1/*
2 * Renesas R-Car Gen2 DMA Controller Driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Inc.
5 *
6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7 *
8 * This is free software; you can redistribute it and/or modify
9 * it under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/interrupt.h>
16#include <linux/list.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <linux/of.h>
20#include <linux/of_dma.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26
27#include "../dmaengine.h"
28
29/*
30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31 * @node: entry in the parent's chunks list
32 * @src_addr: device source address
33 * @dst_addr: device destination address
34 * @size: transfer size in bytes
35 */
36struct rcar_dmac_xfer_chunk {
37	struct list_head node;
38
39	dma_addr_t src_addr;
40	dma_addr_t dst_addr;
41	u32 size;
42};
43
44/*
45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46 * @sar: value of the SAR register (source address)
47 * @dar: value of the DAR register (destination address)
48 * @tcr: value of the TCR register (transfer count)
49 */
50struct rcar_dmac_hw_desc {
51	u32 sar;
52	u32 dar;
53	u32 tcr;
54	u32 reserved;
55} __attribute__((__packed__));
56
57/*
58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59 * @async_tx: base DMA asynchronous transaction descriptor
60 * @direction: direction of the DMA transfer
61 * @xfer_shift: log2 of the transfer size
62 * @chcr: value of the channel configuration register for this transfer
63 * @node: entry in the channel's descriptors lists
64 * @chunks: list of transfer chunks for this transfer
65 * @running: the transfer chunk being currently processed
66 * @nchunks: number of transfer chunks for this transfer
67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68 * @hwdescs.mem: hardware descriptors memory for the transfer
69 * @hwdescs.dma: device address of the hardware descriptors memory
70 * @hwdescs.size: size of the hardware descriptors in bytes
71 * @size: transfer size in bytes
72 * @cyclic: when set indicates that the DMA transfer is cyclic
73 */
74struct rcar_dmac_desc {
75	struct dma_async_tx_descriptor async_tx;
76	enum dma_transfer_direction direction;
77	unsigned int xfer_shift;
78	u32 chcr;
79
80	struct list_head node;
81	struct list_head chunks;
82	struct rcar_dmac_xfer_chunk *running;
83	unsigned int nchunks;
84
85	struct {
86		bool use;
87		struct rcar_dmac_hw_desc *mem;
88		dma_addr_t dma;
89		size_t size;
90	} hwdescs;
91
92	unsigned int size;
93	bool cyclic;
94};
95
96#define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
97
98/*
99 * struct rcar_dmac_desc_page - One page worth of descriptors
100 * @node: entry in the channel's pages list
101 * @descs: array of DMA descriptors
102 * @chunks: array of transfer chunk descriptors
103 */
104struct rcar_dmac_desc_page {
105	struct list_head node;
106
107	union {
108		struct rcar_dmac_desc descs[0];
109		struct rcar_dmac_xfer_chunk chunks[0];
110	};
111};
112
113#define RCAR_DMAC_DESCS_PER_PAGE					\
114	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
115	sizeof(struct rcar_dmac_desc))
116#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
117	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
118	sizeof(struct rcar_dmac_xfer_chunk))
119
120/*
121 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
122 * @chan: base DMA channel object
123 * @iomem: channel I/O memory base
124 * @index: index of this channel in the controller
125 * @src_xfer_size: size (in bytes) of hardware transfers on the source side
126 * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
127 * @src_slave_addr: slave source memory address
128 * @dst_slave_addr: slave destination memory address
129 * @mid_rid: hardware MID/RID for the DMA client using this channel
130 * @lock: protects the channel CHCR register and the desc members
131 * @desc.free: list of free descriptors
132 * @desc.pending: list of pending descriptors (submitted with tx_submit)
133 * @desc.active: list of active descriptors (activated with issue_pending)
134 * @desc.done: list of completed descriptors
135 * @desc.wait: list of descriptors waiting for an ack
136 * @desc.running: the descriptor being processed (a member of the active list)
137 * @desc.chunks_free: list of free transfer chunk descriptors
138 * @desc.pages: list of pages used by allocated descriptors
139 */
140struct rcar_dmac_chan {
141	struct dma_chan chan;
142	void __iomem *iomem;
143	unsigned int index;
144
145	unsigned int src_xfer_size;
146	unsigned int dst_xfer_size;
147	dma_addr_t src_slave_addr;
148	dma_addr_t dst_slave_addr;
149	int mid_rid;
150
151	spinlock_t lock;
152
153	struct {
154		struct list_head free;
155		struct list_head pending;
156		struct list_head active;
157		struct list_head done;
158		struct list_head wait;
159		struct rcar_dmac_desc *running;
160
161		struct list_head chunks_free;
162
163		struct list_head pages;
164	} desc;
165};
166
167#define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
168
169/*
170 * struct rcar_dmac - R-Car Gen2 DMA Controller
171 * @engine: base DMA engine object
172 * @dev: the hardware device
173 * @iomem: remapped I/O memory base
174 * @n_channels: number of available channels
175 * @channels: array of DMAC channels
176 * @modules: bitmask of client modules in use
177 */
178struct rcar_dmac {
179	struct dma_device engine;
180	struct device *dev;
181	void __iomem *iomem;
182
183	unsigned int n_channels;
184	struct rcar_dmac_chan *channels;
185
186	unsigned long modules[256 / BITS_PER_LONG];
187};
188
189#define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
190
191/* -----------------------------------------------------------------------------
192 * Registers
193 */
194
195#define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))
196
197#define RCAR_DMAISTA			0x0020
198#define RCAR_DMASEC			0x0030
199#define RCAR_DMAOR			0x0060
200#define RCAR_DMAOR_PRI_FIXED		(0 << 8)
201#define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
202#define RCAR_DMAOR_AE			(1 << 2)
203#define RCAR_DMAOR_DME			(1 << 0)
204#define RCAR_DMACHCLR			0x0080
205#define RCAR_DMADPSEC			0x00a0
206
207#define RCAR_DMASAR			0x0000
208#define RCAR_DMADAR			0x0004
209#define RCAR_DMATCR			0x0008
210#define RCAR_DMATCR_MASK		0x00ffffff
211#define RCAR_DMATSR			0x0028
212#define RCAR_DMACHCR			0x000c
213#define RCAR_DMACHCR_CAE		(1 << 31)
214#define RCAR_DMACHCR_CAIE		(1 << 30)
215#define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
216#define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
217#define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
218#define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
219#define RCAR_DMACHCR_RPT_SAR		(1 << 27)
220#define RCAR_DMACHCR_RPT_DAR		(1 << 26)
221#define RCAR_DMACHCR_RPT_TCR		(1 << 25)
222#define RCAR_DMACHCR_DPB		(1 << 22)
223#define RCAR_DMACHCR_DSE		(1 << 19)
224#define RCAR_DMACHCR_DSIE		(1 << 18)
225#define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
226#define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
227#define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
228#define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
229#define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
230#define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
231#define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
232#define RCAR_DMACHCR_DM_FIXED		(0 << 14)
233#define RCAR_DMACHCR_DM_INC		(1 << 14)
234#define RCAR_DMACHCR_DM_DEC		(2 << 14)
235#define RCAR_DMACHCR_SM_FIXED		(0 << 12)
236#define RCAR_DMACHCR_SM_INC		(1 << 12)
237#define RCAR_DMACHCR_SM_DEC		(2 << 12)
238#define RCAR_DMACHCR_RS_AUTO		(4 << 8)
239#define RCAR_DMACHCR_RS_DMARS		(8 << 8)
240#define RCAR_DMACHCR_IE			(1 << 2)
241#define RCAR_DMACHCR_TE			(1 << 1)
242#define RCAR_DMACHCR_DE			(1 << 0)
243#define RCAR_DMATCRB			0x0018
244#define RCAR_DMATSRB			0x0038
245#define RCAR_DMACHCRB			0x001c
246#define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
247#define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
248#define RCAR_DMACHCRB_DPTR_SHIFT	16
249#define RCAR_DMACHCRB_DRST		(1 << 15)
250#define RCAR_DMACHCRB_DTS		(1 << 8)
251#define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
252#define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
253#define RCAR_DMACHCRB_PRI(n)		((n) << 0)
254#define RCAR_DMARS			0x0040
255#define RCAR_DMABUFCR			0x0048
256#define RCAR_DMABUFCR_MBU(n)		((n) << 16)
257#define RCAR_DMABUFCR_ULB(n)		((n) << 0)
258#define RCAR_DMADPBASE			0x0050
259#define RCAR_DMADPBASE_MASK		0xfffffff0
260#define RCAR_DMADPBASE_SEL		(1 << 0)
261#define RCAR_DMADPCR			0x0054
262#define RCAR_DMADPCR_DIPT(n)		((n) << 24)
263#define RCAR_DMAFIXSAR			0x0010
264#define RCAR_DMAFIXDAR			0x0014
265#define RCAR_DMAFIXDPBASE		0x0060
266
267/* Hardcode the MEMCPY transfer size to 4 bytes. */
268#define RCAR_DMAC_MEMCPY_XFER_SIZE	4
269
270/* -----------------------------------------------------------------------------
271 * Device access
272 */
273
274static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
275{
276	if (reg == RCAR_DMAOR)
277		writew(data, dmac->iomem + reg);
278	else
279		writel(data, dmac->iomem + reg);
280}
281
282static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
283{
284	if (reg == RCAR_DMAOR)
285		return readw(dmac->iomem + reg);
286	else
287		return readl(dmac->iomem + reg);
288}
289
290static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
291{
292	if (reg == RCAR_DMARS)
293		return readw(chan->iomem + reg);
294	else
295		return readl(chan->iomem + reg);
296}
297
298static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
299{
300	if (reg == RCAR_DMARS)
301		writew(data, chan->iomem + reg);
302	else
303		writel(data, chan->iomem + reg);
304}
305
306/* -----------------------------------------------------------------------------
307 * Initialization and configuration
308 */
309
310static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
311{
312	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
313
314	return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
315}
316
317static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
318{
319	struct rcar_dmac_desc *desc = chan->desc.running;
320	u32 chcr = desc->chcr;
321
322	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
323
324	if (chan->mid_rid >= 0)
325		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
326
327	if (desc->hwdescs.use) {
328		struct rcar_dmac_xfer_chunk *chunk;
329
330		dev_dbg(chan->chan.device->dev,
331			"chan%u: queue desc %p: %u@%pad\n",
332			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
333
334#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
335		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
336				     desc->hwdescs.dma >> 32);
337#endif
338		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
339				     (desc->hwdescs.dma & 0xfffffff0) |
340				     RCAR_DMADPBASE_SEL);
341		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
342				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
343				     RCAR_DMACHCRB_DRST);
344
345		/*
346		 * Errata: When descriptor memory is accessed through an IOMMU
347		 * the DMADAR register isn't initialized automatically from the
348		 * first descriptor at beginning of transfer by the DMAC like it
349		 * should. Initialize it manually with the destination address
350		 * of the first chunk.
351		 */
352		chunk = list_first_entry(&desc->chunks,
353					 struct rcar_dmac_xfer_chunk, node);
354		rcar_dmac_chan_write(chan, RCAR_DMADAR,
355				     chunk->dst_addr & 0xffffffff);
356
357		/*
358		 * Program the descriptor stage interrupt to occur after the end
359		 * of the first stage.
360		 */
361		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
362
363		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
364		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
365
366		/*
367		 * If the descriptor isn't cyclic enable normal descriptor mode
368		 * and the transfer completion interrupt.
369		 */
370		if (!desc->cyclic)
371			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
372		/*
373		 * If the descriptor is cyclic and has a callback enable the
374		 * descriptor stage interrupt in infinite repeat mode.
375		 */
376		else if (desc->async_tx.callback)
377			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
378		/*
379		 * Otherwise just select infinite repeat mode without any
380		 * interrupt.
381		 */
382		else
383			chcr |= RCAR_DMACHCR_DPM_INFINITE;
384	} else {
385		struct rcar_dmac_xfer_chunk *chunk = desc->running;
386
387		dev_dbg(chan->chan.device->dev,
388			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
389			chan->index, chunk, chunk->size, &chunk->src_addr,
390			&chunk->dst_addr);
391
392#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
393		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
394				     chunk->src_addr >> 32);
395		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
396				     chunk->dst_addr >> 32);
397#endif
398		rcar_dmac_chan_write(chan, RCAR_DMASAR,
399				     chunk->src_addr & 0xffffffff);
400		rcar_dmac_chan_write(chan, RCAR_DMADAR,
401				     chunk->dst_addr & 0xffffffff);
402		rcar_dmac_chan_write(chan, RCAR_DMATCR,
403				     chunk->size >> desc->xfer_shift);
404
405		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
406	}
407
408	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
409}
410
411static int rcar_dmac_init(struct rcar_dmac *dmac)
412{
413	u16 dmaor;
414
415	/* Clear all channels and enable the DMAC globally. */
416	rcar_dmac_write(dmac, RCAR_DMACHCLR, 0x7fff);
417	rcar_dmac_write(dmac, RCAR_DMAOR,
418			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
419
420	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
421	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
422		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
423		return -EIO;
424	}
425
426	return 0;
427}
428
429/* -----------------------------------------------------------------------------
430 * Descriptors submission
431 */
432
433static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
434{
435	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
436	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
437	unsigned long flags;
438	dma_cookie_t cookie;
439
440	spin_lock_irqsave(&chan->lock, flags);
441
442	cookie = dma_cookie_assign(tx);
443
444	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
445		chan->index, tx->cookie, desc);
446
447	list_add_tail(&desc->node, &chan->desc.pending);
448	desc->running = list_first_entry(&desc->chunks,
449					 struct rcar_dmac_xfer_chunk, node);
450
451	spin_unlock_irqrestore(&chan->lock, flags);
452
453	return cookie;
454}
455
456/* -----------------------------------------------------------------------------
457 * Descriptors allocation and free
458 */
459
460/*
461 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
462 * @chan: the DMA channel
463 * @gfp: allocation flags
464 */
465static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
466{
467	struct rcar_dmac_desc_page *page;
468	LIST_HEAD(list);
469	unsigned int i;
470
471	page = (void *)get_zeroed_page(gfp);
472	if (!page)
473		return -ENOMEM;
474
475	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
476		struct rcar_dmac_desc *desc = &page->descs[i];
477
478		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
479		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
480		INIT_LIST_HEAD(&desc->chunks);
481
482		list_add_tail(&desc->node, &list);
483	}
484
485	spin_lock_irq(&chan->lock);
486	list_splice_tail(&list, &chan->desc.free);
487	list_add_tail(&page->node, &chan->desc.pages);
488	spin_unlock_irq(&chan->lock);
489
490	return 0;
491}
492
493/*
494 * rcar_dmac_desc_put - Release a DMA transfer descriptor
495 * @chan: the DMA channel
496 * @desc: the descriptor
497 *
498 * Put the descriptor and its transfer chunk descriptors back in the channel's
499 * free descriptors lists. The descriptor's chunks list will be reinitialized to
500 * an empty list as a result.
501 *
502 * The descriptor must have been removed from the channel's lists before calling
503 * this function.
504 */
505static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
506			       struct rcar_dmac_desc *desc)
507{
508	unsigned long flags;
509
510	spin_lock_irqsave(&chan->lock, flags);
511	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
512	list_add_tail(&desc->node, &chan->desc.free);
513	spin_unlock_irqrestore(&chan->lock, flags);
514}
515
516static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
517{
518	struct rcar_dmac_desc *desc, *_desc;
519	LIST_HEAD(list);
520
521	/*
522	 * We have to temporarily move all descriptors from the wait list to a
523	 * local list as iterating over the wait list, even with
524	 * list_for_each_entry_safe, isn't safe if we release the channel lock
525	 * around the rcar_dmac_desc_put() call.
526	 */
527	spin_lock_irq(&chan->lock);
528	list_splice_init(&chan->desc.wait, &list);
529	spin_unlock_irq(&chan->lock);
530
531	list_for_each_entry_safe(desc, _desc, &list, node) {
532		if (async_tx_test_ack(&desc->async_tx)) {
533			list_del(&desc->node);
534			rcar_dmac_desc_put(chan, desc);
535		}
536	}
537
538	if (list_empty(&list))
539		return;
540
541	/* Put the remaining descriptors back in the wait list. */
542	spin_lock_irq(&chan->lock);
543	list_splice(&list, &chan->desc.wait);
544	spin_unlock_irq(&chan->lock);
545}
546
547/*
548 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
549 * @chan: the DMA channel
550 *
551 * Locking: This function must be called in a non-atomic context.
552 *
553 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
554 * be allocated.
555 */
556static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
557{
558	struct rcar_dmac_desc *desc;
559	int ret;
560
561	/* Recycle acked descriptors before attempting allocation. */
562	rcar_dmac_desc_recycle_acked(chan);
563
564	spin_lock_irq(&chan->lock);
565
566	while (list_empty(&chan->desc.free)) {
567		/*
568		 * No free descriptors, allocate a page worth of them and try
569		 * again, as someone else could race us to get the newly
570		 * allocated descriptors. If the allocation fails return an
571		 * error.
572		 */
573		spin_unlock_irq(&chan->lock);
574		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
575		if (ret < 0)
576			return NULL;
577		spin_lock_irq(&chan->lock);
578	}
579
580	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
581	list_del(&desc->node);
582
583	spin_unlock_irq(&chan->lock);
584
585	return desc;
586}
587
588/*
589 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
590 * @chan: the DMA channel
591 * @gfp: allocation flags
592 */
593static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
594{
595	struct rcar_dmac_desc_page *page;
596	LIST_HEAD(list);
597	unsigned int i;
598
599	page = (void *)get_zeroed_page(gfp);
600	if (!page)
601		return -ENOMEM;
602
603	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
604		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
605
606		list_add_tail(&chunk->node, &list);
607	}
608
609	spin_lock_irq(&chan->lock);
610	list_splice_tail(&list, &chan->desc.chunks_free);
611	list_add_tail(&page->node, &chan->desc.pages);
612	spin_unlock_irq(&chan->lock);
613
614	return 0;
615}
616
617/*
618 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
619 * @chan: the DMA channel
620 *
621 * Locking: This function must be called in a non-atomic context.
622 *
623 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
624 * descriptor can be allocated.
625 */
626static struct rcar_dmac_xfer_chunk *
627rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
628{
629	struct rcar_dmac_xfer_chunk *chunk;
630	int ret;
631
632	spin_lock_irq(&chan->lock);
633
634	while (list_empty(&chan->desc.chunks_free)) {
635		/*
636		 * No free descriptors, allocate a page worth of them and try
637		 * again, as someone else could race us to get the newly
638		 * allocated descriptors. If the allocation fails return an
639		 * error.
640		 */
641		spin_unlock_irq(&chan->lock);
642		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
643		if (ret < 0)
644			return NULL;
645		spin_lock_irq(&chan->lock);
646	}
647
648	chunk = list_first_entry(&chan->desc.chunks_free,
649				 struct rcar_dmac_xfer_chunk, node);
650	list_del(&chunk->node);
651
652	spin_unlock_irq(&chan->lock);
653
654	return chunk;
655}
656
657static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
658				     struct rcar_dmac_desc *desc, size_t size)
659{
660	/*
661	 * dma_alloc_coherent() allocates memory in page size increments. To
662	 * avoid reallocating the hardware descriptors when the allocated size
663	 * wouldn't change align the requested size to a multiple of the page
664	 * size.
665	 */
666	size = PAGE_ALIGN(size);
667
668	if (desc->hwdescs.size == size)
669		return;
670
671	if (desc->hwdescs.mem) {
672		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
673				  desc->hwdescs.mem, desc->hwdescs.dma);
674		desc->hwdescs.mem = NULL;
675		desc->hwdescs.size = 0;
676	}
677
678	if (!size)
679		return;
680
681	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
682					       &desc->hwdescs.dma, GFP_NOWAIT);
683	if (!desc->hwdescs.mem)
684		return;
685
686	desc->hwdescs.size = size;
687}
688
689static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
690				 struct rcar_dmac_desc *desc)
691{
692	struct rcar_dmac_xfer_chunk *chunk;
693	struct rcar_dmac_hw_desc *hwdesc;
694
695	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
696
697	hwdesc = desc->hwdescs.mem;
698	if (!hwdesc)
699		return -ENOMEM;
700
701	list_for_each_entry(chunk, &desc->chunks, node) {
702		hwdesc->sar = chunk->src_addr;
703		hwdesc->dar = chunk->dst_addr;
704		hwdesc->tcr = chunk->size >> desc->xfer_shift;
705		hwdesc++;
706	}
707
708	return 0;
709}
710
711/* -----------------------------------------------------------------------------
712 * Stop and reset
713 */
714
715static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
716{
717	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
718
719	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
720		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
721	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
722}
723
724static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
725{
726	struct rcar_dmac_desc *desc, *_desc;
727	unsigned long flags;
728	LIST_HEAD(descs);
729
730	spin_lock_irqsave(&chan->lock, flags);
731
732	/* Move all non-free descriptors to the local lists. */
733	list_splice_init(&chan->desc.pending, &descs);
734	list_splice_init(&chan->desc.active, &descs);
735	list_splice_init(&chan->desc.done, &descs);
736	list_splice_init(&chan->desc.wait, &descs);
737
738	chan->desc.running = NULL;
739
740	spin_unlock_irqrestore(&chan->lock, flags);
741
742	list_for_each_entry_safe(desc, _desc, &descs, node) {
743		list_del(&desc->node);
744		rcar_dmac_desc_put(chan, desc);
745	}
746}
747
748static void rcar_dmac_stop(struct rcar_dmac *dmac)
749{
750	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
751}
752
753static void rcar_dmac_abort(struct rcar_dmac *dmac)
754{
755	unsigned int i;
756
757	/* Stop all channels. */
758	for (i = 0; i < dmac->n_channels; ++i) {
759		struct rcar_dmac_chan *chan = &dmac->channels[i];
760
761		/* Stop and reinitialize the channel. */
762		spin_lock(&chan->lock);
763		rcar_dmac_chan_halt(chan);
764		spin_unlock(&chan->lock);
765
766		rcar_dmac_chan_reinit(chan);
767	}
768}
769
770/* -----------------------------------------------------------------------------
771 * Descriptors preparation
772 */
773
774static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
775					  struct rcar_dmac_desc *desc)
776{
777	static const u32 chcr_ts[] = {
778		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
779		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
780		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
781		RCAR_DMACHCR_TS_64B,
782	};
783
784	unsigned int xfer_size;
785	u32 chcr;
786
787	switch (desc->direction) {
788	case DMA_DEV_TO_MEM:
789		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
790		     | RCAR_DMACHCR_RS_DMARS;
791		xfer_size = chan->src_xfer_size;
792		break;
793
794	case DMA_MEM_TO_DEV:
795		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
796		     | RCAR_DMACHCR_RS_DMARS;
797		xfer_size = chan->dst_xfer_size;
798		break;
799
800	case DMA_MEM_TO_MEM:
801	default:
802		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
803		     | RCAR_DMACHCR_RS_AUTO;
804		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
805		break;
806	}
807
808	desc->xfer_shift = ilog2(xfer_size);
809	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
810}
811
812/*
813 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
814 *
815 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
816 * converted to scatter-gather to guarantee consistent locking and a correct
817 * list manipulation. For slave DMA direction carries the usual meaning, and,
818 * logically, the SG list is RAM and the addr variable contains slave address,
819 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
820 * and the SG list contains only one element and points at the source buffer.
821 */
822static struct dma_async_tx_descriptor *
823rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
824		       unsigned int sg_len, dma_addr_t dev_addr,
825		       enum dma_transfer_direction dir, unsigned long dma_flags,
826		       bool cyclic)
827{
828	struct rcar_dmac_xfer_chunk *chunk;
829	struct rcar_dmac_desc *desc;
830	struct scatterlist *sg;
831	unsigned int nchunks = 0;
832	unsigned int max_chunk_size;
833	unsigned int full_size = 0;
834	bool highmem = false;
835	unsigned int i;
836
837	desc = rcar_dmac_desc_get(chan);
838	if (!desc)
839		return NULL;
840
841	desc->async_tx.flags = dma_flags;
842	desc->async_tx.cookie = -EBUSY;
843
844	desc->cyclic = cyclic;
845	desc->direction = dir;
846
847	rcar_dmac_chan_configure_desc(chan, desc);
848
849	max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
850
851	/*
852	 * Allocate and fill the transfer chunk descriptors. We own the only
853	 * reference to the DMA descriptor, there's no need for locking.
854	 */
855	for_each_sg(sgl, sg, sg_len, i) {
856		dma_addr_t mem_addr = sg_dma_address(sg);
857		unsigned int len = sg_dma_len(sg);
858
859		full_size += len;
860
861		while (len) {
862			unsigned int size = min(len, max_chunk_size);
863
864#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
865			/*
866			 * Prevent individual transfers from crossing 4GB
867			 * boundaries.
868			 */
869			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
870				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
871			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
872				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
873
874			/*
875			 * Check if either of the source or destination address
876			 * can't be expressed in 32 bits. If so we can't use
877			 * hardware descriptor lists.
878			 */
879			if (dev_addr >> 32 || mem_addr >> 32)
880				highmem = true;
881#endif
882
883			chunk = rcar_dmac_xfer_chunk_get(chan);
884			if (!chunk) {
885				rcar_dmac_desc_put(chan, desc);
886				return NULL;
887			}
888
889			if (dir == DMA_DEV_TO_MEM) {
890				chunk->src_addr = dev_addr;
891				chunk->dst_addr = mem_addr;
892			} else {
893				chunk->src_addr = mem_addr;
894				chunk->dst_addr = dev_addr;
895			}
896
897			chunk->size = size;
898
899			dev_dbg(chan->chan.device->dev,
900				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
901				chan->index, chunk, desc, i, sg, size, len,
902				&chunk->src_addr, &chunk->dst_addr);
903
904			mem_addr += size;
905			if (dir == DMA_MEM_TO_MEM)
906				dev_addr += size;
907
908			len -= size;
909
910			list_add_tail(&chunk->node, &desc->chunks);
911			nchunks++;
912		}
913	}
914
915	desc->nchunks = nchunks;
916	desc->size = full_size;
917
918	/*
919	 * Use hardware descriptor lists if possible when more than one chunk
920	 * needs to be transferred (otherwise they don't make much sense).
921	 *
922	 * The highmem check currently covers the whole transfer. As an
923	 * optimization we could use descriptor lists for consecutive lowmem
924	 * chunks and direct manual mode for highmem chunks. Whether the
925	 * performance improvement would be significant enough compared to the
926	 * additional complexity remains to be investigated.
927	 */
928	desc->hwdescs.use = !highmem && nchunks > 1;
929	if (desc->hwdescs.use) {
930		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
931			desc->hwdescs.use = false;
932	}
933
934	return &desc->async_tx;
935}
936
937/* -----------------------------------------------------------------------------
938 * DMA engine operations
939 */
940
941static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
942{
943	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
944	int ret;
945
946	INIT_LIST_HEAD(&rchan->desc.chunks_free);
947	INIT_LIST_HEAD(&rchan->desc.pages);
948
949	/* Preallocate descriptors. */
950	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
951	if (ret < 0)
952		return -ENOMEM;
953
954	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
955	if (ret < 0)
956		return -ENOMEM;
957
958	return pm_runtime_get_sync(chan->device->dev);
959}
960
961static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
962{
963	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
964	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
965	struct rcar_dmac_desc_page *page, *_page;
966	struct rcar_dmac_desc *desc;
967	LIST_HEAD(list);
968
969	/* Protect against ISR */
970	spin_lock_irq(&rchan->lock);
971	rcar_dmac_chan_halt(rchan);
972	spin_unlock_irq(&rchan->lock);
973
974	/* Now no new interrupts will occur */
975
976	if (rchan->mid_rid >= 0) {
977		/* The caller is holding dma_list_mutex */
978		clear_bit(rchan->mid_rid, dmac->modules);
979		rchan->mid_rid = -EINVAL;
980	}
981
982	list_splice_init(&rchan->desc.free, &list);
983	list_splice_init(&rchan->desc.pending, &list);
984	list_splice_init(&rchan->desc.active, &list);
985	list_splice_init(&rchan->desc.done, &list);
986	list_splice_init(&rchan->desc.wait, &list);
987
988	list_for_each_entry(desc, &list, node)
989		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
990
991	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
992		list_del(&page->node);
993		free_page((unsigned long)page);
994	}
995
996	pm_runtime_put(chan->device->dev);
997}
998
999static struct dma_async_tx_descriptor *
1000rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1001			  dma_addr_t dma_src, size_t len, unsigned long flags)
1002{
1003	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1004	struct scatterlist sgl;
1005
1006	if (!len)
1007		return NULL;
1008
1009	sg_init_table(&sgl, 1);
1010	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1011		    offset_in_page(dma_src));
1012	sg_dma_address(&sgl) = dma_src;
1013	sg_dma_len(&sgl) = len;
1014
1015	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1016				      DMA_MEM_TO_MEM, flags, false);
1017}
1018
1019static struct dma_async_tx_descriptor *
1020rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1021			unsigned int sg_len, enum dma_transfer_direction dir,
1022			unsigned long flags, void *context)
1023{
1024	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1025	dma_addr_t dev_addr;
1026
1027	/* Someone calling slave DMA on a generic channel? */
1028	if (rchan->mid_rid < 0 || !sg_len) {
1029		dev_warn(chan->device->dev,
1030			 "%s: bad parameter: len=%d, id=%d\n",
1031			 __func__, sg_len, rchan->mid_rid);
1032		return NULL;
1033	}
1034
1035	dev_addr = dir == DMA_DEV_TO_MEM
1036		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1037	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1038				      dir, flags, false);
1039}
1040
1041#define RCAR_DMAC_MAX_SG_LEN	32
1042
1043static struct dma_async_tx_descriptor *
1044rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1045			  size_t buf_len, size_t period_len,
1046			  enum dma_transfer_direction dir, unsigned long flags)
1047{
1048	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1049	struct dma_async_tx_descriptor *desc;
1050	struct scatterlist *sgl;
1051	dma_addr_t dev_addr;
1052	unsigned int sg_len;
1053	unsigned int i;
1054
1055	/* Someone calling slave DMA on a generic channel? */
1056	if (rchan->mid_rid < 0 || buf_len < period_len) {
1057		dev_warn(chan->device->dev,
1058			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1059			__func__, buf_len, period_len, rchan->mid_rid);
1060		return NULL;
1061	}
1062
1063	sg_len = buf_len / period_len;
1064	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1065		dev_err(chan->device->dev,
1066			"chan%u: sg length %d exceds limit %d",
1067			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1068		return NULL;
1069	}
1070
1071	/*
1072	 * Allocate the sg list dynamically as it would consume too much stack
1073	 * space.
1074	 */
1075	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1076	if (!sgl)
1077		return NULL;
1078
1079	sg_init_table(sgl, sg_len);
1080
1081	for (i = 0; i < sg_len; ++i) {
1082		dma_addr_t src = buf_addr + (period_len * i);
1083
1084		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1085			    offset_in_page(src));
1086		sg_dma_address(&sgl[i]) = src;
1087		sg_dma_len(&sgl[i]) = period_len;
1088	}
1089
1090	dev_addr = dir == DMA_DEV_TO_MEM
1091		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1092	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1093				      dir, flags, true);
1094
1095	kfree(sgl);
1096	return desc;
1097}
1098
1099static int rcar_dmac_device_config(struct dma_chan *chan,
1100				   struct dma_slave_config *cfg)
1101{
1102	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1103
1104	/*
1105	 * We could lock this, but you shouldn't be configuring the
1106	 * channel, while using it...
1107	 */
1108	rchan->src_slave_addr = cfg->src_addr;
1109	rchan->dst_slave_addr = cfg->dst_addr;
1110	rchan->src_xfer_size = cfg->src_addr_width;
1111	rchan->dst_xfer_size = cfg->dst_addr_width;
1112
1113	return 0;
1114}
1115
1116static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1117{
1118	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1119	unsigned long flags;
1120
1121	spin_lock_irqsave(&rchan->lock, flags);
1122	rcar_dmac_chan_halt(rchan);
1123	spin_unlock_irqrestore(&rchan->lock, flags);
1124
1125	/*
1126	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1127	 * be running.
1128	 */
1129
1130	rcar_dmac_chan_reinit(rchan);
1131
1132	return 0;
1133}
1134
1135static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1136					       dma_cookie_t cookie)
1137{
1138	struct rcar_dmac_desc *desc = chan->desc.running;
1139	struct rcar_dmac_xfer_chunk *running = NULL;
1140	struct rcar_dmac_xfer_chunk *chunk;
1141	unsigned int residue = 0;
1142	unsigned int dptr = 0;
1143
1144	if (!desc)
1145		return 0;
1146
1147	/*
1148	 * If the cookie doesn't correspond to the currently running transfer
1149	 * then the descriptor hasn't been processed yet, and the residue is
1150	 * equal to the full descriptor size.
1151	 */
1152	if (cookie != desc->async_tx.cookie)
1153		return desc->size;
1154
1155	/*
1156	 * In descriptor mode the descriptor running pointer is not maintained
1157	 * by the interrupt handler, find the running descriptor from the
1158	 * descriptor pointer field in the CHCRB register. In non-descriptor
1159	 * mode just use the running descriptor pointer.
1160	 */
1161	if (desc->hwdescs.use) {
1162		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1163			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1164		WARN_ON(dptr >= desc->nchunks);
1165	} else {
1166		running = desc->running;
1167	}
1168
1169	/* Compute the size of all chunks still to be transferred. */
1170	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1171		if (chunk == running || ++dptr == desc->nchunks)
1172			break;
1173
1174		residue += chunk->size;
1175	}
1176
1177	/* Add the residue for the current chunk. */
1178	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1179
1180	return residue;
1181}
1182
1183static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1184					   dma_cookie_t cookie,
1185					   struct dma_tx_state *txstate)
1186{
1187	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1188	enum dma_status status;
1189	unsigned long flags;
1190	unsigned int residue;
1191
1192	status = dma_cookie_status(chan, cookie, txstate);
1193	if (status == DMA_COMPLETE || !txstate)
1194		return status;
1195
1196	spin_lock_irqsave(&rchan->lock, flags);
1197	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1198	spin_unlock_irqrestore(&rchan->lock, flags);
1199
1200	dma_set_residue(txstate, residue);
1201
1202	return status;
1203}
1204
1205static void rcar_dmac_issue_pending(struct dma_chan *chan)
1206{
1207	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1208	unsigned long flags;
1209
1210	spin_lock_irqsave(&rchan->lock, flags);
1211
1212	if (list_empty(&rchan->desc.pending))
1213		goto done;
1214
1215	/* Append the pending list to the active list. */
1216	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1217
1218	/*
1219	 * If no transfer is running pick the first descriptor from the active
1220	 * list and start the transfer.
1221	 */
1222	if (!rchan->desc.running) {
1223		struct rcar_dmac_desc *desc;
1224
1225		desc = list_first_entry(&rchan->desc.active,
1226					struct rcar_dmac_desc, node);
1227		rchan->desc.running = desc;
1228
1229		rcar_dmac_chan_start_xfer(rchan);
1230	}
1231
1232done:
1233	spin_unlock_irqrestore(&rchan->lock, flags);
1234}
1235
1236/* -----------------------------------------------------------------------------
1237 * IRQ handling
1238 */
1239
1240static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1241{
1242	struct rcar_dmac_desc *desc = chan->desc.running;
1243	unsigned int stage;
1244
1245	if (WARN_ON(!desc || !desc->cyclic)) {
1246		/*
1247		 * This should never happen, there should always be a running
1248		 * cyclic descriptor when a descriptor stage end interrupt is
1249		 * triggered. Warn and return.
1250		 */
1251		return IRQ_NONE;
1252	}
1253
1254	/* Program the interrupt pointer to the next stage. */
1255	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1256		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1257	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1258
1259	return IRQ_WAKE_THREAD;
1260}
1261
1262static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1263{
1264	struct rcar_dmac_desc *desc = chan->desc.running;
1265	irqreturn_t ret = IRQ_WAKE_THREAD;
1266
1267	if (WARN_ON_ONCE(!desc)) {
1268		/*
1269		 * This should never happen, there should always be a running
1270		 * descriptor when a transfer end interrupt is triggered. Warn
1271		 * and return.
1272		 */
1273		return IRQ_NONE;
1274	}
1275
1276	/*
1277	 * The transfer end interrupt isn't generated for each chunk when using
1278	 * descriptor mode. Only update the running chunk pointer in
1279	 * non-descriptor mode.
1280	 */
1281	if (!desc->hwdescs.use) {
1282		/*
1283		 * If we haven't completed the last transfer chunk simply move
1284		 * to the next one. Only wake the IRQ thread if the transfer is
1285		 * cyclic.
1286		 */
1287		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1288			desc->running = list_next_entry(desc->running, node);
1289			if (!desc->cyclic)
1290				ret = IRQ_HANDLED;
1291			goto done;
1292		}
1293
1294		/*
1295		 * We've completed the last transfer chunk. If the transfer is
1296		 * cyclic, move back to the first one.
1297		 */
1298		if (desc->cyclic) {
1299			desc->running =
1300				list_first_entry(&desc->chunks,
1301						 struct rcar_dmac_xfer_chunk,
1302						 node);
1303			goto done;
1304		}
1305	}
1306
1307	/* The descriptor is complete, move it to the done list. */
1308	list_move_tail(&desc->node, &chan->desc.done);
1309
1310	/* Queue the next descriptor, if any. */
1311	if (!list_empty(&chan->desc.active))
1312		chan->desc.running = list_first_entry(&chan->desc.active,
1313						      struct rcar_dmac_desc,
1314						      node);
1315	else
1316		chan->desc.running = NULL;
1317
1318done:
1319	if (chan->desc.running)
1320		rcar_dmac_chan_start_xfer(chan);
1321
1322	return ret;
1323}
1324
1325static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1326{
1327	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1328	struct rcar_dmac_chan *chan = dev;
1329	irqreturn_t ret = IRQ_NONE;
1330	u32 chcr;
1331
1332	spin_lock(&chan->lock);
1333
1334	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1335	if (chcr & RCAR_DMACHCR_TE)
1336		mask |= RCAR_DMACHCR_DE;
1337	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1338
1339	if (chcr & RCAR_DMACHCR_DSE)
1340		ret |= rcar_dmac_isr_desc_stage_end(chan);
1341
1342	if (chcr & RCAR_DMACHCR_TE)
1343		ret |= rcar_dmac_isr_transfer_end(chan);
1344
1345	spin_unlock(&chan->lock);
1346
1347	return ret;
1348}
1349
1350static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1351{
1352	struct rcar_dmac_chan *chan = dev;
1353	struct rcar_dmac_desc *desc;
1354
1355	spin_lock_irq(&chan->lock);
1356
1357	/* For cyclic transfers notify the user after every chunk. */
1358	if (chan->desc.running && chan->desc.running->cyclic) {
1359		dma_async_tx_callback callback;
1360		void *callback_param;
1361
1362		desc = chan->desc.running;
1363		callback = desc->async_tx.callback;
1364		callback_param = desc->async_tx.callback_param;
1365
1366		if (callback) {
1367			spin_unlock_irq(&chan->lock);
1368			callback(callback_param);
1369			spin_lock_irq(&chan->lock);
1370		}
1371	}
1372
1373	/*
1374	 * Call the callback function for all descriptors on the done list and
1375	 * move them to the ack wait list.
1376	 */
1377	while (!list_empty(&chan->desc.done)) {
1378		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1379					node);
1380		dma_cookie_complete(&desc->async_tx);
1381		list_del(&desc->node);
1382
1383		if (desc->async_tx.callback) {
1384			spin_unlock_irq(&chan->lock);
1385			/*
1386			 * We own the only reference to this descriptor, we can
1387			 * safely dereference it without holding the channel
1388			 * lock.
1389			 */
1390			desc->async_tx.callback(desc->async_tx.callback_param);
1391			spin_lock_irq(&chan->lock);
1392		}
1393
1394		list_add_tail(&desc->node, &chan->desc.wait);
1395	}
1396
1397	spin_unlock_irq(&chan->lock);
1398
1399	/* Recycle all acked descriptors. */
1400	rcar_dmac_desc_recycle_acked(chan);
1401
1402	return IRQ_HANDLED;
1403}
1404
1405static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1406{
1407	struct rcar_dmac *dmac = data;
1408
1409	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1410		return IRQ_NONE;
1411
1412	/*
1413	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1414	 * abort transfers on all channels, and reinitialize the DMAC.
1415	 */
1416	rcar_dmac_stop(dmac);
1417	rcar_dmac_abort(dmac);
1418	rcar_dmac_init(dmac);
1419
1420	return IRQ_HANDLED;
1421}
1422
1423/* -----------------------------------------------------------------------------
1424 * OF xlate and channel filter
1425 */
1426
1427static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1428{
1429	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1430	struct of_phandle_args *dma_spec = arg;
1431
1432	/*
1433	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1434	 * function knows from which device it wants to allocate a channel from,
1435	 * and would be perfectly capable of selecting the channel it wants.
1436	 * Forcing it to call dma_request_channel() and iterate through all
1437	 * channels from all controllers is just pointless.
1438	 */
1439	if (chan->device->device_config != rcar_dmac_device_config ||
1440	    dma_spec->np != chan->device->dev->of_node)
1441		return false;
1442
1443	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1444}
1445
1446static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1447					   struct of_dma *ofdma)
1448{
1449	struct rcar_dmac_chan *rchan;
1450	struct dma_chan *chan;
1451	dma_cap_mask_t mask;
1452
1453	if (dma_spec->args_count != 1)
1454		return NULL;
1455
1456	/* Only slave DMA channels can be allocated via DT */
1457	dma_cap_zero(mask);
1458	dma_cap_set(DMA_SLAVE, mask);
1459
1460	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1461	if (!chan)
1462		return NULL;
1463
1464	rchan = to_rcar_dmac_chan(chan);
1465	rchan->mid_rid = dma_spec->args[0];
1466
1467	return chan;
1468}
1469
1470/* -----------------------------------------------------------------------------
1471 * Power management
1472 */
1473
1474#ifdef CONFIG_PM_SLEEP
1475static int rcar_dmac_sleep_suspend(struct device *dev)
1476{
1477	/*
1478	 * TODO: Wait for the current transfer to complete and stop the device.
1479	 */
1480	return 0;
1481}
1482
1483static int rcar_dmac_sleep_resume(struct device *dev)
1484{
1485	/* TODO: Resume transfers, if any. */
1486	return 0;
1487}
1488#endif
1489
1490#ifdef CONFIG_PM
1491static int rcar_dmac_runtime_suspend(struct device *dev)
1492{
1493	return 0;
1494}
1495
1496static int rcar_dmac_runtime_resume(struct device *dev)
1497{
1498	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1499
1500	return rcar_dmac_init(dmac);
1501}
1502#endif
1503
1504static const struct dev_pm_ops rcar_dmac_pm = {
1505	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1506	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1507			   NULL)
1508};
1509
1510/* -----------------------------------------------------------------------------
1511 * Probe and remove
1512 */
1513
1514static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1515				struct rcar_dmac_chan *rchan,
1516				unsigned int index)
1517{
1518	struct platform_device *pdev = to_platform_device(dmac->dev);
1519	struct dma_chan *chan = &rchan->chan;
1520	char pdev_irqname[5];
1521	char *irqname;
1522	int irq;
1523	int ret;
1524
1525	rchan->index = index;
1526	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1527	rchan->mid_rid = -EINVAL;
1528
1529	spin_lock_init(&rchan->lock);
1530
1531	INIT_LIST_HEAD(&rchan->desc.free);
1532	INIT_LIST_HEAD(&rchan->desc.pending);
1533	INIT_LIST_HEAD(&rchan->desc.active);
1534	INIT_LIST_HEAD(&rchan->desc.done);
1535	INIT_LIST_HEAD(&rchan->desc.wait);
1536
1537	/* Request the channel interrupt. */
1538	sprintf(pdev_irqname, "ch%u", index);
1539	irq = platform_get_irq_byname(pdev, pdev_irqname);
1540	if (irq < 0) {
1541		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1542		return -ENODEV;
1543	}
1544
1545	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1546				 dev_name(dmac->dev), index);
1547	if (!irqname)
1548		return -ENOMEM;
1549
1550	ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1551					rcar_dmac_isr_channel_thread, 0,
1552					irqname, rchan);
1553	if (ret) {
1554		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1555		return ret;
1556	}
1557
1558	/*
1559	 * Initialize the DMA engine channel and add it to the DMA engine
1560	 * channels list.
1561	 */
1562	chan->device = &dmac->engine;
1563	dma_cookie_init(chan);
1564
1565	list_add_tail(&chan->device_node, &dmac->engine.channels);
1566
1567	return 0;
1568}
1569
1570static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1571{
1572	struct device_node *np = dev->of_node;
1573	int ret;
1574
1575	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1576	if (ret < 0) {
1577		dev_err(dev, "unable to read dma-channels property\n");
1578		return ret;
1579	}
1580
1581	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1582		dev_err(dev, "invalid number of channels %u\n",
1583			dmac->n_channels);
1584		return -EINVAL;
1585	}
1586
1587	return 0;
1588}
1589
1590static int rcar_dmac_probe(struct platform_device *pdev)
1591{
1592	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1593		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1594		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1595		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1596	unsigned int channels_offset = 0;
1597	struct dma_device *engine;
1598	struct rcar_dmac *dmac;
1599	struct resource *mem;
1600	unsigned int i;
1601	char *irqname;
1602	int irq;
1603	int ret;
1604
1605	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1606	if (!dmac)
1607		return -ENOMEM;
1608
1609	dmac->dev = &pdev->dev;
1610	platform_set_drvdata(pdev, dmac);
1611
1612	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1613	if (ret < 0)
1614		return ret;
1615
1616	/*
1617	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1618	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1619	 * is connected to microTLB 0 on currently supported platforms, so we
1620	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1621	 * level we can't disable it selectively, so ignore channel 0 for now if
1622	 * the device is part of an IOMMU group.
1623	 */
1624	if (pdev->dev.iommu_group) {
1625		dmac->n_channels--;
1626		channels_offset = 1;
1627	}
1628
1629	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1630				      sizeof(*dmac->channels), GFP_KERNEL);
1631	if (!dmac->channels)
1632		return -ENOMEM;
1633
1634	/* Request resources. */
1635	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1636	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1637	if (IS_ERR(dmac->iomem))
1638		return PTR_ERR(dmac->iomem);
1639
1640	irq = platform_get_irq_byname(pdev, "error");
1641	if (irq < 0) {
1642		dev_err(&pdev->dev, "no error IRQ specified\n");
1643		return -ENODEV;
1644	}
1645
1646	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1647				 dev_name(dmac->dev));
1648	if (!irqname)
1649		return -ENOMEM;
1650
1651	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1652			       irqname, dmac);
1653	if (ret) {
1654		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1655			irq, ret);
1656		return ret;
1657	}
1658
1659	/* Enable runtime PM and initialize the device. */
1660	pm_runtime_enable(&pdev->dev);
1661	ret = pm_runtime_get_sync(&pdev->dev);
1662	if (ret < 0) {
1663		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1664		return ret;
1665	}
1666
1667	ret = rcar_dmac_init(dmac);
1668	pm_runtime_put(&pdev->dev);
1669
1670	if (ret) {
1671		dev_err(&pdev->dev, "failed to reset device\n");
1672		goto error;
1673	}
1674
1675	/* Initialize the channels. */
1676	INIT_LIST_HEAD(&dmac->engine.channels);
1677
1678	for (i = 0; i < dmac->n_channels; ++i) {
1679		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1680					   i + channels_offset);
1681		if (ret < 0)
1682			goto error;
1683	}
1684
1685	/* Register the DMAC as a DMA provider for DT. */
1686	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1687					 NULL);
1688	if (ret < 0)
1689		goto error;
1690
1691	/*
1692	 * Register the DMA engine device.
1693	 *
1694	 * Default transfer size of 32 bytes requires 32-byte alignment.
1695	 */
1696	engine = &dmac->engine;
1697	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1698	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1699
1700	engine->dev = &pdev->dev;
1701	engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1702
1703	engine->src_addr_widths = widths;
1704	engine->dst_addr_widths = widths;
1705	engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1706	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1707
1708	engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1709	engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1710	engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1711	engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1712	engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1713	engine->device_config = rcar_dmac_device_config;
1714	engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1715	engine->device_tx_status = rcar_dmac_tx_status;
1716	engine->device_issue_pending = rcar_dmac_issue_pending;
1717
1718	ret = dma_async_device_register(engine);
1719	if (ret < 0)
1720		goto error;
1721
1722	return 0;
1723
1724error:
1725	of_dma_controller_free(pdev->dev.of_node);
1726	pm_runtime_disable(&pdev->dev);
1727	return ret;
1728}
1729
1730static int rcar_dmac_remove(struct platform_device *pdev)
1731{
1732	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1733
1734	of_dma_controller_free(pdev->dev.of_node);
1735	dma_async_device_unregister(&dmac->engine);
1736
1737	pm_runtime_disable(&pdev->dev);
1738
1739	return 0;
1740}
1741
1742static void rcar_dmac_shutdown(struct platform_device *pdev)
1743{
1744	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1745
1746	rcar_dmac_stop(dmac);
1747}
1748
1749static const struct of_device_id rcar_dmac_of_ids[] = {
1750	{ .compatible = "renesas,rcar-dmac", },
1751	{ /* Sentinel */ }
1752};
1753MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1754
1755static struct platform_driver rcar_dmac_driver = {
1756	.driver		= {
1757		.pm	= &rcar_dmac_pm,
1758		.name	= "rcar-dmac",
1759		.of_match_table = rcar_dmac_of_ids,
1760	},
1761	.probe		= rcar_dmac_probe,
1762	.remove		= rcar_dmac_remove,
1763	.shutdown	= rcar_dmac_shutdown,
1764};
1765
1766module_platform_driver(rcar_dmac_driver);
1767
1768MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1769MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1770MODULE_LICENSE("GPL v2");
1771