1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 *  This program is free software; you can redistribute it and/or modify
12 *  it under the terms of the GNU General Public License as published by
13 *  the Free Software Foundation; either version 2 of the License, or (at
14 *  your option) any later version.
15 *
16 *  This program is distributed in the hope that it will be useful, but
17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 *  General Public License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License along
22 *  with this program; if not, write to the Free Software Foundation, Inc.,
23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/smp.h>
32#include <linux/sched.h>
33#include <linux/cpufreq.h>
34#include <linux/compiler.h>
35#include <linux/dmi.h>
36#include <linux/slab.h>
37
38#include <linux/acpi.h>
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
43#include <acpi/processor.h>
44
45#include <asm/msr.h>
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
48
49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51MODULE_LICENSE("GPL");
52
53#define PFX "acpi-cpufreq: "
54
55enum {
56	UNDEFINED_CAPABLE = 0,
57	SYSTEM_INTEL_MSR_CAPABLE,
58	SYSTEM_AMD_MSR_CAPABLE,
59	SYSTEM_IO_CAPABLE,
60};
61
62#define INTEL_MSR_RANGE		(0xffff)
63#define AMD_MSR_RANGE		(0x7)
64
65#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
66
67struct acpi_cpufreq_data {
68	struct acpi_processor_performance *acpi_data;
69	struct cpufreq_frequency_table *freq_table;
70	unsigned int resume;
71	unsigned int cpu_feature;
72	cpumask_var_t freqdomain_cpus;
73};
74
75static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
76
77/* acpi_perf_data is a pointer to percpu data. */
78static struct acpi_processor_performance __percpu *acpi_perf_data;
79
80static struct cpufreq_driver acpi_cpufreq_driver;
81
82static unsigned int acpi_pstate_strict;
83static struct msr __percpu *msrs;
84
85static bool boost_state(unsigned int cpu)
86{
87	u32 lo, hi;
88	u64 msr;
89
90	switch (boot_cpu_data.x86_vendor) {
91	case X86_VENDOR_INTEL:
92		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
93		msr = lo | ((u64)hi << 32);
94		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
95	case X86_VENDOR_AMD:
96		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
97		msr = lo | ((u64)hi << 32);
98		return !(msr & MSR_K7_HWCR_CPB_DIS);
99	}
100	return false;
101}
102
103static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
104{
105	u32 cpu;
106	u32 msr_addr;
107	u64 msr_mask;
108
109	switch (boot_cpu_data.x86_vendor) {
110	case X86_VENDOR_INTEL:
111		msr_addr = MSR_IA32_MISC_ENABLE;
112		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
113		break;
114	case X86_VENDOR_AMD:
115		msr_addr = MSR_K7_HWCR;
116		msr_mask = MSR_K7_HWCR_CPB_DIS;
117		break;
118	default:
119		return;
120	}
121
122	rdmsr_on_cpus(cpumask, msr_addr, msrs);
123
124	for_each_cpu(cpu, cpumask) {
125		struct msr *reg = per_cpu_ptr(msrs, cpu);
126		if (enable)
127			reg->q &= ~msr_mask;
128		else
129			reg->q |= msr_mask;
130	}
131
132	wrmsr_on_cpus(cpumask, msr_addr, msrs);
133}
134
135static int _store_boost(int val)
136{
137	get_online_cpus();
138	boost_set_msrs(val, cpu_online_mask);
139	put_online_cpus();
140	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
141
142	return 0;
143}
144
145static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
146{
147	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
148
149	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
150}
151
152cpufreq_freq_attr_ro(freqdomain_cpus);
153
154#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
155static ssize_t store_boost(const char *buf, size_t count)
156{
157	int ret;
158	unsigned long val = 0;
159
160	if (!acpi_cpufreq_driver.boost_supported)
161		return -EINVAL;
162
163	ret = kstrtoul(buf, 10, &val);
164	if (ret || (val > 1))
165		return -EINVAL;
166
167	_store_boost((int) val);
168
169	return count;
170}
171
172static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
173			 size_t count)
174{
175	return store_boost(buf, count);
176}
177
178static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
179{
180	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
181}
182
183cpufreq_freq_attr_rw(cpb);
184#endif
185
186static int check_est_cpu(unsigned int cpuid)
187{
188	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
189
190	return cpu_has(cpu, X86_FEATURE_EST);
191}
192
193static int check_amd_hwpstate_cpu(unsigned int cpuid)
194{
195	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
196
197	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
198}
199
200static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
201{
202	struct acpi_processor_performance *perf;
203	int i;
204
205	perf = data->acpi_data;
206
207	for (i = 0; i < perf->state_count; i++) {
208		if (value == perf->states[i].status)
209			return data->freq_table[i].frequency;
210	}
211	return 0;
212}
213
214static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
215{
216	struct cpufreq_frequency_table *pos;
217	struct acpi_processor_performance *perf;
218
219	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
220		msr &= AMD_MSR_RANGE;
221	else
222		msr &= INTEL_MSR_RANGE;
223
224	perf = data->acpi_data;
225
226	cpufreq_for_each_entry(pos, data->freq_table)
227		if (msr == perf->states[pos->driver_data].status)
228			return pos->frequency;
229	return data->freq_table[0].frequency;
230}
231
232static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
233{
234	switch (data->cpu_feature) {
235	case SYSTEM_INTEL_MSR_CAPABLE:
236	case SYSTEM_AMD_MSR_CAPABLE:
237		return extract_msr(val, data);
238	case SYSTEM_IO_CAPABLE:
239		return extract_io(val, data);
240	default:
241		return 0;
242	}
243}
244
245struct msr_addr {
246	u32 reg;
247};
248
249struct io_addr {
250	u16 port;
251	u8 bit_width;
252};
253
254struct drv_cmd {
255	unsigned int type;
256	const struct cpumask *mask;
257	union {
258		struct msr_addr msr;
259		struct io_addr io;
260	} addr;
261	u32 val;
262};
263
264/* Called via smp_call_function_single(), on the target CPU */
265static void do_drv_read(void *_cmd)
266{
267	struct drv_cmd *cmd = _cmd;
268	u32 h;
269
270	switch (cmd->type) {
271	case SYSTEM_INTEL_MSR_CAPABLE:
272	case SYSTEM_AMD_MSR_CAPABLE:
273		rdmsr(cmd->addr.msr.reg, cmd->val, h);
274		break;
275	case SYSTEM_IO_CAPABLE:
276		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
277				&cmd->val,
278				(u32)cmd->addr.io.bit_width);
279		break;
280	default:
281		break;
282	}
283}
284
285/* Called via smp_call_function_many(), on the target CPUs */
286static void do_drv_write(void *_cmd)
287{
288	struct drv_cmd *cmd = _cmd;
289	u32 lo, hi;
290
291	switch (cmd->type) {
292	case SYSTEM_INTEL_MSR_CAPABLE:
293		rdmsr(cmd->addr.msr.reg, lo, hi);
294		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
295		wrmsr(cmd->addr.msr.reg, lo, hi);
296		break;
297	case SYSTEM_AMD_MSR_CAPABLE:
298		wrmsr(cmd->addr.msr.reg, cmd->val, 0);
299		break;
300	case SYSTEM_IO_CAPABLE:
301		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
302				cmd->val,
303				(u32)cmd->addr.io.bit_width);
304		break;
305	default:
306		break;
307	}
308}
309
310static void drv_read(struct drv_cmd *cmd)
311{
312	int err;
313	cmd->val = 0;
314
315	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
316	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
317}
318
319static void drv_write(struct drv_cmd *cmd)
320{
321	int this_cpu;
322
323	this_cpu = get_cpu();
324	if (cpumask_test_cpu(this_cpu, cmd->mask))
325		do_drv_write(cmd);
326	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
327	put_cpu();
328}
329
330static u32 get_cur_val(const struct cpumask *mask)
331{
332	struct acpi_processor_performance *perf;
333	struct drv_cmd cmd;
334
335	if (unlikely(cpumask_empty(mask)))
336		return 0;
337
338	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
339	case SYSTEM_INTEL_MSR_CAPABLE:
340		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
341		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
342		break;
343	case SYSTEM_AMD_MSR_CAPABLE:
344		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
345		cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
346		break;
347	case SYSTEM_IO_CAPABLE:
348		cmd.type = SYSTEM_IO_CAPABLE;
349		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
350		cmd.addr.io.port = perf->control_register.address;
351		cmd.addr.io.bit_width = perf->control_register.bit_width;
352		break;
353	default:
354		return 0;
355	}
356
357	cmd.mask = mask;
358	drv_read(&cmd);
359
360	pr_debug("get_cur_val = %u\n", cmd.val);
361
362	return cmd.val;
363}
364
365static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
366{
367	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
368	unsigned int freq;
369	unsigned int cached_freq;
370
371	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
372
373	if (unlikely(data == NULL ||
374		     data->acpi_data == NULL || data->freq_table == NULL)) {
375		return 0;
376	}
377
378	cached_freq = data->freq_table[data->acpi_data->state].frequency;
379	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
380	if (freq != cached_freq) {
381		/*
382		 * The dreaded BIOS frequency change behind our back.
383		 * Force set the frequency on next target call.
384		 */
385		data->resume = 1;
386	}
387
388	pr_debug("cur freq = %u\n", freq);
389
390	return freq;
391}
392
393static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
394				struct acpi_cpufreq_data *data)
395{
396	unsigned int cur_freq;
397	unsigned int i;
398
399	for (i = 0; i < 100; i++) {
400		cur_freq = extract_freq(get_cur_val(mask), data);
401		if (cur_freq == freq)
402			return 1;
403		udelay(10);
404	}
405	return 0;
406}
407
408static int acpi_cpufreq_target(struct cpufreq_policy *policy,
409			       unsigned int index)
410{
411	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
412	struct acpi_processor_performance *perf;
413	struct drv_cmd cmd;
414	unsigned int next_perf_state = 0; /* Index into perf table */
415	int result = 0;
416
417	if (unlikely(data == NULL ||
418	     data->acpi_data == NULL || data->freq_table == NULL)) {
419		return -ENODEV;
420	}
421
422	perf = data->acpi_data;
423	next_perf_state = data->freq_table[index].driver_data;
424	if (perf->state == next_perf_state) {
425		if (unlikely(data->resume)) {
426			pr_debug("Called after resume, resetting to P%d\n",
427				next_perf_state);
428			data->resume = 0;
429		} else {
430			pr_debug("Already at target state (P%d)\n",
431				next_perf_state);
432			goto out;
433		}
434	}
435
436	switch (data->cpu_feature) {
437	case SYSTEM_INTEL_MSR_CAPABLE:
438		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
439		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
440		cmd.val = (u32) perf->states[next_perf_state].control;
441		break;
442	case SYSTEM_AMD_MSR_CAPABLE:
443		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
444		cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
445		cmd.val = (u32) perf->states[next_perf_state].control;
446		break;
447	case SYSTEM_IO_CAPABLE:
448		cmd.type = SYSTEM_IO_CAPABLE;
449		cmd.addr.io.port = perf->control_register.address;
450		cmd.addr.io.bit_width = perf->control_register.bit_width;
451		cmd.val = (u32) perf->states[next_perf_state].control;
452		break;
453	default:
454		result = -ENODEV;
455		goto out;
456	}
457
458	/* cpufreq holds the hotplug lock, so we are safe from here on */
459	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
460		cmd.mask = policy->cpus;
461	else
462		cmd.mask = cpumask_of(policy->cpu);
463
464	drv_write(&cmd);
465
466	if (acpi_pstate_strict) {
467		if (!check_freqs(cmd.mask, data->freq_table[index].frequency,
468					data)) {
469			pr_debug("acpi_cpufreq_target failed (%d)\n",
470				policy->cpu);
471			result = -EAGAIN;
472		}
473	}
474
475	if (!result)
476		perf->state = next_perf_state;
477
478out:
479	return result;
480}
481
482static unsigned long
483acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
484{
485	struct acpi_processor_performance *perf = data->acpi_data;
486
487	if (cpu_khz) {
488		/* search the closest match to cpu_khz */
489		unsigned int i;
490		unsigned long freq;
491		unsigned long freqn = perf->states[0].core_frequency * 1000;
492
493		for (i = 0; i < (perf->state_count-1); i++) {
494			freq = freqn;
495			freqn = perf->states[i+1].core_frequency * 1000;
496			if ((2 * cpu_khz) > (freqn + freq)) {
497				perf->state = i;
498				return freq;
499			}
500		}
501		perf->state = perf->state_count-1;
502		return freqn;
503	} else {
504		/* assume CPU is at P0... */
505		perf->state = 0;
506		return perf->states[0].core_frequency * 1000;
507	}
508}
509
510static void free_acpi_perf_data(void)
511{
512	unsigned int i;
513
514	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
515	for_each_possible_cpu(i)
516		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
517				 ->shared_cpu_map);
518	free_percpu(acpi_perf_data);
519}
520
521static int boost_notify(struct notifier_block *nb, unsigned long action,
522		      void *hcpu)
523{
524	unsigned cpu = (long)hcpu;
525	const struct cpumask *cpumask;
526
527	cpumask = get_cpu_mask(cpu);
528
529	/*
530	 * Clear the boost-disable bit on the CPU_DOWN path so that
531	 * this cpu cannot block the remaining ones from boosting. On
532	 * the CPU_UP path we simply keep the boost-disable flag in
533	 * sync with the current global state.
534	 */
535
536	switch (action) {
537	case CPU_UP_PREPARE:
538	case CPU_UP_PREPARE_FROZEN:
539		boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
540		break;
541
542	case CPU_DOWN_PREPARE:
543	case CPU_DOWN_PREPARE_FROZEN:
544		boost_set_msrs(1, cpumask);
545		break;
546
547	default:
548		break;
549	}
550
551	return NOTIFY_OK;
552}
553
554
555static struct notifier_block boost_nb = {
556	.notifier_call          = boost_notify,
557};
558
559/*
560 * acpi_cpufreq_early_init - initialize ACPI P-States library
561 *
562 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
563 * in order to determine correct frequency and voltage pairings. We can
564 * do _PDC and _PSD and find out the processor dependency for the
565 * actual init that will happen later...
566 */
567static int __init acpi_cpufreq_early_init(void)
568{
569	unsigned int i;
570	pr_debug("acpi_cpufreq_early_init\n");
571
572	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
573	if (!acpi_perf_data) {
574		pr_debug("Memory allocation error for acpi_perf_data.\n");
575		return -ENOMEM;
576	}
577	for_each_possible_cpu(i) {
578		if (!zalloc_cpumask_var_node(
579			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
580			GFP_KERNEL, cpu_to_node(i))) {
581
582			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
583			free_acpi_perf_data();
584			return -ENOMEM;
585		}
586	}
587
588	/* Do initialization in ACPI core */
589	acpi_processor_preregister_performance(acpi_perf_data);
590	return 0;
591}
592
593#ifdef CONFIG_SMP
594/*
595 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
596 * or do it in BIOS firmware and won't inform about it to OS. If not
597 * detected, this has a side effect of making CPU run at a different speed
598 * than OS intended it to run at. Detect it and handle it cleanly.
599 */
600static int bios_with_sw_any_bug;
601
602static int sw_any_bug_found(const struct dmi_system_id *d)
603{
604	bios_with_sw_any_bug = 1;
605	return 0;
606}
607
608static const struct dmi_system_id sw_any_bug_dmi_table[] = {
609	{
610		.callback = sw_any_bug_found,
611		.ident = "Supermicro Server X6DLP",
612		.matches = {
613			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
614			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
615			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
616		},
617	},
618	{ }
619};
620
621static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
622{
623	/* Intel Xeon Processor 7100 Series Specification Update
624	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
625	 * AL30: A Machine Check Exception (MCE) Occurring during an
626	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
627	 * Both Processor Cores to Lock Up. */
628	if (c->x86_vendor == X86_VENDOR_INTEL) {
629		if ((c->x86 == 15) &&
630		    (c->x86_model == 6) &&
631		    (c->x86_mask == 8)) {
632			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
633			    "Xeon(R) 7100 Errata AL30, processors may "
634			    "lock up on frequency changes: disabling "
635			    "acpi-cpufreq.\n");
636			return -ENODEV;
637		    }
638		}
639	return 0;
640}
641#endif
642
643static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
644{
645	unsigned int i;
646	unsigned int valid_states = 0;
647	unsigned int cpu = policy->cpu;
648	struct acpi_cpufreq_data *data;
649	unsigned int result = 0;
650	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
651	struct acpi_processor_performance *perf;
652#ifdef CONFIG_SMP
653	static int blacklisted;
654#endif
655
656	pr_debug("acpi_cpufreq_cpu_init\n");
657
658#ifdef CONFIG_SMP
659	if (blacklisted)
660		return blacklisted;
661	blacklisted = acpi_cpufreq_blacklist(c);
662	if (blacklisted)
663		return blacklisted;
664#endif
665
666	data = kzalloc(sizeof(*data), GFP_KERNEL);
667	if (!data)
668		return -ENOMEM;
669
670	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
671		result = -ENOMEM;
672		goto err_free;
673	}
674
675	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
676	per_cpu(acfreq_data, cpu) = data;
677
678	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
679		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
680
681	result = acpi_processor_register_performance(data->acpi_data, cpu);
682	if (result)
683		goto err_free_mask;
684
685	perf = data->acpi_data;
686	policy->shared_type = perf->shared_type;
687
688	/*
689	 * Will let policy->cpus know about dependency only when software
690	 * coordination is required.
691	 */
692	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
693	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
694		cpumask_copy(policy->cpus, perf->shared_cpu_map);
695	}
696	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
697
698#ifdef CONFIG_SMP
699	dmi_check_system(sw_any_bug_dmi_table);
700	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
701		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
702		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
703	}
704
705	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
706		cpumask_clear(policy->cpus);
707		cpumask_set_cpu(cpu, policy->cpus);
708		cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
709		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
710		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
711	}
712#endif
713
714	/* capability check */
715	if (perf->state_count <= 1) {
716		pr_debug("No P-States\n");
717		result = -ENODEV;
718		goto err_unreg;
719	}
720
721	if (perf->control_register.space_id != perf->status_register.space_id) {
722		result = -ENODEV;
723		goto err_unreg;
724	}
725
726	switch (perf->control_register.space_id) {
727	case ACPI_ADR_SPACE_SYSTEM_IO:
728		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
729		    boot_cpu_data.x86 == 0xf) {
730			pr_debug("AMD K8 systems must use native drivers.\n");
731			result = -ENODEV;
732			goto err_unreg;
733		}
734		pr_debug("SYSTEM IO addr space\n");
735		data->cpu_feature = SYSTEM_IO_CAPABLE;
736		break;
737	case ACPI_ADR_SPACE_FIXED_HARDWARE:
738		pr_debug("HARDWARE addr space\n");
739		if (check_est_cpu(cpu)) {
740			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
741			break;
742		}
743		if (check_amd_hwpstate_cpu(cpu)) {
744			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
745			break;
746		}
747		result = -ENODEV;
748		goto err_unreg;
749	default:
750		pr_debug("Unknown addr space %d\n",
751			(u32) (perf->control_register.space_id));
752		result = -ENODEV;
753		goto err_unreg;
754	}
755
756	data->freq_table = kzalloc(sizeof(*data->freq_table) *
757		    (perf->state_count+1), GFP_KERNEL);
758	if (!data->freq_table) {
759		result = -ENOMEM;
760		goto err_unreg;
761	}
762
763	/* detect transition latency */
764	policy->cpuinfo.transition_latency = 0;
765	for (i = 0; i < perf->state_count; i++) {
766		if ((perf->states[i].transition_latency * 1000) >
767		    policy->cpuinfo.transition_latency)
768			policy->cpuinfo.transition_latency =
769			    perf->states[i].transition_latency * 1000;
770	}
771
772	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
773	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
774	    policy->cpuinfo.transition_latency > 20 * 1000) {
775		policy->cpuinfo.transition_latency = 20 * 1000;
776		printk_once(KERN_INFO
777			    "P-state transition latency capped at 20 uS\n");
778	}
779
780	/* table init */
781	for (i = 0; i < perf->state_count; i++) {
782		if (i > 0 && perf->states[i].core_frequency >=
783		    data->freq_table[valid_states-1].frequency / 1000)
784			continue;
785
786		data->freq_table[valid_states].driver_data = i;
787		data->freq_table[valid_states].frequency =
788		    perf->states[i].core_frequency * 1000;
789		valid_states++;
790	}
791	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
792	perf->state = 0;
793
794	result = cpufreq_table_validate_and_show(policy, data->freq_table);
795	if (result)
796		goto err_freqfree;
797
798	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
799		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
800
801	switch (perf->control_register.space_id) {
802	case ACPI_ADR_SPACE_SYSTEM_IO:
803		/*
804		 * The core will not set policy->cur, because
805		 * cpufreq_driver->get is NULL, so we need to set it here.
806		 * However, we have to guess it, because the current speed is
807		 * unknown and not detectable via IO ports.
808		 */
809		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
810		break;
811	case ACPI_ADR_SPACE_FIXED_HARDWARE:
812		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
813		break;
814	default:
815		break;
816	}
817
818	/* notify BIOS that we exist */
819	acpi_processor_notify_smm(THIS_MODULE);
820
821	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
822	for (i = 0; i < perf->state_count; i++)
823		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
824			(i == perf->state ? '*' : ' '), i,
825			(u32) perf->states[i].core_frequency,
826			(u32) perf->states[i].power,
827			(u32) perf->states[i].transition_latency);
828
829	/*
830	 * the first call to ->target() should result in us actually
831	 * writing something to the appropriate registers.
832	 */
833	data->resume = 1;
834
835	return result;
836
837err_freqfree:
838	kfree(data->freq_table);
839err_unreg:
840	acpi_processor_unregister_performance(perf, cpu);
841err_free_mask:
842	free_cpumask_var(data->freqdomain_cpus);
843err_free:
844	kfree(data);
845	per_cpu(acfreq_data, cpu) = NULL;
846
847	return result;
848}
849
850static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
851{
852	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
853
854	pr_debug("acpi_cpufreq_cpu_exit\n");
855
856	if (data) {
857		per_cpu(acfreq_data, policy->cpu) = NULL;
858		acpi_processor_unregister_performance(data->acpi_data,
859						      policy->cpu);
860		free_cpumask_var(data->freqdomain_cpus);
861		kfree(data->freq_table);
862		kfree(data);
863	}
864
865	return 0;
866}
867
868static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
869{
870	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
871
872	pr_debug("acpi_cpufreq_resume\n");
873
874	data->resume = 1;
875
876	return 0;
877}
878
879static struct freq_attr *acpi_cpufreq_attr[] = {
880	&cpufreq_freq_attr_scaling_available_freqs,
881	&freqdomain_cpus,
882	NULL,	/* this is a placeholder for cpb, do not remove */
883	NULL,
884};
885
886static struct cpufreq_driver acpi_cpufreq_driver = {
887	.verify		= cpufreq_generic_frequency_table_verify,
888	.target_index	= acpi_cpufreq_target,
889	.bios_limit	= acpi_processor_get_bios_limit,
890	.init		= acpi_cpufreq_cpu_init,
891	.exit		= acpi_cpufreq_cpu_exit,
892	.resume		= acpi_cpufreq_resume,
893	.name		= "acpi-cpufreq",
894	.attr		= acpi_cpufreq_attr,
895	.set_boost      = _store_boost,
896};
897
898static void __init acpi_cpufreq_boost_init(void)
899{
900	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
901		msrs = msrs_alloc();
902
903		if (!msrs)
904			return;
905
906		acpi_cpufreq_driver.boost_supported = true;
907		acpi_cpufreq_driver.boost_enabled = boost_state(0);
908
909		cpu_notifier_register_begin();
910
911		/* Force all MSRs to the same value */
912		boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
913			       cpu_online_mask);
914
915		__register_cpu_notifier(&boost_nb);
916
917		cpu_notifier_register_done();
918	}
919}
920
921static void acpi_cpufreq_boost_exit(void)
922{
923	if (msrs) {
924		unregister_cpu_notifier(&boost_nb);
925
926		msrs_free(msrs);
927		msrs = NULL;
928	}
929}
930
931static int __init acpi_cpufreq_init(void)
932{
933	int ret;
934
935	if (acpi_disabled)
936		return -ENODEV;
937
938	/* don't keep reloading if cpufreq_driver exists */
939	if (cpufreq_get_current_driver())
940		return -EEXIST;
941
942	pr_debug("acpi_cpufreq_init\n");
943
944	ret = acpi_cpufreq_early_init();
945	if (ret)
946		return ret;
947
948#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
949	/* this is a sysfs file with a strange name and an even stranger
950	 * semantic - per CPU instantiation, but system global effect.
951	 * Lets enable it only on AMD CPUs for compatibility reasons and
952	 * only if configured. This is considered legacy code, which
953	 * will probably be removed at some point in the future.
954	 */
955	if (check_amd_hwpstate_cpu(0)) {
956		struct freq_attr **iter;
957
958		pr_debug("adding sysfs entry for cpb\n");
959
960		for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
961			;
962
963		/* make sure there is a terminator behind it */
964		if (iter[1] == NULL)
965			*iter = &cpb;
966	}
967#endif
968	acpi_cpufreq_boost_init();
969
970	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
971	if (ret) {
972		free_acpi_perf_data();
973		acpi_cpufreq_boost_exit();
974	}
975	return ret;
976}
977
978static void __exit acpi_cpufreq_exit(void)
979{
980	pr_debug("acpi_cpufreq_exit\n");
981
982	acpi_cpufreq_boost_exit();
983
984	cpufreq_unregister_driver(&acpi_cpufreq_driver);
985
986	free_acpi_perf_data();
987}
988
989module_param(acpi_pstate_strict, uint, 0644);
990MODULE_PARM_DESC(acpi_pstate_strict,
991	"value 0 or non-zero. non-zero -> strict ACPI checks are "
992	"performed during frequency changes.");
993
994late_initcall(acpi_cpufreq_init);
995module_exit(acpi_cpufreq_exit);
996
997static const struct x86_cpu_id acpi_cpufreq_ids[] = {
998	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
999	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1000	{}
1001};
1002MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1003
1004static const struct acpi_device_id processor_device_ids[] = {
1005	{ACPI_PROCESSOR_OBJECT_HID, },
1006	{ACPI_PROCESSOR_DEVICE_HID, },
1007	{},
1008};
1009MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1010
1011MODULE_ALIAS("acpi");
1012