1/*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/clk-provider.h>
18#include <linux/clkdev.h>
19#include <linux/of.h>
20#include <linux/of_address.h>
21#include <linux/reset-controller.h>
22#include <linux/spinlock.h>
23#include <linux/log2.h>
24
25#include "clk-factors.h"
26
27static DEFINE_SPINLOCK(clk_lock);
28
29/**
30 * sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
31 */
32
33#define SUN6I_AHB1_MAX_PARENTS		4
34#define SUN6I_AHB1_MUX_PARENT_PLL6	3
35#define SUN6I_AHB1_MUX_SHIFT		12
36/* un-shifted mask is what mux_clk expects */
37#define SUN6I_AHB1_MUX_MASK		0x3
38#define SUN6I_AHB1_MUX_GET_PARENT(reg)	((reg >> SUN6I_AHB1_MUX_SHIFT) & \
39					 SUN6I_AHB1_MUX_MASK)
40
41#define SUN6I_AHB1_DIV_SHIFT		4
42#define SUN6I_AHB1_DIV_MASK		(0x3 << SUN6I_AHB1_DIV_SHIFT)
43#define SUN6I_AHB1_DIV_GET(reg)		((reg & SUN6I_AHB1_DIV_MASK) >> \
44						SUN6I_AHB1_DIV_SHIFT)
45#define SUN6I_AHB1_DIV_SET(reg, div)	((reg & ~SUN6I_AHB1_DIV_MASK) | \
46						(div << SUN6I_AHB1_DIV_SHIFT))
47#define SUN6I_AHB1_PLL6_DIV_SHIFT	6
48#define SUN6I_AHB1_PLL6_DIV_MASK	(0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
49#define SUN6I_AHB1_PLL6_DIV_GET(reg)	((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
50						SUN6I_AHB1_PLL6_DIV_SHIFT)
51#define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
52						(div << SUN6I_AHB1_PLL6_DIV_SHIFT))
53
54struct sun6i_ahb1_clk {
55	struct clk_hw hw;
56	void __iomem *reg;
57};
58
59#define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
60
61static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
62						unsigned long parent_rate)
63{
64	struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
65	unsigned long rate;
66	u32 reg;
67
68	/* Fetch the register value */
69	reg = readl(ahb1->reg);
70
71	/* apply pre-divider first if parent is pll6 */
72	if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
73		parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
74
75	/* clk divider */
76	rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
77
78	return rate;
79}
80
81static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
82				 u8 parent, unsigned long parent_rate)
83{
84	u8 div, calcp, calcm = 1;
85
86	/*
87	 * clock can only divide, so we will never be able to achieve
88	 * frequencies higher than the parent frequency
89	 */
90	if (parent_rate && rate > parent_rate)
91		rate = parent_rate;
92
93	div = DIV_ROUND_UP(parent_rate, rate);
94
95	/* calculate pre-divider if parent is pll6 */
96	if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
97		if (div < 4)
98			calcp = 0;
99		else if (div / 2 < 4)
100			calcp = 1;
101		else if (div / 4 < 4)
102			calcp = 2;
103		else
104			calcp = 3;
105
106		calcm = DIV_ROUND_UP(div, 1 << calcp);
107	} else {
108		calcp = __roundup_pow_of_two(div);
109		calcp = calcp > 3 ? 3 : calcp;
110	}
111
112	/* we were asked to pass back divider values */
113	if (divp) {
114		*divp = calcp;
115		*pre_divp = calcm - 1;
116	}
117
118	return (parent_rate / calcm) >> calcp;
119}
120
121static long sun6i_ahb1_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
122					  unsigned long min_rate,
123					  unsigned long max_rate,
124					  unsigned long *best_parent_rate,
125					  struct clk_hw **best_parent_clk)
126{
127	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
128	int i, num_parents;
129	unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
130
131	/* find the parent that can help provide the fastest rate <= rate */
132	num_parents = __clk_get_num_parents(clk);
133	for (i = 0; i < num_parents; i++) {
134		parent = clk_get_parent_by_index(clk, i);
135		if (!parent)
136			continue;
137		if (__clk_get_flags(clk) & CLK_SET_RATE_PARENT)
138			parent_rate = __clk_round_rate(parent, rate);
139		else
140			parent_rate = __clk_get_rate(parent);
141
142		child_rate = sun6i_ahb1_clk_round(rate, NULL, NULL, i,
143						  parent_rate);
144
145		if (child_rate <= rate && child_rate > best_child_rate) {
146			best_parent = parent;
147			best = parent_rate;
148			best_child_rate = child_rate;
149		}
150	}
151
152	if (best_parent)
153		*best_parent_clk = __clk_get_hw(best_parent);
154	*best_parent_rate = best;
155
156	return best_child_rate;
157}
158
159static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
160				   unsigned long parent_rate)
161{
162	struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
163	unsigned long flags;
164	u8 div, pre_div, parent;
165	u32 reg;
166
167	spin_lock_irqsave(&clk_lock, flags);
168
169	reg = readl(ahb1->reg);
170
171	/* need to know which parent is used to apply pre-divider */
172	parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
173	sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
174
175	reg = SUN6I_AHB1_DIV_SET(reg, div);
176	reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
177	writel(reg, ahb1->reg);
178
179	spin_unlock_irqrestore(&clk_lock, flags);
180
181	return 0;
182}
183
184static const struct clk_ops sun6i_ahb1_clk_ops = {
185	.determine_rate	= sun6i_ahb1_clk_determine_rate,
186	.recalc_rate	= sun6i_ahb1_clk_recalc_rate,
187	.set_rate	= sun6i_ahb1_clk_set_rate,
188};
189
190static void __init sun6i_ahb1_clk_setup(struct device_node *node)
191{
192	struct clk *clk;
193	struct sun6i_ahb1_clk *ahb1;
194	struct clk_mux *mux;
195	const char *clk_name = node->name;
196	const char *parents[SUN6I_AHB1_MAX_PARENTS];
197	void __iomem *reg;
198	int i = 0;
199
200	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
201
202	/* we have a mux, we will have >1 parents */
203	while (i < SUN6I_AHB1_MAX_PARENTS &&
204	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
205		i++;
206
207	of_property_read_string(node, "clock-output-names", &clk_name);
208
209	ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
210	if (!ahb1)
211		return;
212
213	mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
214	if (!mux) {
215		kfree(ahb1);
216		return;
217	}
218
219	/* set up clock properties */
220	mux->reg = reg;
221	mux->shift = SUN6I_AHB1_MUX_SHIFT;
222	mux->mask = SUN6I_AHB1_MUX_MASK;
223	mux->lock = &clk_lock;
224	ahb1->reg = reg;
225
226	clk = clk_register_composite(NULL, clk_name, parents, i,
227				     &mux->hw, &clk_mux_ops,
228				     &ahb1->hw, &sun6i_ahb1_clk_ops,
229				     NULL, NULL, 0);
230
231	if (!IS_ERR(clk)) {
232		of_clk_add_provider(node, of_clk_src_simple_get, clk);
233		clk_register_clkdev(clk, clk_name, NULL);
234	}
235}
236CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
237
238/* Maximum number of parents our clocks have */
239#define SUNXI_MAX_PARENTS	5
240
241/**
242 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
243 * PLL1 rate is calculated as follows
244 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
245 * parent_rate is always 24Mhz
246 */
247
248static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
249				   u8 *n, u8 *k, u8 *m, u8 *p)
250{
251	u8 div;
252
253	/* Normalize value to a 6M multiple */
254	div = *freq / 6000000;
255	*freq = 6000000 * div;
256
257	/* we were called to round the frequency, we can now return */
258	if (n == NULL)
259		return;
260
261	/* m is always zero for pll1 */
262	*m = 0;
263
264	/* k is 1 only on these cases */
265	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
266		*k = 1;
267	else
268		*k = 0;
269
270	/* p will be 3 for divs under 10 */
271	if (div < 10)
272		*p = 3;
273
274	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
275	else if (div < 20 || (div < 32 && (div & 1)))
276		*p = 2;
277
278	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
279	 * of divs between 40-62 */
280	else if (div < 40 || (div < 64 && (div & 2)))
281		*p = 1;
282
283	/* any other entries have p = 0 */
284	else
285		*p = 0;
286
287	/* calculate a suitable n based on k and p */
288	div <<= *p;
289	div /= (*k + 1);
290	*n = div / 4;
291}
292
293/**
294 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
295 * PLL1 rate is calculated as follows
296 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
297 * parent_rate should always be 24MHz
298 */
299static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
300				       u8 *n, u8 *k, u8 *m, u8 *p)
301{
302	/*
303	 * We can operate only on MHz, this will make our life easier
304	 * later.
305	 */
306	u32 freq_mhz = *freq / 1000000;
307	u32 parent_freq_mhz = parent_rate / 1000000;
308
309	/*
310	 * Round down the frequency to the closest multiple of either
311	 * 6 or 16
312	 */
313	u32 round_freq_6 = round_down(freq_mhz, 6);
314	u32 round_freq_16 = round_down(freq_mhz, 16);
315
316	if (round_freq_6 > round_freq_16)
317		freq_mhz = round_freq_6;
318	else
319		freq_mhz = round_freq_16;
320
321	*freq = freq_mhz * 1000000;
322
323	/*
324	 * If the factors pointer are null, we were just called to
325	 * round down the frequency.
326	 * Exit.
327	 */
328	if (n == NULL)
329		return;
330
331	/* If the frequency is a multiple of 32 MHz, k is always 3 */
332	if (!(freq_mhz % 32))
333		*k = 3;
334	/* If the frequency is a multiple of 9 MHz, k is always 2 */
335	else if (!(freq_mhz % 9))
336		*k = 2;
337	/* If the frequency is a multiple of 8 MHz, k is always 1 */
338	else if (!(freq_mhz % 8))
339		*k = 1;
340	/* Otherwise, we don't use the k factor */
341	else
342		*k = 0;
343
344	/*
345	 * If the frequency is a multiple of 2 but not a multiple of
346	 * 3, m is 3. This is the first time we use 6 here, yet we
347	 * will use it on several other places.
348	 * We use this number because it's the lowest frequency we can
349	 * generate (with n = 0, k = 0, m = 3), so every other frequency
350	 * somehow relates to this frequency.
351	 */
352	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
353		*m = 2;
354	/*
355	 * If the frequency is a multiple of 6MHz, but the factor is
356	 * odd, m will be 3
357	 */
358	else if ((freq_mhz / 6) & 1)
359		*m = 3;
360	/* Otherwise, we end up with m = 1 */
361	else
362		*m = 1;
363
364	/* Calculate n thanks to the above factors we already got */
365	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
366
367	/*
368	 * If n end up being outbound, and that we can still decrease
369	 * m, do it.
370	 */
371	if ((*n + 1) > 31 && (*m + 1) > 1) {
372		*n = (*n + 1) / 2 - 1;
373		*m = (*m + 1) / 2 - 1;
374	}
375}
376
377/**
378 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
379 * PLL1 rate is calculated as follows
380 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
381 * parent_rate is always 24Mhz
382 */
383
384static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
385				   u8 *n, u8 *k, u8 *m, u8 *p)
386{
387	u8 div;
388
389	/* Normalize value to a 6M multiple */
390	div = *freq / 6000000;
391	*freq = 6000000 * div;
392
393	/* we were called to round the frequency, we can now return */
394	if (n == NULL)
395		return;
396
397	/* m is always zero for pll1 */
398	*m = 0;
399
400	/* k is 1 only on these cases */
401	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
402		*k = 1;
403	else
404		*k = 0;
405
406	/* p will be 2 for divs under 20 and odd divs under 32 */
407	if (div < 20 || (div < 32 && (div & 1)))
408		*p = 2;
409
410	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
411	 * of divs between 40-62 */
412	else if (div < 40 || (div < 64 && (div & 2)))
413		*p = 1;
414
415	/* any other entries have p = 0 */
416	else
417		*p = 0;
418
419	/* calculate a suitable n based on k and p */
420	div <<= *p;
421	div /= (*k + 1);
422	*n = div / 4 - 1;
423}
424
425/**
426 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
427 * PLL5 rate is calculated as follows
428 * rate = parent_rate * n * (k + 1)
429 * parent_rate is always 24Mhz
430 */
431
432static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
433				   u8 *n, u8 *k, u8 *m, u8 *p)
434{
435	u8 div;
436
437	/* Normalize value to a parent_rate multiple (24M) */
438	div = *freq / parent_rate;
439	*freq = parent_rate * div;
440
441	/* we were called to round the frequency, we can now return */
442	if (n == NULL)
443		return;
444
445	if (div < 31)
446		*k = 0;
447	else if (div / 2 < 31)
448		*k = 1;
449	else if (div / 3 < 31)
450		*k = 2;
451	else
452		*k = 3;
453
454	*n = DIV_ROUND_UP(div, (*k+1));
455}
456
457/**
458 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
459 * PLL6x2 rate is calculated as follows
460 * rate = parent_rate * (n + 1) * (k + 1)
461 * parent_rate is always 24Mhz
462 */
463
464static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
465				       u8 *n, u8 *k, u8 *m, u8 *p)
466{
467	u8 div;
468
469	/* Normalize value to a parent_rate multiple (24M) */
470	div = *freq / parent_rate;
471	*freq = parent_rate * div;
472
473	/* we were called to round the frequency, we can now return */
474	if (n == NULL)
475		return;
476
477	*k = div / 32;
478	if (*k > 3)
479		*k = 3;
480
481	*n = DIV_ROUND_UP(div, (*k+1)) - 1;
482}
483
484/**
485 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
486 * AHB rate is calculated as follows
487 * rate = parent_rate >> p
488 */
489
490static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate,
491				       u8 *n, u8 *k, u8 *m, u8 *p)
492{
493	u32 div;
494
495	/* divide only */
496	if (parent_rate < *freq)
497		*freq = parent_rate;
498
499	/*
500	 * user manual says valid speed is 8k ~ 276M, but tests show it
501	 * can work at speeds up to 300M, just after reparenting to pll6
502	 */
503	if (*freq < 8000)
504		*freq = 8000;
505	if (*freq > 300000000)
506		*freq = 300000000;
507
508	div = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
509
510	/* p = 0 ~ 3 */
511	if (div > 3)
512		div = 3;
513
514	*freq = parent_rate >> div;
515
516	/* we were called to round the frequency, we can now return */
517	if (p == NULL)
518		return;
519
520	*p = div;
521}
522
523/**
524 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
525 * APB1 rate is calculated as follows
526 * rate = (parent_rate >> p) / (m + 1);
527 */
528
529static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
530				   u8 *n, u8 *k, u8 *m, u8 *p)
531{
532	u8 calcm, calcp;
533
534	if (parent_rate < *freq)
535		*freq = parent_rate;
536
537	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
538
539	/* Invalid rate! */
540	if (parent_rate > 32)
541		return;
542
543	if (parent_rate <= 4)
544		calcp = 0;
545	else if (parent_rate <= 8)
546		calcp = 1;
547	else if (parent_rate <= 16)
548		calcp = 2;
549	else
550		calcp = 3;
551
552	calcm = (parent_rate >> calcp) - 1;
553
554	*freq = (parent_rate >> calcp) / (calcm + 1);
555
556	/* we were called to round the frequency, we can now return */
557	if (n == NULL)
558		return;
559
560	*m = calcm;
561	*p = calcp;
562}
563
564
565
566
567/**
568 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
569 * CLK_OUT rate is calculated as follows
570 * rate = (parent_rate >> p) / (m + 1);
571 */
572
573static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
574				      u8 *n, u8 *k, u8 *m, u8 *p)
575{
576	u8 div, calcm, calcp;
577
578	/* These clocks can only divide, so we will never be able to achieve
579	 * frequencies higher than the parent frequency */
580	if (*freq > parent_rate)
581		*freq = parent_rate;
582
583	div = DIV_ROUND_UP(parent_rate, *freq);
584
585	if (div < 32)
586		calcp = 0;
587	else if (div / 2 < 32)
588		calcp = 1;
589	else if (div / 4 < 32)
590		calcp = 2;
591	else
592		calcp = 3;
593
594	calcm = DIV_ROUND_UP(div, 1 << calcp);
595
596	*freq = (parent_rate >> calcp) / calcm;
597
598	/* we were called to round the frequency, we can now return */
599	if (n == NULL)
600		return;
601
602	*m = calcm - 1;
603	*p = calcp;
604}
605
606/**
607 * sunxi_factors_clk_setup() - Setup function for factor clocks
608 */
609
610static struct clk_factors_config sun4i_pll1_config = {
611	.nshift = 8,
612	.nwidth = 5,
613	.kshift = 4,
614	.kwidth = 2,
615	.mshift = 0,
616	.mwidth = 2,
617	.pshift = 16,
618	.pwidth = 2,
619};
620
621static struct clk_factors_config sun6i_a31_pll1_config = {
622	.nshift	= 8,
623	.nwidth = 5,
624	.kshift = 4,
625	.kwidth = 2,
626	.mshift = 0,
627	.mwidth = 2,
628	.n_start = 1,
629};
630
631static struct clk_factors_config sun8i_a23_pll1_config = {
632	.nshift = 8,
633	.nwidth = 5,
634	.kshift = 4,
635	.kwidth = 2,
636	.mshift = 0,
637	.mwidth = 2,
638	.pshift = 16,
639	.pwidth = 2,
640	.n_start = 1,
641};
642
643static struct clk_factors_config sun4i_pll5_config = {
644	.nshift = 8,
645	.nwidth = 5,
646	.kshift = 4,
647	.kwidth = 2,
648};
649
650static struct clk_factors_config sun6i_a31_pll6_config = {
651	.nshift	= 8,
652	.nwidth = 5,
653	.kshift = 4,
654	.kwidth = 2,
655	.n_start = 1,
656};
657
658static struct clk_factors_config sun5i_a13_ahb_config = {
659	.pshift = 4,
660	.pwidth = 2,
661};
662
663static struct clk_factors_config sun4i_apb1_config = {
664	.mshift = 0,
665	.mwidth = 5,
666	.pshift = 16,
667	.pwidth = 2,
668};
669
670/* user manual says "n" but it's really "p" */
671static struct clk_factors_config sun7i_a20_out_config = {
672	.mshift = 8,
673	.mwidth = 5,
674	.pshift = 20,
675	.pwidth = 2,
676};
677
678static const struct factors_data sun4i_pll1_data __initconst = {
679	.enable = 31,
680	.table = &sun4i_pll1_config,
681	.getter = sun4i_get_pll1_factors,
682};
683
684static const struct factors_data sun6i_a31_pll1_data __initconst = {
685	.enable = 31,
686	.table = &sun6i_a31_pll1_config,
687	.getter = sun6i_a31_get_pll1_factors,
688};
689
690static const struct factors_data sun8i_a23_pll1_data __initconst = {
691	.enable = 31,
692	.table = &sun8i_a23_pll1_config,
693	.getter = sun8i_a23_get_pll1_factors,
694};
695
696static const struct factors_data sun7i_a20_pll4_data __initconst = {
697	.enable = 31,
698	.table = &sun4i_pll5_config,
699	.getter = sun4i_get_pll5_factors,
700};
701
702static const struct factors_data sun4i_pll5_data __initconst = {
703	.enable = 31,
704	.table = &sun4i_pll5_config,
705	.getter = sun4i_get_pll5_factors,
706	.name = "pll5",
707};
708
709static const struct factors_data sun4i_pll6_data __initconst = {
710	.enable = 31,
711	.table = &sun4i_pll5_config,
712	.getter = sun4i_get_pll5_factors,
713	.name = "pll6",
714};
715
716static const struct factors_data sun6i_a31_pll6_data __initconst = {
717	.enable = 31,
718	.table = &sun6i_a31_pll6_config,
719	.getter = sun6i_a31_get_pll6_factors,
720	.name = "pll6x2",
721};
722
723static const struct factors_data sun5i_a13_ahb_data __initconst = {
724	.mux = 6,
725	.muxmask = BIT(1) | BIT(0),
726	.table = &sun5i_a13_ahb_config,
727	.getter = sun5i_a13_get_ahb_factors,
728};
729
730static const struct factors_data sun4i_apb1_data __initconst = {
731	.mux = 24,
732	.muxmask = BIT(1) | BIT(0),
733	.table = &sun4i_apb1_config,
734	.getter = sun4i_get_apb1_factors,
735};
736
737static const struct factors_data sun7i_a20_out_data __initconst = {
738	.enable = 31,
739	.mux = 24,
740	.muxmask = BIT(1) | BIT(0),
741	.table = &sun7i_a20_out_config,
742	.getter = sun7i_a20_get_out_factors,
743};
744
745static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
746						   const struct factors_data *data)
747{
748	void __iomem *reg;
749
750	reg = of_iomap(node, 0);
751	if (!reg) {
752		pr_err("Could not get registers for factors-clk: %s\n",
753		       node->name);
754		return NULL;
755	}
756
757	return sunxi_factors_register(node, data, &clk_lock, reg);
758}
759
760
761
762/**
763 * sunxi_mux_clk_setup() - Setup function for muxes
764 */
765
766#define SUNXI_MUX_GATE_WIDTH	2
767
768struct mux_data {
769	u8 shift;
770};
771
772static const struct mux_data sun4i_cpu_mux_data __initconst = {
773	.shift = 16,
774};
775
776static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
777	.shift = 12,
778};
779
780static void __init sunxi_mux_clk_setup(struct device_node *node,
781				       struct mux_data *data)
782{
783	struct clk *clk;
784	const char *clk_name = node->name;
785	const char *parents[SUNXI_MAX_PARENTS];
786	void __iomem *reg;
787	int i = 0;
788
789	reg = of_iomap(node, 0);
790
791	while (i < SUNXI_MAX_PARENTS &&
792	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
793		i++;
794
795	of_property_read_string(node, "clock-output-names", &clk_name);
796
797	clk = clk_register_mux(NULL, clk_name, parents, i,
798			       CLK_SET_RATE_PARENT, reg,
799			       data->shift, SUNXI_MUX_GATE_WIDTH,
800			       0, &clk_lock);
801
802	if (clk) {
803		of_clk_add_provider(node, of_clk_src_simple_get, clk);
804		clk_register_clkdev(clk, clk_name, NULL);
805	}
806}
807
808
809
810/**
811 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
812 */
813
814struct div_data {
815	u8	shift;
816	u8	pow;
817	u8	width;
818	const struct clk_div_table *table;
819};
820
821static const struct div_data sun4i_axi_data __initconst = {
822	.shift	= 0,
823	.pow	= 0,
824	.width	= 2,
825};
826
827static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
828	{ .val = 0, .div = 1 },
829	{ .val = 1, .div = 2 },
830	{ .val = 2, .div = 3 },
831	{ .val = 3, .div = 4 },
832	{ .val = 4, .div = 4 },
833	{ .val = 5, .div = 4 },
834	{ .val = 6, .div = 4 },
835	{ .val = 7, .div = 4 },
836	{ } /* sentinel */
837};
838
839static const struct div_data sun8i_a23_axi_data __initconst = {
840	.width	= 3,
841	.table	= sun8i_a23_axi_table,
842};
843
844static const struct div_data sun4i_ahb_data __initconst = {
845	.shift	= 4,
846	.pow	= 1,
847	.width	= 2,
848};
849
850static const struct clk_div_table sun4i_apb0_table[] __initconst = {
851	{ .val = 0, .div = 2 },
852	{ .val = 1, .div = 2 },
853	{ .val = 2, .div = 4 },
854	{ .val = 3, .div = 8 },
855	{ } /* sentinel */
856};
857
858static const struct div_data sun4i_apb0_data __initconst = {
859	.shift	= 8,
860	.pow	= 1,
861	.width	= 2,
862	.table	= sun4i_apb0_table,
863};
864
865static void __init sunxi_divider_clk_setup(struct device_node *node,
866					   struct div_data *data)
867{
868	struct clk *clk;
869	const char *clk_name = node->name;
870	const char *clk_parent;
871	void __iomem *reg;
872
873	reg = of_iomap(node, 0);
874
875	clk_parent = of_clk_get_parent_name(node, 0);
876
877	of_property_read_string(node, "clock-output-names", &clk_name);
878
879	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
880					 reg, data->shift, data->width,
881					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
882					 data->table, &clk_lock);
883	if (clk) {
884		of_clk_add_provider(node, of_clk_src_simple_get, clk);
885		clk_register_clkdev(clk, clk_name, NULL);
886	}
887}
888
889
890
891/**
892 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
893 */
894
895#define SUNXI_GATES_MAX_SIZE	64
896
897struct gates_data {
898	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
899};
900
901static const struct gates_data sun4i_axi_gates_data __initconst = {
902	.mask = {1},
903};
904
905static const struct gates_data sun4i_ahb_gates_data __initconst = {
906	.mask = {0x7F77FFF, 0x14FB3F},
907};
908
909static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
910	.mask = {0x147667e7, 0x185915},
911};
912
913static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
914	.mask = {0x107067e7, 0x185111},
915};
916
917static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
918	.mask = {0xEDFE7F62, 0x794F931},
919};
920
921static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
922	.mask = { 0x12f77fff, 0x16ff3f },
923};
924
925static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
926	.mask = {0x25386742, 0x2505111},
927};
928
929static const struct gates_data sun9i_a80_ahb0_gates_data __initconst = {
930	.mask = {0xF5F12B},
931};
932
933static const struct gates_data sun9i_a80_ahb1_gates_data __initconst = {
934	.mask = {0x1E20003},
935};
936
937static const struct gates_data sun9i_a80_ahb2_gates_data __initconst = {
938	.mask = {0x9B7},
939};
940
941static const struct gates_data sun4i_apb0_gates_data __initconst = {
942	.mask = {0x4EF},
943};
944
945static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
946	.mask = {0x469},
947};
948
949static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
950	.mask = {0x61},
951};
952
953static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
954	.mask = { 0x4ff },
955};
956
957static const struct gates_data sun9i_a80_apb0_gates_data __initconst = {
958	.mask = {0xEB822},
959};
960
961static const struct gates_data sun4i_apb1_gates_data __initconst = {
962	.mask = {0xFF00F7},
963};
964
965static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
966	.mask = {0xf0007},
967};
968
969static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
970	.mask = {0xa0007},
971};
972
973static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
974	.mask = {0x3031},
975};
976
977static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
978	.mask = {0x3021},
979};
980
981static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
982	.mask = {0x3F000F},
983};
984
985static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
986	.mask = { 0xff80ff },
987};
988
989static const struct gates_data sun9i_a80_apb1_gates_data __initconst = {
990	.mask = {0x3F001F},
991};
992
993static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
994	.mask = {0x1F0007},
995};
996
997static void __init sunxi_gates_clk_setup(struct device_node *node,
998					 struct gates_data *data)
999{
1000	struct clk_onecell_data *clk_data;
1001	const char *clk_parent;
1002	const char *clk_name;
1003	void __iomem *reg;
1004	int qty;
1005	int i = 0;
1006	int j = 0;
1007
1008	reg = of_iomap(node, 0);
1009
1010	clk_parent = of_clk_get_parent_name(node, 0);
1011
1012	/* Worst-case size approximation and memory allocation */
1013	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
1014	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1015	if (!clk_data)
1016		return;
1017	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
1018	if (!clk_data->clks) {
1019		kfree(clk_data);
1020		return;
1021	}
1022
1023	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
1024		of_property_read_string_index(node, "clock-output-names",
1025					      j, &clk_name);
1026
1027		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
1028						      clk_parent, 0,
1029						      reg + 4 * (i/32), i % 32,
1030						      0, &clk_lock);
1031		WARN_ON(IS_ERR(clk_data->clks[i]));
1032		clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
1033
1034		j++;
1035	}
1036
1037	/* Adjust to the real max */
1038	clk_data->clk_num = i;
1039
1040	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1041}
1042
1043
1044
1045/**
1046 * sunxi_divs_clk_setup() helper data
1047 */
1048
1049#define SUNXI_DIVS_MAX_QTY	4
1050#define SUNXI_DIVISOR_WIDTH	2
1051
1052struct divs_data {
1053	const struct factors_data *factors; /* data for the factor clock */
1054	int ndivs; /* number of outputs */
1055	/*
1056	 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
1057	 * self or base factor clock refers to the output from the pll
1058	 * itself. The remaining refer to fixed or configurable divider
1059	 * outputs.
1060	 */
1061	struct {
1062		u8 self; /* is it the base factor clock? (only one) */
1063		u8 fixed; /* is it a fixed divisor? if not... */
1064		struct clk_div_table *table; /* is it a table based divisor? */
1065		u8 shift; /* otherwise it's a normal divisor with this shift */
1066		u8 pow;   /* is it power-of-two based? */
1067		u8 gate;  /* is it independently gateable? */
1068	} div[SUNXI_DIVS_MAX_QTY];
1069};
1070
1071static struct clk_div_table pll6_sata_tbl[] = {
1072	{ .val = 0, .div = 6, },
1073	{ .val = 1, .div = 12, },
1074	{ .val = 2, .div = 18, },
1075	{ .val = 3, .div = 24, },
1076	{ } /* sentinel */
1077};
1078
1079static const struct divs_data pll5_divs_data __initconst = {
1080	.factors = &sun4i_pll5_data,
1081	.ndivs = 2,
1082	.div = {
1083		{ .shift = 0, .pow = 0, }, /* M, DDR */
1084		{ .shift = 16, .pow = 1, }, /* P, other */
1085		/* No output for the base factor clock */
1086	}
1087};
1088
1089static const struct divs_data pll6_divs_data __initconst = {
1090	.factors = &sun4i_pll6_data,
1091	.ndivs = 4,
1092	.div = {
1093		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1094		{ .fixed = 2 }, /* P, other */
1095		{ .self = 1 }, /* base factor clock, 2x */
1096		{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
1097	}
1098};
1099
1100static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
1101	.factors = &sun6i_a31_pll6_data,
1102	.ndivs = 2,
1103	.div = {
1104		{ .fixed = 2 }, /* normal output */
1105		{ .self = 1 }, /* base factor clock, 2x */
1106	}
1107};
1108
1109/**
1110 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1111 *
1112 * These clocks look something like this
1113 *            ________________________
1114 *           |         ___divisor 1---|----> to consumer
1115 * parent >--|  pll___/___divisor 2---|----> to consumer
1116 *           |        \_______________|____> to consumer
1117 *           |________________________|
1118 */
1119
1120static void __init sunxi_divs_clk_setup(struct device_node *node,
1121					struct divs_data *data)
1122{
1123	struct clk_onecell_data *clk_data;
1124	const char *parent;
1125	const char *clk_name;
1126	struct clk **clks, *pclk;
1127	struct clk_hw *gate_hw, *rate_hw;
1128	const struct clk_ops *rate_ops;
1129	struct clk_gate *gate = NULL;
1130	struct clk_fixed_factor *fix_factor;
1131	struct clk_divider *divider;
1132	void __iomem *reg;
1133	int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
1134	int flags, clkflags;
1135
1136	/* if number of children known, use it */
1137	if (data->ndivs)
1138		ndivs = data->ndivs;
1139
1140	/* Set up factor clock that we will be dividing */
1141	pclk = sunxi_factors_clk_setup(node, data->factors);
1142	parent = __clk_get_name(pclk);
1143
1144	reg = of_iomap(node, 0);
1145
1146	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1147	if (!clk_data)
1148		return;
1149
1150	clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1151	if (!clks)
1152		goto free_clkdata;
1153
1154	clk_data->clks = clks;
1155
1156	/* It's not a good idea to have automatic reparenting changing
1157	 * our RAM clock! */
1158	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1159
1160	for (i = 0; i < ndivs; i++) {
1161		if (of_property_read_string_index(node, "clock-output-names",
1162						  i, &clk_name) != 0)
1163			break;
1164
1165		/* If this is the base factor clock, only update clks */
1166		if (data->div[i].self) {
1167			clk_data->clks[i] = pclk;
1168			continue;
1169		}
1170
1171		gate_hw = NULL;
1172		rate_hw = NULL;
1173		rate_ops = NULL;
1174
1175		/* If this leaf clock can be gated, create a gate */
1176		if (data->div[i].gate) {
1177			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1178			if (!gate)
1179				goto free_clks;
1180
1181			gate->reg = reg;
1182			gate->bit_idx = data->div[i].gate;
1183			gate->lock = &clk_lock;
1184
1185			gate_hw = &gate->hw;
1186		}
1187
1188		/* Leaves can be fixed or configurable divisors */
1189		if (data->div[i].fixed) {
1190			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1191			if (!fix_factor)
1192				goto free_gate;
1193
1194			fix_factor->mult = 1;
1195			fix_factor->div = data->div[i].fixed;
1196
1197			rate_hw = &fix_factor->hw;
1198			rate_ops = &clk_fixed_factor_ops;
1199		} else {
1200			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1201			if (!divider)
1202				goto free_gate;
1203
1204			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1205
1206			divider->reg = reg;
1207			divider->shift = data->div[i].shift;
1208			divider->width = SUNXI_DIVISOR_WIDTH;
1209			divider->flags = flags;
1210			divider->lock = &clk_lock;
1211			divider->table = data->div[i].table;
1212
1213			rate_hw = &divider->hw;
1214			rate_ops = &clk_divider_ops;
1215		}
1216
1217		/* Wrap the (potential) gate and the divisor on a composite
1218		 * clock to unify them */
1219		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1220						 NULL, NULL,
1221						 rate_hw, rate_ops,
1222						 gate_hw, &clk_gate_ops,
1223						 clkflags);
1224
1225		WARN_ON(IS_ERR(clk_data->clks[i]));
1226		clk_register_clkdev(clks[i], clk_name, NULL);
1227	}
1228
1229	/* Adjust to the real max */
1230	clk_data->clk_num = i;
1231
1232	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1233
1234	return;
1235
1236free_gate:
1237	kfree(gate);
1238free_clks:
1239	kfree(clks);
1240free_clkdata:
1241	kfree(clk_data);
1242}
1243
1244
1245
1246/* Matches for factors clocks */
1247static const struct of_device_id clk_factors_match[] __initconst = {
1248	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1249	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1250	{.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1251	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1252	{.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,},
1253	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1254	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1255	{}
1256};
1257
1258/* Matches for divider clocks */
1259static const struct of_device_id clk_div_match[] __initconst = {
1260	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1261	{.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1262	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1263	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1264	{}
1265};
1266
1267/* Matches for divided outputs */
1268static const struct of_device_id clk_divs_match[] __initconst = {
1269	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1270	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1271	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
1272	{}
1273};
1274
1275/* Matches for mux clocks */
1276static const struct of_device_id clk_mux_match[] __initconst = {
1277	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1278	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1279	{}
1280};
1281
1282/* Matches for gate clocks */
1283static const struct of_device_id clk_gates_match[] __initconst = {
1284	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1285	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1286	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1287	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1288	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1289	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1290	{.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
1291	{.compatible = "allwinner,sun9i-a80-ahb0-gates-clk", .data = &sun9i_a80_ahb0_gates_data,},
1292	{.compatible = "allwinner,sun9i-a80-ahb1-gates-clk", .data = &sun9i_a80_ahb1_gates_data,},
1293	{.compatible = "allwinner,sun9i-a80-ahb2-gates-clk", .data = &sun9i_a80_ahb2_gates_data,},
1294	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1295	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1296	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1297	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1298	{.compatible = "allwinner,sun9i-a80-apb0-gates-clk", .data = &sun9i_a80_apb0_gates_data,},
1299	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1300	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1301	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1302	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1303	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1304	{.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
1305	{.compatible = "allwinner,sun9i-a80-apb1-gates-clk", .data = &sun9i_a80_apb1_gates_data,},
1306	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1307	{.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
1308	{}
1309};
1310
1311static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1312					      void *function)
1313{
1314	struct device_node *np;
1315	const struct div_data *data;
1316	const struct of_device_id *match;
1317	void (*setup_function)(struct device_node *, const void *) = function;
1318
1319	for_each_matching_node_and_match(np, clk_match, &match) {
1320		data = match->data;
1321		setup_function(np, data);
1322	}
1323}
1324
1325static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1326{
1327	unsigned int i;
1328
1329	/* Register divided output clocks */
1330	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1331
1332	/* Register factor clocks */
1333	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1334
1335	/* Register divider clocks */
1336	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1337
1338	/* Register mux clocks */
1339	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1340
1341	/* Register gate clocks */
1342	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1343
1344	/* Protect the clocks that needs to stay on */
1345	for (i = 0; i < nclocks; i++) {
1346		struct clk *clk = clk_get(NULL, clocks[i]);
1347
1348		if (!IS_ERR(clk))
1349			clk_prepare_enable(clk);
1350	}
1351}
1352
1353static const char *sun4i_a10_critical_clocks[] __initdata = {
1354	"pll5_ddr",
1355	"ahb_sdram",
1356};
1357
1358static void __init sun4i_a10_init_clocks(struct device_node *node)
1359{
1360	sunxi_init_clocks(sun4i_a10_critical_clocks,
1361			  ARRAY_SIZE(sun4i_a10_critical_clocks));
1362}
1363CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1364
1365static const char *sun5i_critical_clocks[] __initdata = {
1366	"cpu",
1367	"pll5_ddr",
1368	"ahb_sdram",
1369};
1370
1371static void __init sun5i_init_clocks(struct device_node *node)
1372{
1373	sunxi_init_clocks(sun5i_critical_clocks,
1374			  ARRAY_SIZE(sun5i_critical_clocks));
1375}
1376CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1377CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1378CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1379
1380static const char *sun6i_critical_clocks[] __initdata = {
1381	"cpu",
1382};
1383
1384static void __init sun6i_init_clocks(struct device_node *node)
1385{
1386	sunxi_init_clocks(sun6i_critical_clocks,
1387			  ARRAY_SIZE(sun6i_critical_clocks));
1388}
1389CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1390CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
1391CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1392
1393static void __init sun9i_init_clocks(struct device_node *node)
1394{
1395	sunxi_init_clocks(NULL, 0);
1396}
1397CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);
1398