curr_msg != NULL) {
851			/*
852			 * If we were handling a user message, format
853			 * a response to send to the upper layer to
854			 * tell it about the error.
855			 */
856			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
857		}
858		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
859	}
860
861	/*
862	 * We prefer handling attn over new messages.  But don't do
863	 * this if there is not yet an upper layer to handle anything.
864	 */
865	if (likely(smi_info->intf) &&
866	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
867		unsigned char msg[2];
868
869		if (smi_info->si_state != SI_NORMAL) {
870			/*
871			 * We got an ATTN, but we are doing something else.
872			 * Handle the ATTN later.
873			 */
874			smi_info->got_attn = true;
875		} else {
876			smi_info->got_attn = false;
877			smi_inc_stat(smi_info, attentions);
878
879			/*
880			 * Got a attn, send down a get message flags to see
881			 * what's causing it.  It would be better to handle
882			 * this in the upper layer, but due to the way
883			 * interrupts work with the SMI, that's not really
884			 * possible.
885			 */
886			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
887			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
888
889			start_new_msg(smi_info, msg, 2);
890			smi_info->si_state = SI_GETTING_FLAGS;
891			goto restart;
892		}
893	}
894
895	/* If we are currently idle, try to start the next message. */
896	if (si_sm_result == SI_SM_IDLE) {
897		smi_inc_stat(smi_info, idles);
898
899		si_sm_result = start_next_msg(smi_info);
900		if (si_sm_result != SI_SM_IDLE)
901			goto restart;
902	}
903
904	if ((si_sm_result == SI_SM_IDLE)
905	    && (atomic_read(&smi_info->req_events))) {
906		/*
907		 * We are idle and the upper layer requested that I fetch
908		 * events, so do so.
909		 */
910		atomic_set(&smi_info->req_events, 0);
911
912		/*
913		 * Take this opportunity to check the interrupt and
914		 * message enable state for the BMC.  The BMC can be
915		 * asynchronously reset, and may thus get interrupts
916		 * disable and messages disabled.
917		 */
918		if (smi_info->supports_event_msg_buff || smi_info->irq) {
919			start_check_enables(smi_info, true);
920		} else {
921			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
922			if (!smi_info->curr_msg)
923				goto out;
924
925			start_getting_events(smi_info);
926		}
927		goto restart;
928	}
929 out:
930	return si_sm_result;
931}
932
933static void check_start_timer_thread(struct smi_info *smi_info)
934{
935	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
936		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
937
938		if (smi_info->thread)
939			wake_up_process(smi_info->thread);
940
941		start_next_msg(smi_info);
942		smi_event_handler(smi_info, 0);
943	}
944}
945
946static void sender(void                *send_info,
947		   struct ipmi_smi_msg *msg)
948{
949	struct smi_info   *smi_info = send_info;
950	enum si_sm_result result;
951	unsigned long     flags;
952
953	debug_timestamp("Enqueue");
954
955	if (smi_info->run_to_completion) {
956		/*
957		 * If we are running to completion, start it and run
958		 * transactions until everything is clear.
959		 */
960		smi_info->waiting_msg = msg;
961
962		/*
963		 * Run to completion means we are single-threaded, no
964		 * need for locks.
965		 */
966
967		result = smi_event_handler(smi_info, 0);
968		while (result != SI_SM_IDLE) {
969			udelay(SI_SHORT_TIMEOUT_USEC);
970			result = smi_event_handler(smi_info,
971						   SI_SHORT_TIMEOUT_USEC);
972		}
973		return;
974	}
975
976	spin_lock_irqsave(&smi_info->si_lock, flags);
977	/*
978	 * The following two lines don't need to be under the lock for
979	 * the lock's sake, but they do need SMP memory barriers to
980	 * avoid getting things out of order.  We are already claiming
981	 * the lock, anyway, so just do it under the lock to avoid the
982	 * ordering problem.
983	 */
984	BUG_ON(smi_info->waiting_msg);
985	smi_info->waiting_msg = msg;
986	check_start_timer_thread(smi_info);
987	spin_unlock_irqrestore(&smi_info->si_lock, flags);
988}
989
990static void set_run_to_completion(void *send_info, bool i_run_to_completion)
991{
992	struct smi_info   *smi_info = send_info;
993	enum si_sm_result result;
994
995	smi_info->run_to_completion = i_run_to_completion;
996	if (i_run_to_completion) {
997		result = smi_event_handler(smi_info, 0);
998		while (result != SI_SM_IDLE) {
999			udelay(SI_SHORT_TIMEOUT_USEC);
1000			result = smi_event_handler(smi_info,
1001						   SI_SHORT_TIMEOUT_USEC);
1002		}
1003	}
1004}
1005
1006/*
1007 * Use -1 in the nsec value of the busy waiting timespec to tell that
1008 * we are spinning in kipmid looking for something and not delaying
1009 * between checks
1010 */
1011static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1012{
1013	ts->tv_nsec = -1;
1014}
1015static inline int ipmi_si_is_busy(struct timespec64 *ts)
1016{
1017	return ts->tv_nsec != -1;
1018}
1019
1020static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1021					const struct smi_info *smi_info,
1022					struct timespec64 *busy_until)
1023{
1024	unsigned int max_busy_us = 0;
1025
1026	if (smi_info->intf_num < num_max_busy_us)
1027		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1028	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1029		ipmi_si_set_not_busy(busy_until);
1030	else if (!ipmi_si_is_busy(busy_until)) {
1031		getnstimeofday64(busy_until);
1032		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1033	} else {
1034		struct timespec64 now;
1035
1036		getnstimeofday64(&now);
1037		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1038			ipmi_si_set_not_busy(busy_until);
1039			return 0;
1040		}
1041	}
1042	return 1;
1043}
1044
1045
1046/*
1047 * A busy-waiting loop for speeding up IPMI operation.
1048 *
1049 * Lousy hardware makes this hard.  This is only enabled for systems
1050 * that are not BT and do not have interrupts.  It starts spinning
1051 * when an operation is complete or until max_busy tells it to stop
1052 * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1053 * Documentation/IPMI.txt for details.
1054 */
1055static int ipmi_thread(void *data)
1056{
1057	struct smi_info *smi_info = data;
1058	unsigned long flags;
1059	enum si_sm_result smi_result;
1060	struct timespec64 busy_until;
1061
1062	ipmi_si_set_not_busy(&busy_until);
1063	set_user_nice(current, MAX_NICE);
1064	while (!kthread_should_stop()) {
1065		int busy_wait;
1066
1067		spin_lock_irqsave(&(smi_info->si_lock), flags);
1068		smi_result = smi_event_handler(smi_info, 0);
1069
1070		/*
1071		 * If the driver is doing something, there is a possible
1072		 * race with the timer.  If the timer handler see idle,
1073		 * and the thread here sees something else, the timer
1074		 * handler won't restart the timer even though it is
1075		 * required.  So start it here if necessary.
1076		 */
1077		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1078			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1079
1080		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1081		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1082						  &busy_until);
1083		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1084			; /* do nothing */
1085		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1086			schedule();
1087		else if (smi_result == SI_SM_IDLE) {
1088			if (atomic_read(&smi_info->need_watch)) {
1089				schedule_timeout_interruptible(100);
1090			} else {
1091				/* Wait to be woken up when we are needed. */
1092				__set_current_state(TASK_INTERRUPTIBLE);
1093				schedule();
1094			}
1095		} else
1096			schedule_timeout_interruptible(1);
1097	}
1098	return 0;
1099}
1100
1101
1102static void poll(void *send_info)
1103{
1104	struct smi_info *smi_info = send_info;
1105	unsigned long flags = 0;
1106	bool run_to_completion = smi_info->run_to_completion;
1107
1108	/*
1109	 * Make sure there is some delay in the poll loop so we can
1110	 * drive time forward and timeout things.
1111	 */
1112	udelay(10);
1113	if (!run_to_completion)
1114		spin_lock_irqsave(&smi_info->si_lock, flags);
1115	smi_event_handler(smi_info, 10);
1116	if (!run_to_completion)
1117		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1118}
1119
1120static void request_events(void *send_info)
1121{
1122	struct smi_info *smi_info = send_info;
1123
1124	if (!smi_info->has_event_buffer)
1125		return;
1126
1127	atomic_set(&smi_info->req_events, 1);
1128}
1129
1130static void set_need_watch(void *send_info, bool enable)
1131{
1132	struct smi_info *smi_info = send_info;
1133	unsigned long flags;
1134
1135	atomic_set(&smi_info->need_watch, enable);
1136	spin_lock_irqsave(&smi_info->si_lock, flags);
1137	check_start_timer_thread(smi_info);
1138	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1139}
1140
1141static int initialized;
1142
1143static void smi_timeout(unsigned long data)
1144{
1145	struct smi_info   *smi_info = (struct smi_info *) data;
1146	enum si_sm_result smi_result;
1147	unsigned long     flags;
1148	unsigned long     jiffies_now;
1149	long              time_diff;
1150	long		  timeout;
1151
1152	spin_lock_irqsave(&(smi_info->si_lock), flags);
1153	debug_timestamp("Timer");
1154
1155	jiffies_now = jiffies;
1156	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1157		     * SI_USEC_PER_JIFFY);
1158	smi_result = smi_event_handler(smi_info, time_diff);
1159
1160	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1161		/* Running with interrupts, only do long timeouts. */
1162		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1163		smi_inc_stat(smi_info, long_timeouts);
1164		goto do_mod_timer;
1165	}
1166
1167	/*
1168	 * If the state machine asks for a short delay, then shorten
1169	 * the timer timeout.
1170	 */
1171	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1172		smi_inc_stat(smi_info, short_timeouts);
1173		timeout = jiffies + 1;
1174	} else {
1175		smi_inc_stat(smi_info, long_timeouts);
1176		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177	}
1178
1179 do_mod_timer:
1180	if (smi_result != SI_SM_IDLE)
1181		smi_mod_timer(smi_info, timeout);
1182	else
1183		smi_info->timer_running = false;
1184	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1185}
1186
1187static irqreturn_t si_irq_handler(int irq, void *data)
1188{
1189	struct smi_info *smi_info = data;
1190	unsigned long   flags;
1191
1192	spin_lock_irqsave(&(smi_info->si_lock), flags);
1193
1194	smi_inc_stat(smi_info, interrupts);
1195
1196	debug_timestamp("Interrupt");
1197
1198	smi_event_handler(smi_info, 0);
1199	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1200	return IRQ_HANDLED;
1201}
1202
1203static irqreturn_t si_bt_irq_handler(int irq, void *data)
1204{
1205	struct smi_info *smi_info = data;
1206	/* We need to clear the IRQ flag for the BT interface. */
1207	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1208			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1209			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1210	return si_irq_handler(irq, data);
1211}
1212
1213static int smi_start_processing(void       *send_info,
1214				ipmi_smi_t intf)
1215{
1216	struct smi_info *new_smi = send_info;
1217	int             enable = 0;
1218
1219	new_smi->intf = intf;
1220
1221	/* Set up the timer that drives the interface. */
1222	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1223	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1224
1225	/* Try to claim any interrupts. */
1226	if (new_smi->irq_setup)
1227		new_smi->irq_setup(new_smi);
1228
1229	/*
1230	 * Check if the user forcefully enabled the daemon.
1231	 */
1232	if (new_smi->intf_num < num_force_kipmid)
1233		enable = force_kipmid[new_smi->intf_num];
1234	/*
1235	 * The BT interface is efficient enough to not need a thread,
1236	 * and there is no need for a thread if we have interrupts.
1237	 */
1238	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1239		enable = 1;
1240
1241	if (enable) {
1242		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1243					      "kipmi%d", new_smi->intf_num);
1244		if (IS_ERR(new_smi->thread)) {
1245			dev_notice(new_smi->dev, "Could not start"
1246				   " kernel thread due to error %ld, only using"
1247				   " timers to drive the interface\n",
1248				   PTR_ERR(new_smi->thread));
1249			new_smi->thread = NULL;
1250		}
1251	}
1252
1253	return 0;
1254}
1255
1256static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1257{
1258	struct smi_info *smi = send_info;
1259
1260	data->addr_src = smi->addr_source;
1261	data->dev = smi->dev;
1262	data->addr_info = smi->addr_info;
1263	get_device(smi->dev);
1264
1265	return 0;
1266}
1267
1268static void set_maintenance_mode(void *send_info, bool enable)
1269{
1270	struct smi_info   *smi_info = send_info;
1271
1272	if (!enable)
1273		atomic_set(&smi_info->req_events, 0);
1274}
1275
1276static struct ipmi_smi_handlers handlers = {
1277	.owner                  = THIS_MODULE,
1278	.start_processing       = smi_start_processing,
1279	.get_smi_info		= get_smi_info,
1280	.sender			= sender,
1281	.request_events		= request_events,
1282	.set_need_watch		= set_need_watch,
1283	.set_maintenance_mode   = set_maintenance_mode,
1284	.set_run_to_completion  = set_run_to_completion,
1285	.poll			= poll,
1286};
1287
1288/*
1289 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1290 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1291 */
1292
1293static LIST_HEAD(smi_infos);
1294static DEFINE_MUTEX(smi_infos_lock);
1295static int smi_num; /* Used to sequence the SMIs */
1296
1297#define DEFAULT_REGSPACING	1
1298#define DEFAULT_REGSIZE		1
1299
1300#ifdef CONFIG_ACPI
1301static bool          si_tryacpi = 1;
1302#endif
1303#ifdef CONFIG_DMI
1304static bool          si_trydmi = 1;
1305#endif
1306static bool          si_tryplatform = 1;
1307#ifdef CONFIG_PCI
1308static bool          si_trypci = 1;
1309#endif
1310static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1311static char          *si_type[SI_MAX_PARMS];
1312#define MAX_SI_TYPE_STR 30
1313static char          si_type_str[MAX_SI_TYPE_STR];
1314static unsigned long addrs[SI_MAX_PARMS];
1315static unsigned int num_addrs;
1316static unsigned int  ports[SI_MAX_PARMS];
1317static unsigned int num_ports;
1318static int           irqs[SI_MAX_PARMS];
1319static unsigned int num_irqs;
1320static int           regspacings[SI_MAX_PARMS];
1321static unsigned int num_regspacings;
1322static int           regsizes[SI_MAX_PARMS];
1323static unsigned int num_regsizes;
1324static int           regshifts[SI_MAX_PARMS];
1325static unsigned int num_regshifts;
1326static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1327static unsigned int num_slave_addrs;
1328
1329#define IPMI_IO_ADDR_SPACE  0
1330#define IPMI_MEM_ADDR_SPACE 1
1331static char *addr_space_to_str[] = { "i/o", "mem" };
1332
1333static int hotmod_handler(const char *val, struct kernel_param *kp);
1334
1335module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1336MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1337		 " Documentation/IPMI.txt in the kernel sources for the"
1338		 " gory details.");
1339
1340#ifdef CONFIG_ACPI
1341module_param_named(tryacpi, si_tryacpi, bool, 0);
1342MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343		 " default scan of the interfaces identified via ACPI");
1344#endif
1345#ifdef CONFIG_DMI
1346module_param_named(trydmi, si_trydmi, bool, 0);
1347MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1348		 " default scan of the interfaces identified via DMI");
1349#endif
1350module_param_named(tryplatform, si_tryplatform, bool, 0);
1351MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1352		 " default scan of the interfaces identified via platform"
1353		 " interfaces like openfirmware");
1354#ifdef CONFIG_PCI
1355module_param_named(trypci, si_trypci, bool, 0);
1356MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357		 " default scan of the interfaces identified via pci");
1358#endif
1359module_param_named(trydefaults, si_trydefaults, bool, 0);
1360MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1361		 " default scan of the KCS and SMIC interface at the standard"
1362		 " address");
1363module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1364MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1365		 " interface separated by commas.  The types are 'kcs',"
1366		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1367		 " the first interface to kcs and the second to bt");
1368module_param_array(addrs, ulong, &num_addrs, 0);
1369MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1370		 " addresses separated by commas.  Only use if an interface"
1371		 " is in memory.  Otherwise, set it to zero or leave"
1372		 " it blank.");
1373module_param_array(ports, uint, &num_ports, 0);
1374MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1375		 " addresses separated by commas.  Only use if an interface"
1376		 " is a port.  Otherwise, set it to zero or leave"
1377		 " it blank.");
1378module_param_array(irqs, int, &num_irqs, 0);
1379MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1380		 " addresses separated by commas.  Only use if an interface"
1381		 " has an interrupt.  Otherwise, set it to zero or leave"
1382		 " it blank.");
1383module_param_array(regspacings, int, &num_regspacings, 0);
1384MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1385		 " and each successive register used by the interface.  For"
1386		 " instance, if the start address is 0xca2 and the spacing"
1387		 " is 2, then the second address is at 0xca4.  Defaults"
1388		 " to 1.");
1389module_param_array(regsizes, int, &num_regsizes, 0);
1390MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1391		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1392		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1393		 " the 8-bit IPMI register has to be read from a larger"
1394		 " register.");
1395module_param_array(regshifts, int, &num_regshifts, 0);
1396MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1397		 " IPMI register, in bits.  For instance, if the data"
1398		 " is read from a 32-bit word and the IPMI data is in"
1399		 " bit 8-15, then the shift would be 8");
1400module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1401MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1402		 " the controller.  Normally this is 0x20, but can be"
1403		 " overridden by this parm.  This is an array indexed"
1404		 " by interface number.");
1405module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1406MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1407		 " disabled(0).  Normally the IPMI driver auto-detects"
1408		 " this, but the value may be overridden by this parm.");
1409module_param(unload_when_empty, bool, 0);
1410MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1411		 " specified or found, default is 1.  Setting to 0"
1412		 " is useful for hot add of devices using hotmod.");
1413module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1414MODULE_PARM_DESC(kipmid_max_busy_us,
1415		 "Max time (in microseconds) to busy-wait for IPMI data before"
1416		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1417		 " if kipmid is using up a lot of CPU time.");
1418
1419
1420static void std_irq_cleanup(struct smi_info *info)
1421{
1422	if (info->si_type == SI_BT)
1423		/* Disable the interrupt in the BT interface. */
1424		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1425	free_irq(info->irq, info);
1426}
1427
1428static int std_irq_setup(struct smi_info *info)
1429{
1430	int rv;
1431
1432	if (!info->irq)
1433		return 0;
1434
1435	if (info->si_type == SI_BT) {
1436		rv = request_irq(info->irq,
1437				 si_bt_irq_handler,
1438				 IRQF_SHARED,
1439				 DEVICE_NAME,
1440				 info);
1441		if (!rv)
1442			/* Enable the interrupt in the BT interface. */
1443			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1444					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1445	} else
1446		rv = request_irq(info->irq,
1447				 si_irq_handler,
1448				 IRQF_SHARED,
1449				 DEVICE_NAME,
1450				 info);
1451	if (rv) {
1452		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1453			 " running polled\n",
1454			 DEVICE_NAME, info->irq);
1455		info->irq = 0;
1456	} else {
1457		info->irq_cleanup = std_irq_cleanup;
1458		dev_info(info->dev, "Using irq %d\n", info->irq);
1459	}
1460
1461	return rv;
1462}
1463
1464static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1465{
1466	unsigned int addr = io->addr_data;
1467
1468	return inb(addr + (offset * io->regspacing));
1469}
1470
1471static void port_outb(struct si_sm_io *io, unsigned int offset,
1472		      unsigned char b)
1473{
1474	unsigned int addr = io->addr_data;
1475
1476	outb(b, addr + (offset * io->regspacing));
1477}
1478
1479static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1480{
1481	unsigned int addr = io->addr_data;
1482
1483	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1484}
1485
1486static void port_outw(struct si_sm_io *io, unsigned int offset,
1487		      unsigned char b)
1488{
1489	unsigned int addr = io->addr_data;
1490
1491	outw(b << io->regshift, addr + (offset * io->regspacing));
1492}
1493
1494static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1495{
1496	unsigned int addr = io->addr_data;
1497
1498	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499}
1500
1501static void port_outl(struct si_sm_io *io, unsigned int offset,
1502		      unsigned char b)
1503{
1504	unsigned int addr = io->addr_data;
1505
1506	outl(b << io->regshift, addr+(offset * io->regspacing));
1507}
1508
1509static void port_cleanup(struct smi_info *info)
1510{
1511	unsigned int addr = info->io.addr_data;
1512	int          idx;
1513
1514	if (addr) {
1515		for (idx = 0; idx < info->io_size; idx++)
1516			release_region(addr + idx * info->io.regspacing,
1517				       info->io.regsize);
1518	}
1519}
1520
1521static int port_setup(struct smi_info *info)
1522{
1523	unsigned int addr = info->io.addr_data;
1524	int          idx;
1525
1526	if (!addr)
1527		return -ENODEV;
1528
1529	info->io_cleanup = port_cleanup;
1530
1531	/*
1532	 * Figure out the actual inb/inw/inl/etc routine to use based
1533	 * upon the register size.
1534	 */
1535	switch (info->io.regsize) {
1536	case 1:
1537		info->io.inputb = port_inb;
1538		info->io.outputb = port_outb;
1539		break;
1540	case 2:
1541		info->io.inputb = port_inw;
1542		info->io.outputb = port_outw;
1543		break;
1544	case 4:
1545		info->io.inputb = port_inl;
1546		info->io.outputb = port_outl;
1547		break;
1548	default:
1549		dev_warn(info->dev, "Invalid register size: %d\n",
1550			 info->io.regsize);
1551		return -EINVAL;
1552	}
1553
1554	/*
1555	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1556	 * tables.  This causes problems when trying to register the
1557	 * entire I/O region.  Therefore we must register each I/O
1558	 * port separately.
1559	 */
1560	for (idx = 0; idx < info->io_size; idx++) {
1561		if (request_region(addr + idx * info->io.regspacing,
1562				   info->io.regsize, DEVICE_NAME) == NULL) {
1563			/* Undo allocations */
1564			while (idx--) {
1565				release_region(addr + idx * info->io.regspacing,
1566					       info->io.regsize);
1567			}
1568			return -EIO;
1569		}
1570	}
1571	return 0;
1572}
1573
1574static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1575{
1576	return readb((io->addr)+(offset * io->regspacing));
1577}
1578
1579static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1580		     unsigned char b)
1581{
1582	writeb(b, (io->addr)+(offset * io->regspacing));
1583}
1584
1585static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1586{
1587	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1588		& 0xff;
1589}
1590
1591static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1592		     unsigned char b)
1593{
1594	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1595}
1596
1597static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1598{
1599	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600		& 0xff;
1601}
1602
1603static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1604		     unsigned char b)
1605{
1606	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1607}
1608
1609#ifdef readq
1610static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1611{
1612	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613		& 0xff;
1614}
1615
1616static void mem_outq(struct si_sm_io *io, unsigned int offset,
1617		     unsigned char b)
1618{
1619	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620}
1621#endif
1622
1623static void mem_cleanup(struct smi_info *info)
1624{
1625	unsigned long addr = info->io.addr_data;
1626	int           mapsize;
1627
1628	if (info->io.addr) {
1629		iounmap(info->io.addr);
1630
1631		mapsize = ((info->io_size * info->io.regspacing)
1632			   - (info->io.regspacing - info->io.regsize));
1633
1634		release_mem_region(addr, mapsize);
1635	}
1636}
1637
1638static int mem_setup(struct smi_info *info)
1639{
1640	unsigned long addr = info->io.addr_data;
1641	int           mapsize;
1642
1643	if (!addr)
1644		return -ENODEV;
1645
1646	info->io_cleanup = mem_cleanup;
1647
1648	/*
1649	 * Figure out the actual readb/readw/readl/etc routine to use based
1650	 * upon the register size.
1651	 */
1652	switch (info->io.regsize) {
1653	case 1:
1654		info->io.inputb = intf_mem_inb;
1655		info->io.outputb = intf_mem_outb;
1656		break;
1657	case 2:
1658		info->io.inputb = intf_mem_inw;
1659		info->io.outputb = intf_mem_outw;
1660		break;
1661	case 4:
1662		info->io.inputb = intf_mem_inl;
1663		info->io.outputb = intf_mem_outl;
1664		break;
1665#ifdef readq
1666	case 8:
1667		info->io.inputb = mem_inq;
1668		info->io.outputb = mem_outq;
1669		break;
1670#endif
1671	default:
1672		dev_warn(info->dev, "Invalid register size: %d\n",
1673			 info->io.regsize);
1674		return -EINVAL;
1675	}
1676
1677	/*
1678	 * Calculate the total amount of memory to claim.  This is an
1679	 * unusual looking calculation, but it avoids claiming any
1680	 * more memory than it has to.  It will claim everything
1681	 * between the first address to the end of the last full
1682	 * register.
1683	 */
1684	mapsize = ((info->io_size * info->io.regspacing)
1685		   - (info->io.regspacing - info->io.regsize));
1686
1687	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1688		return -EIO;
1689
1690	info->io.addr = ioremap(addr, mapsize);
1691	if (info->io.addr == NULL) {
1692		release_mem_region(addr, mapsize);
1693		return -EIO;
1694	}
1695	return 0;
1696}
1697
1698/*
1699 * Parms come in as <op1>[:op2[:op3...]].  ops are:
1700 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1701 * Options are:
1702 *   rsp=<regspacing>
1703 *   rsi=<regsize>
1704 *   rsh=<regshift>
1705 *   irq=<irq>
1706 *   ipmb=<ipmb addr>
1707 */
1708enum hotmod_op { HM_ADD, HM_REMOVE };
1709struct hotmod_vals {
1710	char *name;
1711	int  val;
1712};
1713static struct hotmod_vals hotmod_ops[] = {
1714	{ "add",	HM_ADD },
1715	{ "remove",	HM_REMOVE },
1716	{ NULL }
1717};
1718static struct hotmod_vals hotmod_si[] = {
1719	{ "kcs",	SI_KCS },
1720	{ "smic",	SI_SMIC },
1721	{ "bt",		SI_BT },
1722	{ NULL }
1723};
1724static struct hotmod_vals hotmod_as[] = {
1725	{ "mem",	IPMI_MEM_ADDR_SPACE },
1726	{ "i/o",	IPMI_IO_ADDR_SPACE },
1727	{ NULL }
1728};
1729
1730static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1731{
1732	char *s;
1733	int  i;
1734
1735	s = strchr(*curr, ',');
1736	if (!s) {
1737		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1738		return -EINVAL;
1739	}
1740	*s = '\0';
1741	s++;
1742	for (i = 0; v[i].name; i++) {
1743		if (strcmp(*curr, v[i].name) == 0) {
1744			*val = v[i].val;
1745			*curr = s;
1746			return 0;
1747		}
1748	}
1749
1750	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1751	return -EINVAL;
1752}
1753
1754static int check_hotmod_int_op(const char *curr, const char *option,
1755			       const char *name, int *val)
1756{
1757	char *n;
1758
1759	if (strcmp(curr, name) == 0) {
1760		if (!option) {
1761			printk(KERN_WARNING PFX
1762			       "No option given for '%s'\n",
1763			       curr);
1764			return -EINVAL;
1765		}
1766		*val = simple_strtoul(option, &n, 0);
1767		if ((*n != '\0') || (*option == '\0')) {
1768			printk(KERN_WARNING PFX
1769			       "Bad option given for '%s'\n",
1770			       curr);
1771			return -EINVAL;
1772		}
1773		return 1;
1774	}
1775	return 0;
1776}
1777
1778static struct smi_info *smi_info_alloc(void)
1779{
1780	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1781
1782	if (info)
1783		spin_lock_init(&info->si_lock);
1784	return info;
1785}
1786
1787static int hotmod_handler(const char *val, struct kernel_param *kp)
1788{
1789	char *str = kstrdup(val, GFP_KERNEL);
1790	int  rv;
1791	char *next, *curr, *s, *n, *o;
1792	enum hotmod_op op;
1793	enum si_type si_type;
1794	int  addr_space;
1795	unsigned long addr;
1796	int regspacing;
1797	int regsize;
1798	int regshift;
1799	int irq;
1800	int ipmb;
1801	int ival;
1802	int len;
1803	struct smi_info *info;
1804
1805	if (!str)
1806		return -ENOMEM;
1807
1808	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1809	len = strlen(str);
1810	ival = len - 1;
1811	while ((ival >= 0) && isspace(str[ival])) {
1812		str[ival] = '\0';
1813		ival--;
1814	}
1815
1816	for (curr = str; curr; curr = next) {
1817		regspacing = 1;
1818		regsize = 1;
1819		regshift = 0;
1820		irq = 0;
1821		ipmb = 0; /* Choose the default if not specified */
1822
1823		next = strchr(curr, ':');
1824		if (next) {
1825			*next = '\0';
1826			next++;
1827		}
1828
1829		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1830		if (rv)
1831			break;
1832		op = ival;
1833
1834		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1835		if (rv)
1836			break;
1837		si_type = ival;
1838
1839		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1840		if (rv)
1841			break;
1842
1843		s = strchr(curr, ',');
1844		if (s) {
1845			*s = '\0';
1846			s++;
1847		}
1848		addr = simple_strtoul(curr, &n, 0);
1849		if ((*n != '\0') || (*curr == '\0')) {
1850			printk(KERN_WARNING PFX "Invalid hotmod address"
1851			       " '%s'\n", curr);
1852			break;
1853		}
1854
1855		while (s) {
1856			curr = s;
1857			s = strchr(curr, ',');
1858			if (s) {
1859				*s = '\0';
1860				s++;
1861			}
1862			o = strchr(curr, '=');
1863			if (o) {
1864				*o = '\0';
1865				o++;
1866			}
1867			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1868			if (rv < 0)
1869				goto out;
1870			else if (rv)
1871				continue;
1872			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1873			if (rv < 0)
1874				goto out;
1875			else if (rv)
1876				continue;
1877			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1878			if (rv < 0)
1879				goto out;
1880			else if (rv)
1881				continue;
1882			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1883			if (rv < 0)
1884				goto out;
1885			else if (rv)
1886				continue;
1887			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1888			if (rv < 0)
1889				goto out;
1890			else if (rv)
1891				continue;
1892
1893			rv = -EINVAL;
1894			printk(KERN_WARNING PFX
1895			       "Invalid hotmod option '%s'\n",
1896			       curr);
1897			goto out;
1898		}
1899
1900		if (op == HM_ADD) {
1901			info = smi_info_alloc();
1902			if (!info) {
1903				rv = -ENOMEM;
1904				goto out;
1905			}
1906
1907			info->addr_source = SI_HOTMOD;
1908			info->si_type = si_type;
1909			info->io.addr_data = addr;
1910			info->io.addr_type = addr_space;
1911			if (addr_space == IPMI_MEM_ADDR_SPACE)
1912				info->io_setup = mem_setup;
1913			else
1914				info->io_setup = port_setup;
1915
1916			info->io.addr = NULL;
1917			info->io.regspacing = regspacing;
1918			if (!info->io.regspacing)
1919				info->io.regspacing = DEFAULT_REGSPACING;
1920			info->io.regsize = regsize;
1921			if (!info->io.regsize)
1922				info->io.regsize = DEFAULT_REGSPACING;
1923			info->io.regshift = regshift;
1924			info->irq = irq;
1925			if (info->irq)
1926				info->irq_setup = std_irq_setup;
1927			info->slave_addr = ipmb;
1928
1929			rv = add_smi(info);
1930			if (rv) {
1931				kfree(info);
1932				goto out;
1933			}
1934			rv = try_smi_init(info);
1935			if (rv) {
1936				cleanup_one_si(info);
1937				goto out;
1938			}
1939		} else {
1940			/* remove */
1941			struct smi_info *e, *tmp_e;
1942
1943			mutex_lock(&smi_infos_lock);
1944			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1945				if (e->io.addr_type != addr_space)
1946					continue;
1947				if (e->si_type != si_type)
1948					continue;
1949				if (e->io.addr_data == addr)
1950					cleanup_one_si(e);
1951			}
1952			mutex_unlock(&smi_infos_lock);
1953		}
1954	}
1955	rv = len;
1956 out:
1957	kfree(str);
1958	return rv;
1959}
1960
1961static int hardcode_find_bmc(void)
1962{
1963	int ret = -ENODEV;
1964	int             i;
1965	struct smi_info *info;
1966
1967	for (i = 0; i < SI_MAX_PARMS; i++) {
1968		if (!ports[i] && !addrs[i])
1969			continue;
1970
1971		info = smi_info_alloc();
1972		if (!info)
1973			return -ENOMEM;
1974
1975		info->addr_source = SI_HARDCODED;
1976		printk(KERN_INFO PFX "probing via hardcoded address\n");
1977
1978		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1979			info->si_type = SI_KCS;
1980		} else if (strcmp(si_type[i], "smic") == 0) {
1981			info->si_type = SI_SMIC;
1982		} else if (strcmp(si_type[i], "bt") == 0) {
1983			info->si_type = SI_BT;
1984		} else {
1985			printk(KERN_WARNING PFX "Interface type specified "
1986			       "for interface %d, was invalid: %s\n",
1987			       i, si_type[i]);
1988			kfree(info);
1989			continue;
1990		}
1991
1992		if (ports[i]) {
1993			/* An I/O port */
1994			info->io_setup = port_setup;
1995			info->io.addr_data = ports[i];
1996			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1997		} else if (addrs[i]) {
1998			/* A memory port */
1999			info->io_setup = mem_setup;
2000			info->io.addr_data = addrs[i];
2001			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2002		} else {
2003			printk(KERN_WARNING PFX "Interface type specified "
2004			       "for interface %d, but port and address were "
2005			       "not set or set to zero.\n", i);
2006			kfree(info);
2007			continue;
2008		}
2009
2010		info->io.addr = NULL;
2011		info->io.regspacing = regspacings[i];
2012		if (!info->io.regspacing)
2013			info->io.regspacing = DEFAULT_REGSPACING;
2014		info->io.regsize = regsizes[i];
2015		if (!info->io.regsize)
2016			info->io.regsize = DEFAULT_REGSPACING;
2017		info->io.regshift = regshifts[i];
2018		info->irq = irqs[i];
2019		if (info->irq)
2020			info->irq_setup = std_irq_setup;
2021		info->slave_addr = slave_addrs[i];
2022
2023		if (!add_smi(info)) {
2024			if (try_smi_init(info))
2025				cleanup_one_si(info);
2026			ret = 0;
2027		} else {
2028			kfree(info);
2029		}
2030	}
2031	return ret;
2032}
2033
2034#ifdef CONFIG_ACPI
2035
2036#include <linux/acpi.h>
2037
2038/*
2039 * Once we get an ACPI failure, we don't try any more, because we go
2040 * through the tables sequentially.  Once we don't find a table, there
2041 * are no more.
2042 */
2043static int acpi_failure;
2044
2045/* For GPE-type interrupts. */
2046static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2047	u32 gpe_number, void *context)
2048{
2049	struct smi_info *smi_info = context;
2050	unsigned long   flags;
2051
2052	spin_lock_irqsave(&(smi_info->si_lock), flags);
2053
2054	smi_inc_stat(smi_info, interrupts);
2055
2056	debug_timestamp("ACPI_GPE");
2057
2058	smi_event_handler(smi_info, 0);
2059	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2060
2061	return ACPI_INTERRUPT_HANDLED;
2062}
2063
2064static void acpi_gpe_irq_cleanup(struct smi_info *info)
2065{
2066	if (!info->irq)
2067		return;
2068
2069	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2070}
2071
2072static int acpi_gpe_irq_setup(struct smi_info *info)
2073{
2074	acpi_status status;
2075
2076	if (!info->irq)
2077		return 0;
2078
2079	status = acpi_install_gpe_handler(NULL,
2080					  info->irq,
2081					  ACPI_GPE_LEVEL_TRIGGERED,
2082					  &ipmi_acpi_gpe,
2083					  info);
2084	if (status != AE_OK) {
2085		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2086			 " running polled\n", DEVICE_NAME, info->irq);
2087		info->irq = 0;
2088		return -EINVAL;
2089	} else {
2090		info->irq_cleanup = acpi_gpe_irq_cleanup;
2091		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2092		return 0;
2093	}
2094}
2095
2096/*
2097 * Defined at
2098 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2099 */
2100struct SPMITable {
2101	s8	Signature[4];
2102	u32	Length;
2103	u8	Revision;
2104	u8	Checksum;
2105	s8	OEMID[6];
2106	s8	OEMTableID[8];
2107	s8	OEMRevision[4];
2108	s8	CreatorID[4];
2109	s8	CreatorRevision[4];
2110	u8	InterfaceType;
2111	u8	IPMIlegacy;
2112	s16	SpecificationRevision;
2113
2114	/*
2115	 * Bit 0 - SCI interrupt supported
2116	 * Bit 1 - I/O APIC/SAPIC
2117	 */
2118	u8	InterruptType;
2119
2120	/*
2121	 * If bit 0 of InterruptType is set, then this is the SCI
2122	 * interrupt in the GPEx_STS register.
2123	 */
2124	u8	GPE;
2125
2126	s16	Reserved;
2127
2128	/*
2129	 * If bit 1 of InterruptType is set, then this is the I/O
2130	 * APIC/SAPIC interrupt.
2131	 */
2132	u32	GlobalSystemInterrupt;
2133
2134	/* The actual register address. */
2135	struct acpi_generic_address addr;
2136
2137	u8	UID[4];
2138
2139	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2140};
2141
2142static int try_init_spmi(struct SPMITable *spmi)
2143{
2144	struct smi_info  *info;
2145	int rv;
2146
2147	if (spmi->IPMIlegacy != 1) {
2148		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2149		return -ENODEV;
2150	}
2151
2152	info = smi_info_alloc();
2153	if (!info) {
2154		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2155		return -ENOMEM;
2156	}
2157
2158	info->addr_source = SI_SPMI;
2159	printk(KERN_INFO PFX "probing via SPMI\n");
2160
2161	/* Figure out the interface type. */
2162	switch (spmi->InterfaceType) {
2163	case 1:	/* KCS */
2164		info->si_type = SI_KCS;
2165		break;
2166	case 2:	/* SMIC */
2167		info->si_type = SI_SMIC;
2168		break;
2169	case 3:	/* BT */
2170		info->si_type = SI_BT;
2171		break;
2172	case 4: /* SSIF, just ignore */
2173		kfree(info);
2174		return -EIO;
2175	default:
2176		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2177		       spmi->InterfaceType);
2178		kfree(info);
2179		return -EIO;
2180	}
2181
2182	if (spmi->InterruptType & 1) {
2183		/* We've got a GPE interrupt. */
2184		info->irq = spmi->GPE;
2185		info->irq_setup = acpi_gpe_irq_setup;
2186	} else if (spmi->InterruptType & 2) {
2187		/* We've got an APIC/SAPIC interrupt. */
2188		info->irq = spmi->GlobalSystemInterrupt;
2189		info->irq_setup = std_irq_setup;
2190	} else {
2191		/* Use the default interrupt setting. */
2192		info->irq = 0;
2193		info->irq_setup = NULL;
2194	}
2195
2196	if (spmi->addr.bit_width) {
2197		/* A (hopefully) properly formed register bit width. */
2198		info->io.regspacing = spmi->addr.bit_width / 8;
2199	} else {
2200		info->io.regspacing = DEFAULT_REGSPACING;
2201	}
2202	info->io.regsize = info->io.regspacing;
2203	info->io.regshift = spmi->addr.bit_offset;
2204
2205	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2206		info->io_setup = mem_setup;
2207		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2208	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2209		info->io_setup = port_setup;
2210		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2211	} else {
2212		kfree(info);
2213		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2214		return -EIO;
2215	}
2216	info->io.addr_data = spmi->addr.address;
2217
2218	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2219		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2220		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2221		 info->irq);
2222
2223	rv = add_smi(info);
2224	if (rv)
2225		kfree(info);
2226
2227	return rv;
2228}
2229
2230static void spmi_find_bmc(void)
2231{
2232	acpi_status      status;
2233	struct SPMITable *spmi;
2234	int              i;
2235
2236	if (acpi_disabled)
2237		return;
2238
2239	if (acpi_failure)
2240		return;
2241
2242	for (i = 0; ; i++) {
2243		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2244					(struct acpi_table_header **)&spmi);
2245		if (status != AE_OK)
2246			return;
2247
2248		try_init_spmi(spmi);
2249	}
2250}
2251
2252static int ipmi_pnp_probe(struct pnp_dev *dev,
2253				    const struct pnp_device_id *dev_id)
2254{
2255	struct acpi_device *acpi_dev;
2256	struct smi_info *info;
2257	struct resource *res, *res_second;
2258	acpi_handle handle;
2259	acpi_status status;
2260	unsigned long long tmp;
2261	int rv = -EINVAL;
2262
2263	acpi_dev = pnp_acpi_device(dev);
2264	if (!acpi_dev)
2265		return -ENODEV;
2266
2267	info = smi_info_alloc();
2268	if (!info)
2269		return -ENOMEM;
2270
2271	info->addr_source = SI_ACPI;
2272	printk(KERN_INFO PFX "probing via ACPI\n");
2273
2274	handle = acpi_dev->handle;
2275	info->addr_info.acpi_info.acpi_handle = handle;
2276
2277	/* _IFT tells us the interface type: KCS, BT, etc */
2278	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2279	if (ACPI_FAILURE(status)) {
2280		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2281		goto err_free;
2282	}
2283
2284	switch (tmp) {
2285	case 1:
2286		info->si_type = SI_KCS;
2287		break;
2288	case 2:
2289		info->si_type = SI_SMIC;
2290		break;
2291	case 3:
2292		info->si_type = SI_BT;
2293		break;
2294	case 4: /* SSIF, just ignore */
2295		rv = -ENODEV;
2296		goto err_free;
2297	default:
2298		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2299		goto err_free;
2300	}
2301
2302	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2303	if (res) {
2304		info->io_setup = port_setup;
2305		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2306	} else {
2307		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2308		if (res) {
2309			info->io_setup = mem_setup;
2310			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2311		}
2312	}
2313	if (!res) {
2314		dev_err(&dev->dev, "no I/O or memory address\n");
2315		goto err_free;
2316	}
2317	info->io.addr_data = res->start;
2318
2319	info->io.regspacing = DEFAULT_REGSPACING;
2320	res_second = pnp_get_resource(dev,
2321			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2322					IORESOURCE_IO : IORESOURCE_MEM,
2323			       1);
2324	if (res_second) {
2325		if (res_second->start > info->io.addr_data)
2326			info->io.regspacing = res_second->start - info->io.addr_data;
2327	}
2328	info->io.regsize = DEFAULT_REGSPACING;
2329	info->io.regshift = 0;
2330
2331	/* If _GPE exists, use it; otherwise use standard interrupts */
2332	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2333	if (ACPI_SUCCESS(status)) {
2334		info->irq = tmp;
2335		info->irq_setup = acpi_gpe_irq_setup;
2336	} else if (pnp_irq_valid(dev, 0)) {
2337		info->irq = pnp_irq(dev, 0);
2338		info->irq_setup = std_irq_setup;
2339	}
2340
2341	info->dev = &dev->dev;
2342	pnp_set_drvdata(dev, info);
2343
2344	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2345		 res, info->io.regsize, info->io.regspacing,
2346		 info->irq);
2347
2348	rv = add_smi(info);
2349	if (rv)
2350		kfree(info);
2351
2352	return rv;
2353
2354err_free:
2355	kfree(info);
2356	return rv;
2357}
2358
2359static void ipmi_pnp_remove(struct pnp_dev *dev)
2360{
2361	struct smi_info *info = pnp_get_drvdata(dev);
2362
2363	cleanup_one_si(info);
2364}
2365
2366static const struct pnp_device_id pnp_dev_table[] = {
2367	{"IPI0001", 0},
2368	{"", 0},
2369};
2370
2371static struct pnp_driver ipmi_pnp_driver = {
2372	.name		= DEVICE_NAME,
2373	.probe		= ipmi_pnp_probe,
2374	.remove		= ipmi_pnp_remove,
2375	.id_table	= pnp_dev_table,
2376};
2377
2378MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2379#endif
2380
2381#ifdef CONFIG_DMI
2382struct dmi_ipmi_data {
2383	u8   		type;
2384	u8   		addr_space;
2385	unsigned long	base_addr;
2386	u8   		irq;
2387	u8              offset;
2388	u8              slave_addr;
2389};
2390
2391static int decode_dmi(const struct dmi_header *dm,
2392				struct dmi_ipmi_data *dmi)
2393{
2394	const u8	*data = (const u8 *)dm;
2395	unsigned long  	base_addr;
2396	u8		reg_spacing;
2397	u8              len = dm->length;
2398
2399	dmi->type = data[4];
2400
2401	memcpy(&base_addr, data+8, sizeof(unsigned long));
2402	if (len >= 0x11) {
2403		if (base_addr & 1) {
2404			/* I/O */
2405			base_addr &= 0xFFFE;
2406			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2407		} else
2408			/* Memory */
2409			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2410
2411		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2412		   is odd. */
2413		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2414
2415		dmi->irq = data[0x11];
2416
2417		/* The top two bits of byte 0x10 hold the register spacing. */
2418		reg_spacing = (data[0x10] & 0xC0) >> 6;
2419		switch (reg_spacing) {
2420		case 0x00: /* Byte boundaries */
2421		    dmi->offset = 1;
2422		    break;
2423		case 0x01: /* 32-bit boundaries */
2424		    dmi->offset = 4;
2425		    break;
2426		case 0x02: /* 16-byte boundaries */
2427		    dmi->offset = 16;
2428		    break;
2429		default:
2430		    /* Some other interface, just ignore it. */
2431		    return -EIO;
2432		}
2433	} else {
2434		/* Old DMI spec. */
2435		/*
2436		 * Note that technically, the lower bit of the base
2437		 * address should be 1 if the address is I/O and 0 if
2438		 * the address is in memory.  So many systems get that
2439		 * wrong (and all that I have seen are I/O) so we just
2440		 * ignore that bit and assume I/O.  Systems that use
2441		 * memory should use the newer spec, anyway.
2442		 */
2443		dmi->base_addr = base_addr & 0xfffe;
2444		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2445		dmi->offset = 1;
2446	}
2447
2448	dmi->slave_addr = data[6];
2449
2450	return 0;
2451}
2452
2453static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2454{
2455	struct smi_info *info;
2456
2457	info = smi_info_alloc();
2458	if (!info) {
2459		printk(KERN_ERR PFX "Could not allocate SI data\n");
2460		return;
2461	}
2462
2463	info->addr_source = SI_SMBIOS;
2464	printk(KERN_INFO PFX "probing via SMBIOS\n");
2465
2466	switch (ipmi_data->type) {
2467	case 0x01: /* KCS */
2468		info->si_type = SI_KCS;
2469		break;
2470	case 0x02: /* SMIC */
2471		info->si_type = SI_SMIC;
2472		break;
2473	case 0x03: /* BT */
2474		info->si_type = SI_BT;
2475		break;
2476	default:
2477		kfree(info);
2478		return;
2479	}
2480
2481	switch (ipmi_data->addr_space) {
2482	case IPMI_MEM_ADDR_SPACE:
2483		info->io_setup = mem_setup;
2484		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2485		break;
2486
2487	case IPMI_IO_ADDR_SPACE:
2488		info->io_setup = port_setup;
2489		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2490		break;
2491
2492	default:
2493		kfree(info);
2494		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2495		       ipmi_data->addr_space);
2496		return;
2497	}
2498	info->io.addr_data = ipmi_data->base_addr;
2499
2500	info->io.regspacing = ipmi_data->offset;
2501	if (!info->io.regspacing)
2502		info->io.regspacing = DEFAULT_REGSPACING;
2503	info->io.regsize = DEFAULT_REGSPACING;
2504	info->io.regshift = 0;
2505
2506	info->slave_addr = ipmi_data->slave_addr;
2507
2508	info->irq = ipmi_data->irq;
2509	if (info->irq)
2510		info->irq_setup = std_irq_setup;
2511
2512	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2513		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2514		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2515		 info->irq);
2516
2517	if (add_smi(info))
2518		kfree(info);
2519}
2520
2521static void dmi_find_bmc(void)
2522{
2523	const struct dmi_device *dev = NULL;
2524	struct dmi_ipmi_data data;
2525	int                  rv;
2526
2527	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2528		memset(&data, 0, sizeof(data));
2529		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2530				&data);
2531		if (!rv)
2532			try_init_dmi(&data);
2533	}
2534}
2535#endif /* CONFIG_DMI */
2536
2537#ifdef CONFIG_PCI
2538
2539#define PCI_ERMC_CLASSCODE		0x0C0700
2540#define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2541#define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2542#define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2543#define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2544#define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2545
2546#define PCI_HP_VENDOR_ID    0x103C
2547#define PCI_MMC_DEVICE_ID   0x121A
2548#define PCI_MMC_ADDR_CW     0x10
2549
2550static void ipmi_pci_cleanup(struct smi_info *info)
2551{
2552	struct pci_dev *pdev = info->addr_source_data;
2553
2554	pci_disable_device(pdev);
2555}
2556
2557static int ipmi_pci_probe_regspacing(struct smi_info *info)
2558{
2559	if (info->si_type == SI_KCS) {
2560		unsigned char	status;
2561		int		regspacing;
2562
2563		info->io.regsize = DEFAULT_REGSIZE;
2564		info->io.regshift = 0;
2565		info->io_size = 2;
2566		info->handlers = &kcs_smi_handlers;
2567
2568		/* detect 1, 4, 16byte spacing */
2569		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2570			info->io.regspacing = regspacing;
2571			if (info->io_setup(info)) {
2572				dev_err(info->dev,
2573					"Could not setup I/O space\n");
2574				return DEFAULT_REGSPACING;
2575			}
2576			/* write invalid cmd */
2577			info->io.outputb(&info->io, 1, 0x10);
2578			/* read status back */
2579			status = info->io.inputb(&info->io, 1);
2580			info->io_cleanup(info);
2581			if (status)
2582				return regspacing;
2583			regspacing *= 4;
2584		}
2585	}
2586	return DEFAULT_REGSPACING;
2587}
2588
2589static int ipmi_pci_probe(struct pci_dev *pdev,
2590				    const struct pci_device_id *ent)
2591{
2592	int rv;
2593	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2594	struct smi_info *info;
2595
2596	info = smi_info_alloc();
2597	if (!info)
2598		return -ENOMEM;
2599
2600	info->addr_source = SI_PCI;
2601	dev_info(&pdev->dev, "probing via PCI");
2602
2603	switch (class_type) {
2604	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2605		info->si_type = SI_SMIC;
2606		break;
2607
2608	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2609		info->si_type = SI_KCS;
2610		break;
2611
2612	case PCI_ERMC_CLASSCODE_TYPE_BT:
2613		info->si_type = SI_BT;
2614		break;
2615
2616	default:
2617		kfree(info);
2618		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2619		return -ENOMEM;
2620	}
2621
2622	rv = pci_enable_device(pdev);
2623	if (rv) {
2624		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2625		kfree(info);
2626		return rv;
2627	}
2628
2629	info->addr_source_cleanup = ipmi_pci_cleanup;
2630	info->addr_source_data = pdev;
2631
2632	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2633		info->io_setup = port_setup;
2634		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2635	} else {
2636		info->io_setup = mem_setup;
2637		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2638	}
2639	info->io.addr_data = pci_resource_start(pdev, 0);
2640
2641	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2642	info->io.regsize = DEFAULT_REGSIZE;
2643	info->io.regshift = 0;
2644
2645	info->irq = pdev->irq;
2646	if (info->irq)
2647		info->irq_setup = std_irq_setup;
2648
2649	info->dev = &pdev->dev;
2650	pci_set_drvdata(pdev, info);
2651
2652	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2653		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2654		info->irq);
2655
2656	rv = add_smi(info);
2657	if (rv) {
2658		kfree(info);
2659		pci_disable_device(pdev);
2660	}
2661
2662	return rv;
2663}
2664
2665static void ipmi_pci_remove(struct pci_dev *pdev)
2666{
2667	struct smi_info *info = pci_get_drvdata(pdev);
2668	cleanup_one_si(info);
2669	pci_disable_device(pdev);
2670}
2671
2672static struct pci_device_id ipmi_pci_devices[] = {
2673	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2674	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2675	{ 0, }
2676};
2677MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2678
2679static struct pci_driver ipmi_pci_driver = {
2680	.name =         DEVICE_NAME,
2681	.id_table =     ipmi_pci_devices,
2682	.probe =        ipmi_pci_probe,
2683	.remove =       ipmi_pci_remove,
2684};
2685#endif /* CONFIG_PCI */
2686
2687static const struct of_device_id ipmi_match[];
2688static int ipmi_probe(struct platform_device *dev)
2689{
2690#ifdef CONFIG_OF
2691	const struct of_device_id *match;
2692	struct smi_info *info;
2693	struct resource resource;
2694	const __be32 *regsize, *regspacing, *regshift;
2695	struct device_node *np = dev->dev.of_node;
2696	int ret;
2697	int proplen;
2698
2699	dev_info(&dev->dev, "probing via device tree\n");
2700
2701	match = of_match_device(ipmi_match, &dev->dev);
2702	if (!match)
2703		return -EINVAL;
2704
2705	if (!of_device_is_available(np))
2706		return -EINVAL;
2707
2708	ret = of_address_to_resource(np, 0, &resource);
2709	if (ret) {
2710		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2711		return ret;
2712	}
2713
2714	regsize = of_get_property(np, "reg-size", &proplen);
2715	if (regsize && proplen != 4) {
2716		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2717		return -EINVAL;
2718	}
2719
2720	regspacing = of_get_property(np, "reg-spacing", &proplen);
2721	if (regspacing && proplen != 4) {
2722		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2723		return -EINVAL;
2724	}
2725
2726	regshift = of_get_property(np, "reg-shift", &proplen);
2727	if (regshift && proplen != 4) {
2728		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2729		return -EINVAL;
2730	}
2731
2732	info = smi_info_alloc();
2733
2734	if (!info) {
2735		dev_err(&dev->dev,
2736			"could not allocate memory for OF probe\n");
2737		return -ENOMEM;
2738	}
2739
2740	info->si_type		= (enum si_type) match->data;
2741	info->addr_source	= SI_DEVICETREE;
2742	info->irq_setup		= std_irq_setup;
2743
2744	if (resource.flags & IORESOURCE_IO) {
2745		info->io_setup		= port_setup;
2746		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2747	} else {
2748		info->io_setup		= mem_setup;
2749		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2750	}
2751
2752	info->io.addr_data	= resource.start;
2753
2754	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2755	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2756	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2757
2758	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2759	info->dev		= &dev->dev;
2760
2761	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2762		info->io.addr_data, info->io.regsize, info->io.regspacing,
2763		info->irq);
2764
2765	dev_set_drvdata(&dev->dev, info);
2766
2767	ret = add_smi(info);
2768	if (ret) {
2769		kfree(info);
2770		return ret;
2771	}
2772#endif
2773	return 0;
2774}
2775
2776static int ipmi_remove(struct platform_device *dev)
2777{
2778#ifdef CONFIG_OF
2779	cleanup_one_si(dev_get_drvdata(&dev->dev));
2780#endif
2781	return 0;
2782}
2783
2784static const struct of_device_id ipmi_match[] =
2785{
2786	{ .type = "ipmi", .compatible = "ipmi-kcs",
2787	  .data = (void *)(unsigned long) SI_KCS },
2788	{ .type = "ipmi", .compatible = "ipmi-smic",
2789	  .data = (void *)(unsigned long) SI_SMIC },
2790	{ .type = "ipmi", .compatible = "ipmi-bt",
2791	  .data = (void *)(unsigned long) SI_BT },
2792	{},
2793};
2794
2795static struct platform_driver ipmi_driver = {
2796	.driver = {
2797		.name = DEVICE_NAME,
2798		.of_match_table = ipmi_match,
2799	},
2800	.probe		= ipmi_probe,
2801	.remove		= ipmi_remove,
2802};
2803
2804#ifdef CONFIG_PARISC
2805static int ipmi_parisc_probe(struct parisc_device *dev)
2806{
2807	struct smi_info *info;
2808	int rv;
2809
2810	info = smi_info_alloc();
2811
2812	if (!info) {
2813		dev_err(&dev->dev,
2814			"could not allocate memory for PARISC probe\n");
2815		return -ENOMEM;
2816	}
2817
2818	info->si_type		= SI_KCS;
2819	info->addr_source	= SI_DEVICETREE;
2820	info->io_setup		= mem_setup;
2821	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2822	info->io.addr_data	= dev->hpa.start;
2823	info->io.regsize	= 1;
2824	info->io.regspacing	= 1;
2825	info->io.regshift	= 0;
2826	info->irq		= 0; /* no interrupt */
2827	info->irq_setup		= NULL;
2828	info->dev		= &dev->dev;
2829
2830	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2831
2832	dev_set_drvdata(&dev->dev, info);
2833
2834	rv = add_smi(info);
2835	if (rv) {
2836		kfree(info);
2837		return rv;
2838	}
2839
2840	return 0;
2841}
2842
2843static int ipmi_parisc_remove(struct parisc_device *dev)
2844{
2845	cleanup_one_si(dev_get_drvdata(&dev->dev));
2846	return 0;
2847}
2848
2849static struct parisc_device_id ipmi_parisc_tbl[] = {
2850	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2851	{ 0, }
2852};
2853
2854static struct parisc_driver ipmi_parisc_driver = {
2855	.name =		"ipmi",
2856	.id_table =	ipmi_parisc_tbl,
2857	.probe =	ipmi_parisc_probe,
2858	.remove =	ipmi_parisc_remove,
2859};
2860#endif /* CONFIG_PARISC */
2861
2862static int wait_for_msg_done(struct smi_info *smi_info)
2863{
2864	enum si_sm_result     smi_result;
2865
2866	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2867	for (;;) {
2868		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2869		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2870			schedule_timeout_uninterruptible(1);
2871			smi_result = smi_info->handlers->event(
2872				smi_info->si_sm, jiffies_to_usecs(1));
2873		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2874			smi_result = smi_info->handlers->event(
2875				smi_info->si_sm, 0);
2876		} else
2877			break;
2878	}
2879	if (smi_result == SI_SM_HOSED)
2880		/*
2881		 * We couldn't get the state machine to run, so whatever's at
2882		 * the port is probably not an IPMI SMI interface.
2883		 */
2884		return -ENODEV;
2885
2886	return 0;
2887}
2888
2889static int try_get_dev_id(struct smi_info *smi_info)
2890{
2891	unsigned char         msg[2];
2892	unsigned char         *resp;
2893	unsigned long         resp_len;
2894	int                   rv = 0;
2895
2896	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2897	if (!resp)
2898		return -ENOMEM;
2899
2900	/*
2901	 * Do a Get Device ID command, since it comes back with some
2902	 * useful info.
2903	 */
2904	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2905	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2906	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2907
2908	rv = wait_for_msg_done(smi_info);
2909	if (rv)
2910		goto out;
2911
2912	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2913						  resp, IPMI_MAX_MSG_LENGTH);
2914
2915	/* Check and record info from the get device id, in case we need it. */
2916	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2917
2918 out:
2919	kfree(resp);
2920	return rv;
2921}
2922
2923/*
2924 * Some BMCs do not support clearing the receive irq bit in the global
2925 * enables (even if they don't support interrupts on the BMC).  Check
2926 * for this and handle it properly.
2927 */
2928static void check_clr_rcv_irq(struct smi_info *smi_info)
2929{
2930	unsigned char         msg[3];
2931	unsigned char         *resp;
2932	unsigned long         resp_len;
2933	int                   rv;
2934
2935	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2936	if (!resp) {
2937		printk(KERN_WARNING PFX "Out of memory allocating response for"
2938		       " global enables command, cannot check recv irq bit"
2939		       " handling.\n");
2940		return;
2941	}
2942
2943	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2944	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2945	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2946
2947	rv = wait_for_msg_done(smi_info);
2948	if (rv) {
2949		printk(KERN_WARNING PFX "Error getting response from get"
2950		       " global enables command, cannot check recv irq bit"
2951		       " handling.\n");
2952		goto out;
2953	}
2954
2955	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2956						  resp, IPMI_MAX_MSG_LENGTH);
2957
2958	if (resp_len < 4 ||
2959			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2960			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2961			resp[2] != 0) {
2962		printk(KERN_WARNING PFX "Invalid return from get global"
2963		       " enables command, cannot check recv irq bit"
2964		       " handling.\n");
2965		rv = -EINVAL;
2966		goto out;
2967	}
2968
2969	if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2970		/* Already clear, should work ok. */
2971		goto out;
2972
2973	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2974	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2975	msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2976	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2977
2978	rv = wait_for_msg_done(smi_info);
2979	if (rv) {
2980		printk(KERN_WARNING PFX "Error getting response from set"
2981		       " global enables command, cannot check recv irq bit"
2982		       " handling.\n");
2983		goto out;
2984	}
2985
2986	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2987						  resp, IPMI_MAX_MSG_LENGTH);
2988
2989	if (resp_len < 3 ||
2990			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2991			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2992		printk(KERN_WARNING PFX "Invalid return from get global"
2993		       " enables command, cannot check recv irq bit"
2994		       " handling.\n");
2995		rv = -EINVAL;
2996		goto out;
2997	}
2998
2999	if (resp[2] != 0) {
3000		/*
3001		 * An error when setting the event buffer bit means
3002		 * clearing the bit is not supported.
3003		 */
3004		printk(KERN_WARNING PFX "The BMC does not support clearing"
3005		       " the recv irq bit, compensating, but the BMC needs to"
3006		       " be fixed.\n");
3007		smi_info->cannot_clear_recv_irq_bit = true;
3008	}
3009 out:
3010	kfree(resp);
3011}
3012
3013static int try_enable_event_buffer(struct smi_info *smi_info)
3014{
3015	unsigned char         msg[3];
3016	unsigned char         *resp;
3017	unsigned long         resp_len;
3018	int                   rv = 0;
3019
3020	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3021	if (!resp)
3022		return -ENOMEM;
3023
3024	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3025	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3026	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3027
3028	rv = wait_for_msg_done(smi_info);
3029	if (rv) {
3030		printk(KERN_WARNING PFX "Error getting response from get"
3031		       " global enables command, the event buffer is not"
3032		       " enabled.\n");
3033		goto out;
3034	}
3035
3036	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3037						  resp, IPMI_MAX_MSG_LENGTH);
3038
3039	if (resp_len < 4 ||
3040			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3041			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3042			resp[2] != 0) {
3043		printk(KERN_WARNING PFX "Invalid return from get global"
3044		       " enables command, cannot enable the event buffer.\n");
3045		rv = -EINVAL;
3046		goto out;
3047	}
3048
3049	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3050		/* buffer is already enabled, nothing to do. */
3051		smi_info->supports_event_msg_buff = true;
3052		goto out;
3053	}
3054
3055	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3056	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3057	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3058	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3059
3060	rv = wait_for_msg_done(smi_info);
3061	if (rv) {
3062		printk(KERN_WARNING PFX "Error getting response from set"
3063		       " global, enables command, the event buffer is not"
3064		       " enabled.\n");
3065		goto out;
3066	}
3067
3068	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3069						  resp, IPMI_MAX_MSG_LENGTH);
3070
3071	if (resp_len < 3 ||
3072			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3073			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3074		printk(KERN_WARNING PFX "Invalid return from get global,"
3075		       "enables command, not enable the event buffer.\n");
3076		rv = -EINVAL;
3077		goto out;
3078	}
3079
3080	if (resp[2] != 0)
3081		/*
3082		 * An error when setting the event buffer bit means
3083		 * that the event buffer is not supported.
3084		 */
3085		rv = -ENOENT;
3086	else
3087		smi_info->supports_event_msg_buff = true;
3088
3089 out:
3090	kfree(resp);
3091	return rv;
3092}
3093
3094static int smi_type_proc_show(struct seq_file *m, void *v)
3095{
3096	struct smi_info *smi = m->private;
3097
3098	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3099
3100	return 0;
3101}
3102
3103static int smi_type_proc_open(struct inode *inode, struct file *file)
3104{
3105	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3106}
3107
3108static const struct file_operations smi_type_proc_ops = {
3109	.open		= smi_type_proc_open,
3110	.read		= seq_read,
3111	.llseek		= seq_lseek,
3112	.release	= single_release,
3113};
3114
3115static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3116{
3117	struct smi_info *smi = m->private;
3118
3119	seq_printf(m, "interrupts_enabled:    %d\n",
3120		       smi->irq && !smi->interrupt_disabled);
3121	seq_printf(m, "short_timeouts:        %u\n",
3122		       smi_get_stat(smi, short_timeouts));
3123	seq_printf(m, "long_timeouts:         %u\n",
3124		       smi_get_stat(smi, long_timeouts));
3125	seq_printf(m, "idles:                 %u\n",
3126		       smi_get_stat(smi, idles));
3127	seq_printf(m, "interrupts:            %u\n",
3128		       smi_get_stat(smi, interrupts));
3129	seq_printf(m, "attentions:            %u\n",
3130		       smi_get_stat(smi, attentions));
3131	seq_printf(m, "flag_fetches:          %u\n",
3132		       smi_get_stat(smi, flag_fetches));
3133	seq_printf(m, "hosed_count:           %u\n",
3134		       smi_get_stat(smi, hosed_count));
3135	seq_printf(m, "complete_transactions: %u\n",
3136		       smi_get_stat(smi, complete_transactions));
3137	seq_printf(m, "events:                %u\n",
3138		       smi_get_stat(smi, events));
3139	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3140		       smi_get_stat(smi, watchdog_pretimeouts));
3141	seq_printf(m, "incoming_messages:     %u\n",
3142		       smi_get_stat(smi, incoming_messages));
3143	return 0;
3144}
3145
3146static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3147{
3148	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3149}
3150
3151static const struct file_operations smi_si_stats_proc_ops = {
3152	.open		= smi_si_stats_proc_open,
3153	.read		= seq_read,
3154	.llseek		= seq_lseek,
3155	.release	= single_release,
3156};
3157
3158static int smi_params_proc_show(struct seq_file *m, void *v)
3159{
3160	struct smi_info *smi = m->private;
3161
3162	seq_printf(m,
3163		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3164		   si_to_str[smi->si_type],
3165		   addr_space_to_str[smi->io.addr_type],
3166		   smi->io.addr_data,
3167		   smi->io.regspacing,
3168		   smi->io.regsize,
3169		   smi->io.regshift,
3170		   smi->irq,
3171		   smi->slave_addr);
3172
3173	return 0;
3174}
3175
3176static int smi_params_proc_open(struct inode *inode, struct file *file)
3177{
3178	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3179}
3180
3181static const struct file_operations smi_params_proc_ops = {
3182	.open		= smi_params_proc_open,
3183	.read		= seq_read,
3184	.llseek		= seq_lseek,
3185	.release	= single_release,
3186};
3187
3188/*
3189 * oem_data_avail_to_receive_msg_avail
3190 * @info - smi_info structure with msg_flags set
3191 *
3192 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3193 * Returns 1 indicating need to re-run handle_flags().
3194 */
3195static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3196{
3197	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3198			       RECEIVE_MSG_AVAIL);
3199	return 1;
3200}
3201
3202/*
3203 * setup_dell_poweredge_oem_data_handler
3204 * @info - smi_info.device_id must be populated
3205 *
3206 * Systems that match, but have firmware version < 1.40 may assert
3207 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3208 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3209 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3210 * as RECEIVE_MSG_AVAIL instead.
3211 *
3212 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3213 * assert the OEM[012] bits, and if it did, the driver would have to
3214 * change to handle that properly, we don't actually check for the
3215 * firmware version.
3216 * Device ID = 0x20                BMC on PowerEdge 8G servers
3217 * Device Revision = 0x80
3218 * Firmware Revision1 = 0x01       BMC version 1.40
3219 * Firmware Revision2 = 0x40       BCD encoded
3220 * IPMI Version = 0x51             IPMI 1.5
3221 * Manufacturer ID = A2 02 00      Dell IANA
3222 *
3223 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3224 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3225 *
3226 */
3227#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3228#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3229#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3230#define DELL_IANA_MFR_ID 0x0002a2
3231static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3232{
3233	struct ipmi_device_id *id = &smi_info->device_id;
3234	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3235		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3236		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3237		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3238			smi_info->oem_data_avail_handler =
3239				oem_data_avail_to_receive_msg_avail;
3240		} else if (ipmi_version_major(id) < 1 ||
3241			   (ipmi_version_major(id) == 1 &&
3242			    ipmi_version_minor(id) < 5)) {
3243			smi_info->oem_data_avail_handler =
3244				oem_data_avail_to_receive_msg_avail;
3245		}
3246	}
3247}
3248
3249#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3250static void return_hosed_msg_badsize(struct smi_info *smi_info)
3251{
3252	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3253
3254	/* Make it a response */
3255	msg->rsp[0] = msg->data[0] | 4;
3256	msg->rsp[1] = msg->data[1];
3257	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3258	msg->rsp_size = 3;
3259	smi_info->curr_msg = NULL;
3260	deliver_recv_msg(smi_info, msg);
3261}
3262
3263/*
3264 * dell_poweredge_bt_xaction_handler
3265 * @info - smi_info.device_id must be populated
3266 *
3267 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3268 * not respond to a Get SDR command if the length of the data
3269 * requested is exactly 0x3A, which leads to command timeouts and no
3270 * data returned.  This intercepts such commands, and causes userspace
3271 * callers to try again with a different-sized buffer, which succeeds.
3272 */
3273
3274#define STORAGE_NETFN 0x0A
3275#define STORAGE_CMD_GET_SDR 0x23
3276static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3277					     unsigned long unused,
3278					     void *in)
3279{
3280	struct smi_info *smi_info = in;
3281	unsigned char *data = smi_info->curr_msg->data;
3282	unsigned int size   = smi_info->curr_msg->data_size;
3283	if (size >= 8 &&
3284	    (data[0]>>2) == STORAGE_NETFN &&
3285	    data[1] == STORAGE_CMD_GET_SDR &&
3286	    data[7] == 0x3A) {
3287		return_hosed_msg_badsize(smi_info);
3288		return NOTIFY_STOP;
3289	}
3290	return NOTIFY_DONE;
3291}
3292
3293static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3294	.notifier_call	= dell_poweredge_bt_xaction_handler,
3295};
3296
3297/*
3298 * setup_dell_poweredge_bt_xaction_handler
3299 * @info - smi_info.device_id must be filled in already
3300 *
3301 * Fills in smi_info.device_id.start_transaction_pre_hook
3302 * when we know what function to use there.
3303 */
3304static void
3305setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3306{
3307	struct ipmi_device_id *id = &smi_info->device_id;
3308	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3309	    smi_info->si_type == SI_BT)
3310		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3311}
3312
3313/*
3314 * setup_oem_data_handler
3315 * @info - smi_info.device_id must be filled in already
3316 *
3317 * Fills in smi_info.device_id.oem_data_available_handler
3318 * when we know what function to use there.
3319 */
3320
3321static void setup_oem_data_handler(struct smi_info *smi_info)
3322{
3323	setup_dell_poweredge_oem_data_handler(smi_info);
3324}
3325
3326static void setup_xaction_handlers(struct smi_info *smi_info)
3327{
3328	setup_dell_poweredge_bt_xaction_handler(smi_info);
3329}
3330
3331static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3332{
3333	if (smi_info->thread != NULL)
3334		kthread_stop(smi_info->thread);
3335	if (smi_info->timer_running)
3336		del_timer_sync(&smi_info->si_timer);
3337}
3338
3339static struct ipmi_default_vals
3340{
3341	int type;
3342	int port;
3343} ipmi_defaults[] =
3344{
3345	{ .type = SI_KCS, .port = 0xca2 },
3346	{ .type = SI_SMIC, .port = 0xca9 },
3347	{ .type = SI_BT, .port = 0xe4 },
3348	{ .port = 0 }
3349};
3350
3351static void default_find_bmc(void)
3352{
3353	struct smi_info *info;
3354	int             i;
3355
3356	for (i = 0; ; i++) {
3357		if (!ipmi_defaults[i].port)
3358			break;
3359#ifdef CONFIG_PPC
3360		if (check_legacy_ioport(ipmi_defaults[i].port))
3361			continue;
3362#endif
3363		info = smi_info_alloc();
3364		if (!info)
3365			return;
3366
3367		info->addr_source = SI_DEFAULT;
3368
3369		info->si_type = ipmi_defaults[i].type;
3370		info->io_setup = port_setup;
3371		info->io.addr_data = ipmi_defaults[i].port;
3372		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3373
3374		info->io.addr = NULL;
3375		info->io.regspacing = DEFAULT_REGSPACING;
3376		info->io.regsize = DEFAULT_REGSPACING;
3377		info->io.regshift = 0;
3378
3379		if (add_smi(info) == 0) {
3380			if ((try_smi_init(info)) == 0) {
3381				/* Found one... */
3382				printk(KERN_INFO PFX "Found default %s"
3383				" state machine at %s address 0x%lx\n",
3384				si_to_str[info->si_type],
3385				addr_space_to_str[info->io.addr_type],
3386				info->io.addr_data);
3387			} else
3388				cleanup_one_si(info);
3389		} else {
3390			kfree(info);
3391		}
3392	}
3393}
3394
3395static int is_new_interface(struct smi_info *info)
3396{
3397	struct smi_info *e;
3398
3399	list_for_each_entry(e, &smi_infos, link) {
3400		if (e->io.addr_type != info->io.addr_type)
3401			continue;
3402		if (e->io.addr_data == info->io.addr_data)
3403			return 0;
3404	}
3405
3406	return 1;
3407}
3408
3409static int add_smi(struct smi_info *new_smi)
3410{
3411	int rv = 0;
3412
3413	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3414	       ipmi_addr_src_to_str(new_smi->addr_source),
3415	       si_to_str[new_smi->si_type]);
3416	mutex_lock(&smi_infos_lock);
3417	if (!is_new_interface(new_smi)) {
3418		printk(KERN_CONT " duplicate interface\n");
3419		rv = -EBUSY;
3420		goto out_err;
3421	}
3422
3423	printk(KERN_CONT "\n");
3424
3425	/* So we know not to free it unless we have allocated one. */
3426	new_smi->intf = NULL;
3427	new_smi->si_sm = NULL;
3428	new_smi->handlers = NULL;
3429
3430	list_add_tail(&new_smi->link, &smi_infos);
3431
3432out_err:
3433	mutex_unlock(&smi_infos_lock);
3434	return rv;
3435}
3436
3437static int try_smi_init(struct smi_info *new_smi)
3438{
3439	int rv = 0;
3440	int i;
3441
3442	printk(KERN_INFO PFX "Trying %s-specified %s state"
3443	       " machine at %s address 0x%lx, slave address 0x%x,"
3444	       " irq %d\n",
3445	       ipmi_addr_src_to_str(new_smi->addr_source),
3446	       si_to_str[new_smi->si_type],
3447	       addr_space_to_str[new_smi->io.addr_type],
3448	       new_smi->io.addr_data,
3449	       new_smi->slave_addr, new_smi->irq);
3450
3451	switch (new_smi->si_type) {
3452	case SI_KCS:
3453		new_smi->handlers = &kcs_smi_handlers;
3454		break;
3455
3456	case SI_SMIC:
3457		new_smi->handlers = &smic_smi_handlers;
3458		break;
3459
3460	case SI_BT:
3461		new_smi->handlers = &bt_smi_handlers;
3462		break;
3463
3464	default:
3465		/* No support for anything else yet. */
3466		rv = -EIO;
3467		goto out_err;
3468	}
3469
3470	/* Allocate the state machine's data and initialize it. */
3471	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3472	if (!new_smi->si_sm) {
3473		printk(KERN_ERR PFX
3474		       "Could not allocate state machine memory\n");
3475		rv = -ENOMEM;
3476		goto out_err;
3477	}
3478	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3479							&new_smi->io);
3480
3481	/* Now that we know the I/O size, we can set up the I/O. */
3482	rv = new_smi->io_setup(new_smi);
3483	if (rv) {
3484		printk(KERN_ERR PFX "Could not set up I/O space\n");
3485		goto out_err;
3486	}
3487
3488	/* Do low-level detection first. */
3489	if (new_smi->handlers->detect(new_smi->si_sm)) {
3490		if (new_smi->addr_source)
3491			printk(KERN_INFO PFX "Interface detection failed\n");
3492		rv = -ENODEV;
3493		goto out_err;
3494	}
3495
3496	/*
3497	 * Attempt a get device id command.  If it fails, we probably
3498	 * don't have a BMC here.
3499	 */
3500	rv = try_get_dev_id(new_smi);
3501	if (rv) {
3502		if (new_smi->addr_source)
3503			printk(KERN_INFO PFX "There appears to be no BMC"
3504			       " at this location\n");
3505		goto out_err;
3506	}
3507
3508	check_clr_rcv_irq(new_smi);
3509
3510	setup_oem_data_handler(new_smi);
3511	setup_xaction_handlers(new_smi);
3512
3513	new_smi->waiting_msg = NULL;
3514	new_smi->curr_msg = NULL;
3515	atomic_set(&new_smi->req_events, 0);
3516	new_smi->run_to_completion = false;
3517	for (i = 0; i < SI_NUM_STATS; i++)
3518		atomic_set(&new_smi->stats[i], 0);
3519
3520	new_smi->interrupt_disabled = true;
3521	atomic_set(&new_smi->need_watch, 0);
3522	new_smi->intf_num = smi_num;
3523	smi_num++;
3524
3525	rv = try_enable_event_buffer(new_smi);
3526	if (rv == 0)
3527		new_smi->has_event_buffer = true;
3528
3529	/*
3530	 * Start clearing the flags before we enable interrupts or the
3531	 * timer to avoid racing with the timer.
3532	 */
3533	start_clear_flags(new_smi, false);
3534
3535	/*
3536	 * IRQ is defined to be set when non-zero.  req_events will
3537	 * cause a global flags check that will enable interrupts.
3538	 */
3539	if (new_smi->irq) {
3540		new_smi->interrupt_disabled = false;
3541		atomic_set(&new_smi->req_events, 1);
3542	}
3543
3544	if (!new_smi->dev) {
3545		/*
3546		 * If we don't already have a device from something
3547		 * else (like PCI), then register a new one.
3548		 */
3549		new_smi->pdev = platform_device_alloc("ipmi_si",
3550						      new_smi->intf_num);
3551		if (!new_smi->pdev) {
3552			printk(KERN_ERR PFX
3553			       "Unable to allocate platform device\n");
3554			goto out_err;
3555		}
3556		new_smi->dev = &new_smi->pdev->dev;
3557		new_smi->dev->driver = &ipmi_driver.driver;
3558
3559		rv = platform_device_add(new_smi->pdev);
3560		if (rv) {
3561			printk(KERN_ERR PFX
3562			       "Unable to register system interface device:"
3563			       " %d\n",
3564			       rv);
3565			goto out_err;
3566		}
3567		new_smi->dev_registered = true;
3568	}
3569
3570	rv = ipmi_register_smi(&handlers,
3571			       new_smi,
3572			       &new_smi->device_id,
3573			       new_smi->dev,
3574			       new_smi->slave_addr);
3575	if (rv) {
3576		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3577			rv);
3578		goto out_err_stop_timer;
3579	}
3580
3581	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3582				     &smi_type_proc_ops,
3583				     new_smi);
3584	if (rv) {
3585		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3586		goto out_err_stop_timer;
3587	}
3588
3589	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3590				     &smi_si_stats_proc_ops,
3591				     new_smi);
3592	if (rv) {
3593		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3594		goto out_err_stop_timer;
3595	}
3596
3597	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3598				     &smi_params_proc_ops,
3599				     new_smi);
3600	if (rv) {
3601		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3602		goto out_err_stop_timer;
3603	}
3604
3605	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3606		 si_to_str[new_smi->si_type]);
3607
3608	return 0;
3609
3610 out_err_stop_timer:
3611	wait_for_timer_and_thread(new_smi);
3612
3613 out_err:
3614	new_smi->interrupt_disabled = true;
3615
3616	if (new_smi->intf) {
3617		ipmi_smi_t intf = new_smi->intf;
3618		new_smi->intf = NULL;
3619		ipmi_unregister_smi(intf);
3620	}
3621
3622	if (new_smi->irq_cleanup) {
3623		new_smi->irq_cleanup(new_smi);
3624		new_smi->irq_cleanup = NULL;
3625	}
3626
3627	/*
3628	 * Wait until we know that we are out of any interrupt
3629	 * handlers might have been running before we freed the
3630	 * interrupt.
3631	 */
3632	synchronize_sched();
3633
3634	if (new_smi->si_sm) {
3635		if (new_smi->handlers)
3636			new_smi->handlers->cleanup(new_smi->si_sm);
3637		kfree(new_smi->si_sm);
3638		new_smi->si_sm = NULL;
3639	}
3640	if (new_smi->addr_source_cleanup) {
3641		new_smi->addr_source_cleanup(new_smi);
3642		new_smi->addr_source_cleanup = NULL;
3643	}
3644	if (new_smi->io_cleanup) {
3645		new_smi->io_cleanup(new_smi);
3646		new_smi->io_cleanup = NULL;
3647	}
3648
3649	if (new_smi->dev_registered) {
3650		platform_device_unregister(new_smi->pdev);
3651		new_smi->dev_registered = false;
3652	}
3653
3654	return rv;
3655}
3656
3657static int init_ipmi_si(void)
3658{
3659	int  i;
3660	char *str;
3661	int  rv;
3662	struct smi_info *e;
3663	enum ipmi_addr_src type = SI_INVALID;
3664
3665	if (initialized)
3666		return 0;
3667	initialized = 1;
3668
3669	if (si_tryplatform) {
3670		rv = platform_driver_register(&ipmi_driver);
3671		if (rv) {
3672			printk(KERN_ERR PFX "Unable to register "
3673			       "driver: %d\n", rv);
3674			return rv;
3675		}
3676	}
3677
3678	/* Parse out the si_type string into its components. */
3679	str = si_type_str;
3680	if (*str != '\0') {
3681		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3682			si_type[i] = str;
3683			str = strchr(str, ',');
3684			if (str) {
3685				*str = '\0';
3686				str++;
3687			} else {
3688				break;
3689			}
3690		}
3691	}
3692
3693	printk(KERN_INFO "IPMI System Interface driver.\n");
3694
3695	/* If the user gave us a device, they presumably want us to use it */
3696	if (!hardcode_find_bmc())
3697		return 0;
3698
3699#ifdef CONFIG_PCI
3700	if (si_trypci) {
3701		rv = pci_register_driver(&ipmi_pci_driver);
3702		if (rv)
3703			printk(KERN_ERR PFX "Unable to register "
3704			       "PCI driver: %d\n", rv);
3705		else
3706			pci_registered = true;
3707	}
3708#endif
3709
3710#ifdef CONFIG_ACPI
3711	if (si_tryacpi) {
3712		pnp_register_driver(&ipmi_pnp_driver);
3713		pnp_registered = true;
3714	}
3715#endif
3716
3717#ifdef CONFIG_DMI
3718	if (si_trydmi)
3719		dmi_find_bmc();
3720#endif
3721
3722#ifdef CONFIG_ACPI
3723	if (si_tryacpi)
3724		spmi_find_bmc();
3725#endif
3726
3727#ifdef CONFIG_PARISC
3728	register_parisc_driver(&ipmi_parisc_driver);
3729	parisc_registered = true;
3730	/* poking PC IO addresses will crash machine, don't do it */
3731	si_trydefaults = 0;
3732#endif
3733
3734	/* We prefer devices with interrupts, but in the case of a machine
3735	   with multiple BMCs we assume that there will be several instances
3736	   of a given type so if we succeed in registering a type then also
3737	   try to register everything else of the same type */
3738
3739	mutex_lock(&smi_infos_lock);
3740	list_for_each_entry(e, &smi_infos, link) {
3741		/* Try to register a device if it has an IRQ and we either
3742		   haven't successfully registered a device yet or this
3743		   device has the same type as one we successfully registered */
3744		if (e->irq && (!type || e->addr_source == type)) {
3745			if (!try_smi_init(e)) {
3746				type = e->addr_source;
3747			}
3748		}
3749	}
3750
3751	/* type will only have been set if we successfully registered an si */
3752	if (type) {
3753		mutex_unlock(&smi_infos_lock);
3754		return 0;
3755	}
3756
3757	/* Fall back to the preferred device */
3758
3759	list_for_each_entry(e, &smi_infos, link) {
3760		if (!e->irq && (!type || e->addr_source == type)) {
3761			if (!try_smi_init(e)) {
3762				type = e->addr_source;
3763			}
3764		}
3765	}
3766	mutex_unlock(&smi_infos_lock);
3767
3768	if (type)
3769		return 0;
3770
3771	if (si_trydefaults) {
3772		mutex_lock(&smi_infos_lock);
3773		if (list_empty(&smi_infos)) {
3774			/* No BMC was found, try defaults. */
3775			mutex_unlock(&smi_infos_lock);
3776			default_find_bmc();
3777		} else
3778			mutex_unlock(&smi_infos_lock);
3779	}
3780
3781	mutex_lock(&smi_infos_lock);
3782	if (unload_when_empty && list_empty(&smi_infos)) {
3783		mutex_unlock(&smi_infos_lock);
3784		cleanup_ipmi_si();
3785		printk(KERN_WARNING PFX
3786		       "Unable to find any System Interface(s)\n");
3787		return -ENODEV;
3788	} else {
3789		mutex_unlock(&smi_infos_lock);
3790		return 0;
3791	}
3792}
3793module_init(init_ipmi_si);
3794
3795static void cleanup_one_si(struct smi_info *to_clean)
3796{
3797	int           rv = 0;
3798
3799	if (!to_clean)
3800		return;
3801
3802	if (to_clean->intf) {
3803		ipmi_smi_t intf = to_clean->intf;
3804
3805		to_clean->intf = NULL;
3806		rv = ipmi_unregister_smi(intf);
3807		if (rv) {
3808			pr_err(PFX "Unable to unregister device: errno=%d\n",
3809			       rv);
3810		}
3811	}
3812
3813	if (to_clean->dev)
3814		dev_set_drvdata(to_clean->dev, NULL);
3815
3816	list_del(&to_clean->link);
3817
3818	/*
3819	 * Make sure that interrupts, the timer and the thread are
3820	 * stopped and will not run again.
3821	 */
3822	if (to_clean->irq_cleanup)
3823		to_clean->irq_cleanup(to_clean);
3824	wait_for_timer_and_thread(to_clean);
3825
3826	/*
3827	 * Timeouts are stopped, now make sure the interrupts are off
3828	 * in the BMC.  Note that timers and CPU interrupts are off,
3829	 * so no need for locks.
3830	 */
3831	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3832		poll(to_clean);
3833		schedule_timeout_uninterruptible(1);
3834	}
3835	disable_si_irq(to_clean, false);
3836	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3837		poll(to_clean);
3838		schedule_timeout_uninterruptible(1);
3839	}
3840
3841	if (to_clean->handlers)
3842		to_clean->handlers->cleanup(to_clean->si_sm);
3843
3844	kfree(to_clean->si_sm);
3845
3846	if (to_clean->addr_source_cleanup)
3847		to_clean->addr_source_cleanup(to_clean);
3848	if (to_clean->io_cleanup)
3849		to_clean->io_cleanup(to_clean);
3850
3851	if (to_clean->dev_registered)
3852		platform_device_unregister(to_clean->pdev);
3853
3854	kfree(to_clean);
3855}
3856
3857static void cleanup_ipmi_si(void)
3858{
3859	struct smi_info *e, *tmp_e;
3860
3861	if (!initialized)
3862		return;
3863
3864#ifdef CONFIG_PCI
3865	if (pci_registered)
3866		pci_unregister_driver(&ipmi_pci_driver);
3867#endif
3868#ifdef CONFIG_ACPI
3869	if (pnp_registered)
3870		pnp_unregister_driver(&ipmi_pnp_driver);
3871#endif
3872#ifdef CONFIG_PARISC
3873	if (parisc_registered)
3874		unregister_parisc_driver(&ipmi_parisc_driver);
3875#endif
3876
3877	platform_driver_unregister(&ipmi_driver);
3878
3879	mutex_lock(&smi_infos_lock);
3880	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3881		cleanup_one_si(e);
3882	mutex_unlock(&smi_infos_lock);
3883}
3884module_exit(cleanup_ipmi_si);
3885
3886MODULE_LICENSE("GPL");
3887MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3888MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3889		   " system interfaces.");
3890