1/*
2 * DMA driver for Nvidia's Tegra20 APB DMA controller.
3 *
4 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/bitops.h>
20#include <linux/clk.h>
21#include <linux/delay.h>
22#include <linux/dmaengine.h>
23#include <linux/dma-mapping.h>
24#include <linux/err.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/mm.h>
29#include <linux/module.h>
30#include <linux/of.h>
31#include <linux/of_device.h>
32#include <linux/of_dma.h>
33#include <linux/platform_device.h>
34#include <linux/pm.h>
35#include <linux/pm_runtime.h>
36#include <linux/reset.h>
37#include <linux/slab.h>
38
39#include "dmaengine.h"
40
41#define TEGRA_APBDMA_GENERAL			0x0
42#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
43
44#define TEGRA_APBDMA_CONTROL			0x010
45#define TEGRA_APBDMA_IRQ_MASK			0x01c
46#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
47
48/* CSR register */
49#define TEGRA_APBDMA_CHAN_CSR			0x00
50#define TEGRA_APBDMA_CSR_ENB			BIT(31)
51#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
52#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
53#define TEGRA_APBDMA_CSR_DIR			BIT(28)
54#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
55#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
56#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
57#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
58
59/* STATUS register */
60#define TEGRA_APBDMA_CHAN_STATUS		0x004
61#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
62#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
63#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
64#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
65#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
66#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
67
68#define TEGRA_APBDMA_CHAN_CSRE			0x00C
69#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
70
71/* AHB memory address */
72#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
73
74/* AHB sequence register */
75#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
76#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
77#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
78#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
79#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
80#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
81#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
82#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
83#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
84#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
85#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
86#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
87#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
88#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
89
90/* APB address */
91#define TEGRA_APBDMA_CHAN_APBPTR		0x018
92
93/* APB sequence register */
94#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
95#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
96#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
97#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
98#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
99#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
100#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
101#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
102
103/* Tegra148 specific registers */
104#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
105
106#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
107
108/*
109 * If any burst is in flight and DMA paused then this is the time to complete
110 * on-flight burst and update DMA status register.
111 */
112#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
113
114/* Channel base address offset from APBDMA base address */
115#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
116
117struct tegra_dma;
118
119/*
120 * tegra_dma_chip_data Tegra chip specific DMA data
121 * @nr_channels: Number of channels available in the controller.
122 * @channel_reg_size: Channel register size/stride.
123 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
124 * @support_channel_pause: Support channel wise pause of dma.
125 * @support_separate_wcount_reg: Support separate word count register.
126 */
127struct tegra_dma_chip_data {
128	int nr_channels;
129	int channel_reg_size;
130	int max_dma_count;
131	bool support_channel_pause;
132	bool support_separate_wcount_reg;
133};
134
135/* DMA channel registers */
136struct tegra_dma_channel_regs {
137	unsigned long	csr;
138	unsigned long	ahb_ptr;
139	unsigned long	apb_ptr;
140	unsigned long	ahb_seq;
141	unsigned long	apb_seq;
142	unsigned long	wcount;
143};
144
145/*
146 * tegra_dma_sg_req: Dma request details to configure hardware. This
147 * contains the details for one transfer to configure DMA hw.
148 * The client's request for data transfer can be broken into multiple
149 * sub-transfer as per requester details and hw support.
150 * This sub transfer get added in the list of transfer and point to Tegra
151 * DMA descriptor which manages the transfer details.
152 */
153struct tegra_dma_sg_req {
154	struct tegra_dma_channel_regs	ch_regs;
155	int				req_len;
156	bool				configured;
157	bool				last_sg;
158	bool				half_done;
159	struct list_head		node;
160	struct tegra_dma_desc		*dma_desc;
161};
162
163/*
164 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
165 * This descriptor keep track of transfer status, callbacks and request
166 * counts etc.
167 */
168struct tegra_dma_desc {
169	struct dma_async_tx_descriptor	txd;
170	int				bytes_requested;
171	int				bytes_transferred;
172	enum dma_status			dma_status;
173	struct list_head		node;
174	struct list_head		tx_list;
175	struct list_head		cb_node;
176	int				cb_count;
177};
178
179struct tegra_dma_channel;
180
181typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
182				bool to_terminate);
183
184/* tegra_dma_channel: Channel specific information */
185struct tegra_dma_channel {
186	struct dma_chan		dma_chan;
187	char			name[30];
188	bool			config_init;
189	int			id;
190	int			irq;
191	unsigned long		chan_base_offset;
192	spinlock_t		lock;
193	bool			busy;
194	struct tegra_dma	*tdma;
195	bool			cyclic;
196
197	/* Different lists for managing the requests */
198	struct list_head	free_sg_req;
199	struct list_head	pending_sg_req;
200	struct list_head	free_dma_desc;
201	struct list_head	cb_desc;
202
203	/* ISR handler and tasklet for bottom half of isr handling */
204	dma_isr_handler		isr_handler;
205	struct tasklet_struct	tasklet;
206	dma_async_tx_callback	callback;
207	void			*callback_param;
208
209	/* Channel-slave specific configuration */
210	unsigned int slave_id;
211	struct dma_slave_config dma_sconfig;
212	struct tegra_dma_channel_regs	channel_reg;
213};
214
215/* tegra_dma: Tegra DMA specific information */
216struct tegra_dma {
217	struct dma_device		dma_dev;
218	struct device			*dev;
219	struct clk			*dma_clk;
220	struct reset_control		*rst;
221	spinlock_t			global_lock;
222	void __iomem			*base_addr;
223	const struct tegra_dma_chip_data *chip_data;
224
225	/* Some register need to be cache before suspend */
226	u32				reg_gen;
227
228	/* Last member of the structure */
229	struct tegra_dma_channel channels[0];
230};
231
232static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
233{
234	writel(val, tdma->base_addr + reg);
235}
236
237static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
238{
239	return readl(tdma->base_addr + reg);
240}
241
242static inline void tdc_write(struct tegra_dma_channel *tdc,
243		u32 reg, u32 val)
244{
245	writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
246}
247
248static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
249{
250	return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
251}
252
253static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
254{
255	return container_of(dc, struct tegra_dma_channel, dma_chan);
256}
257
258static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
259		struct dma_async_tx_descriptor *td)
260{
261	return container_of(td, struct tegra_dma_desc, txd);
262}
263
264static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
265{
266	return &tdc->dma_chan.dev->device;
267}
268
269static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
270static int tegra_dma_runtime_suspend(struct device *dev);
271static int tegra_dma_runtime_resume(struct device *dev);
272
273/* Get DMA desc from free list, if not there then allocate it.  */
274static struct tegra_dma_desc *tegra_dma_desc_get(
275		struct tegra_dma_channel *tdc)
276{
277	struct tegra_dma_desc *dma_desc;
278	unsigned long flags;
279
280	spin_lock_irqsave(&tdc->lock, flags);
281
282	/* Do not allocate if desc are waiting for ack */
283	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
284		if (async_tx_test_ack(&dma_desc->txd)) {
285			list_del(&dma_desc->node);
286			spin_unlock_irqrestore(&tdc->lock, flags);
287			dma_desc->txd.flags = 0;
288			return dma_desc;
289		}
290	}
291
292	spin_unlock_irqrestore(&tdc->lock, flags);
293
294	/* Allocate DMA desc */
295	dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
296	if (!dma_desc) {
297		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
298		return NULL;
299	}
300
301	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
302	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
303	dma_desc->txd.flags = 0;
304	return dma_desc;
305}
306
307static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
308		struct tegra_dma_desc *dma_desc)
309{
310	unsigned long flags;
311
312	spin_lock_irqsave(&tdc->lock, flags);
313	if (!list_empty(&dma_desc->tx_list))
314		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
315	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
316	spin_unlock_irqrestore(&tdc->lock, flags);
317}
318
319static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
320		struct tegra_dma_channel *tdc)
321{
322	struct tegra_dma_sg_req *sg_req = NULL;
323	unsigned long flags;
324
325	spin_lock_irqsave(&tdc->lock, flags);
326	if (!list_empty(&tdc->free_sg_req)) {
327		sg_req = list_first_entry(&tdc->free_sg_req,
328					typeof(*sg_req), node);
329		list_del(&sg_req->node);
330		spin_unlock_irqrestore(&tdc->lock, flags);
331		return sg_req;
332	}
333	spin_unlock_irqrestore(&tdc->lock, flags);
334
335	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
336	if (!sg_req)
337		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
338	return sg_req;
339}
340
341static int tegra_dma_slave_config(struct dma_chan *dc,
342		struct dma_slave_config *sconfig)
343{
344	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
345
346	if (!list_empty(&tdc->pending_sg_req)) {
347		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
348		return -EBUSY;
349	}
350
351	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
352	if (!tdc->slave_id)
353		tdc->slave_id = sconfig->slave_id;
354	tdc->config_init = true;
355	return 0;
356}
357
358static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
359	bool wait_for_burst_complete)
360{
361	struct tegra_dma *tdma = tdc->tdma;
362
363	spin_lock(&tdma->global_lock);
364	tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
365	if (wait_for_burst_complete)
366		udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
367}
368
369static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
370{
371	struct tegra_dma *tdma = tdc->tdma;
372
373	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
374	spin_unlock(&tdma->global_lock);
375}
376
377static void tegra_dma_pause(struct tegra_dma_channel *tdc,
378	bool wait_for_burst_complete)
379{
380	struct tegra_dma *tdma = tdc->tdma;
381
382	if (tdma->chip_data->support_channel_pause) {
383		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
384				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
385		if (wait_for_burst_complete)
386			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
387	} else {
388		tegra_dma_global_pause(tdc, wait_for_burst_complete);
389	}
390}
391
392static void tegra_dma_resume(struct tegra_dma_channel *tdc)
393{
394	struct tegra_dma *tdma = tdc->tdma;
395
396	if (tdma->chip_data->support_channel_pause) {
397		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
398	} else {
399		tegra_dma_global_resume(tdc);
400	}
401}
402
403static void tegra_dma_stop(struct tegra_dma_channel *tdc)
404{
405	u32 csr;
406	u32 status;
407
408	/* Disable interrupts */
409	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
410	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
411	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
412
413	/* Disable DMA */
414	csr &= ~TEGRA_APBDMA_CSR_ENB;
415	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
416
417	/* Clear interrupt status if it is there */
418	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
419	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
420		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
421		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
422	}
423	tdc->busy = false;
424}
425
426static void tegra_dma_start(struct tegra_dma_channel *tdc,
427		struct tegra_dma_sg_req *sg_req)
428{
429	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
430
431	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
432	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
433	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
434	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
435	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
436	if (tdc->tdma->chip_data->support_separate_wcount_reg)
437		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
438
439	/* Start DMA */
440	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
441				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
442}
443
444static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
445		struct tegra_dma_sg_req *nsg_req)
446{
447	unsigned long status;
448
449	/*
450	 * The DMA controller reloads the new configuration for next transfer
451	 * after last burst of current transfer completes.
452	 * If there is no IEC status then this makes sure that last burst
453	 * has not be completed. There may be case that last burst is on
454	 * flight and so it can complete but because DMA is paused, it
455	 * will not generates interrupt as well as not reload the new
456	 * configuration.
457	 * If there is already IEC status then interrupt handler need to
458	 * load new configuration.
459	 */
460	tegra_dma_pause(tdc, false);
461	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
462
463	/*
464	 * If interrupt is pending then do nothing as the ISR will handle
465	 * the programing for new request.
466	 */
467	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
468		dev_err(tdc2dev(tdc),
469			"Skipping new configuration as interrupt is pending\n");
470		tegra_dma_resume(tdc);
471		return;
472	}
473
474	/* Safe to program new configuration */
475	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
476	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
477	if (tdc->tdma->chip_data->support_separate_wcount_reg)
478		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
479						nsg_req->ch_regs.wcount);
480	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
481				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
482	nsg_req->configured = true;
483
484	tegra_dma_resume(tdc);
485}
486
487static void tdc_start_head_req(struct tegra_dma_channel *tdc)
488{
489	struct tegra_dma_sg_req *sg_req;
490
491	if (list_empty(&tdc->pending_sg_req))
492		return;
493
494	sg_req = list_first_entry(&tdc->pending_sg_req,
495					typeof(*sg_req), node);
496	tegra_dma_start(tdc, sg_req);
497	sg_req->configured = true;
498	tdc->busy = true;
499}
500
501static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
502{
503	struct tegra_dma_sg_req *hsgreq;
504	struct tegra_dma_sg_req *hnsgreq;
505
506	if (list_empty(&tdc->pending_sg_req))
507		return;
508
509	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
510	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
511		hnsgreq = list_first_entry(&hsgreq->node,
512					typeof(*hnsgreq), node);
513		tegra_dma_configure_for_next(tdc, hnsgreq);
514	}
515}
516
517static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
518	struct tegra_dma_sg_req *sg_req, unsigned long status)
519{
520	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
521}
522
523static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
524{
525	struct tegra_dma_sg_req *sgreq;
526	struct tegra_dma_desc *dma_desc;
527
528	while (!list_empty(&tdc->pending_sg_req)) {
529		sgreq = list_first_entry(&tdc->pending_sg_req,
530						typeof(*sgreq), node);
531		list_move_tail(&sgreq->node, &tdc->free_sg_req);
532		if (sgreq->last_sg) {
533			dma_desc = sgreq->dma_desc;
534			dma_desc->dma_status = DMA_ERROR;
535			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
536
537			/* Add in cb list if it is not there. */
538			if (!dma_desc->cb_count)
539				list_add_tail(&dma_desc->cb_node,
540							&tdc->cb_desc);
541			dma_desc->cb_count++;
542		}
543	}
544	tdc->isr_handler = NULL;
545}
546
547static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
548		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
549{
550	struct tegra_dma_sg_req *hsgreq = NULL;
551
552	if (list_empty(&tdc->pending_sg_req)) {
553		dev_err(tdc2dev(tdc), "Dma is running without req\n");
554		tegra_dma_stop(tdc);
555		return false;
556	}
557
558	/*
559	 * Check that head req on list should be in flight.
560	 * If it is not in flight then abort transfer as
561	 * looping of transfer can not continue.
562	 */
563	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
564	if (!hsgreq->configured) {
565		tegra_dma_stop(tdc);
566		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
567		tegra_dma_abort_all(tdc);
568		return false;
569	}
570
571	/* Configure next request */
572	if (!to_terminate)
573		tdc_configure_next_head_desc(tdc);
574	return true;
575}
576
577static void handle_once_dma_done(struct tegra_dma_channel *tdc,
578	bool to_terminate)
579{
580	struct tegra_dma_sg_req *sgreq;
581	struct tegra_dma_desc *dma_desc;
582
583	tdc->busy = false;
584	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
585	dma_desc = sgreq->dma_desc;
586	dma_desc->bytes_transferred += sgreq->req_len;
587
588	list_del(&sgreq->node);
589	if (sgreq->last_sg) {
590		dma_desc->dma_status = DMA_COMPLETE;
591		dma_cookie_complete(&dma_desc->txd);
592		if (!dma_desc->cb_count)
593			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
594		dma_desc->cb_count++;
595		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
596	}
597	list_add_tail(&sgreq->node, &tdc->free_sg_req);
598
599	/* Do not start DMA if it is going to be terminate */
600	if (to_terminate || list_empty(&tdc->pending_sg_req))
601		return;
602
603	tdc_start_head_req(tdc);
604	return;
605}
606
607static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
608		bool to_terminate)
609{
610	struct tegra_dma_sg_req *sgreq;
611	struct tegra_dma_desc *dma_desc;
612	bool st;
613
614	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
615	dma_desc = sgreq->dma_desc;
616	dma_desc->bytes_transferred += sgreq->req_len;
617
618	/* Callback need to be call */
619	if (!dma_desc->cb_count)
620		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
621	dma_desc->cb_count++;
622
623	/* If not last req then put at end of pending list */
624	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
625		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
626		sgreq->configured = false;
627		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
628		if (!st)
629			dma_desc->dma_status = DMA_ERROR;
630	}
631	return;
632}
633
634static void tegra_dma_tasklet(unsigned long data)
635{
636	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
637	dma_async_tx_callback callback = NULL;
638	void *callback_param = NULL;
639	struct tegra_dma_desc *dma_desc;
640	unsigned long flags;
641	int cb_count;
642
643	spin_lock_irqsave(&tdc->lock, flags);
644	while (!list_empty(&tdc->cb_desc)) {
645		dma_desc  = list_first_entry(&tdc->cb_desc,
646					typeof(*dma_desc), cb_node);
647		list_del(&dma_desc->cb_node);
648		callback = dma_desc->txd.callback;
649		callback_param = dma_desc->txd.callback_param;
650		cb_count = dma_desc->cb_count;
651		dma_desc->cb_count = 0;
652		spin_unlock_irqrestore(&tdc->lock, flags);
653		while (cb_count-- && callback)
654			callback(callback_param);
655		spin_lock_irqsave(&tdc->lock, flags);
656	}
657	spin_unlock_irqrestore(&tdc->lock, flags);
658}
659
660static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
661{
662	struct tegra_dma_channel *tdc = dev_id;
663	unsigned long status;
664	unsigned long flags;
665
666	spin_lock_irqsave(&tdc->lock, flags);
667
668	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
669	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
670		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
671		tdc->isr_handler(tdc, false);
672		tasklet_schedule(&tdc->tasklet);
673		spin_unlock_irqrestore(&tdc->lock, flags);
674		return IRQ_HANDLED;
675	}
676
677	spin_unlock_irqrestore(&tdc->lock, flags);
678	dev_info(tdc2dev(tdc),
679		"Interrupt already served status 0x%08lx\n", status);
680	return IRQ_NONE;
681}
682
683static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
684{
685	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
686	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
687	unsigned long flags;
688	dma_cookie_t cookie;
689
690	spin_lock_irqsave(&tdc->lock, flags);
691	dma_desc->dma_status = DMA_IN_PROGRESS;
692	cookie = dma_cookie_assign(&dma_desc->txd);
693	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
694	spin_unlock_irqrestore(&tdc->lock, flags);
695	return cookie;
696}
697
698static void tegra_dma_issue_pending(struct dma_chan *dc)
699{
700	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
701	unsigned long flags;
702
703	spin_lock_irqsave(&tdc->lock, flags);
704	if (list_empty(&tdc->pending_sg_req)) {
705		dev_err(tdc2dev(tdc), "No DMA request\n");
706		goto end;
707	}
708	if (!tdc->busy) {
709		tdc_start_head_req(tdc);
710
711		/* Continuous single mode: Configure next req */
712		if (tdc->cyclic) {
713			/*
714			 * Wait for 1 burst time for configure DMA for
715			 * next transfer.
716			 */
717			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
718			tdc_configure_next_head_desc(tdc);
719		}
720	}
721end:
722	spin_unlock_irqrestore(&tdc->lock, flags);
723	return;
724}
725
726static int tegra_dma_terminate_all(struct dma_chan *dc)
727{
728	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
729	struct tegra_dma_sg_req *sgreq;
730	struct tegra_dma_desc *dma_desc;
731	unsigned long flags;
732	unsigned long status;
733	unsigned long wcount;
734	bool was_busy;
735
736	spin_lock_irqsave(&tdc->lock, flags);
737	if (list_empty(&tdc->pending_sg_req)) {
738		spin_unlock_irqrestore(&tdc->lock, flags);
739		return 0;
740	}
741
742	if (!tdc->busy)
743		goto skip_dma_stop;
744
745	/* Pause DMA before checking the queue status */
746	tegra_dma_pause(tdc, true);
747
748	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
749	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
750		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
751		tdc->isr_handler(tdc, true);
752		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
753	}
754	if (tdc->tdma->chip_data->support_separate_wcount_reg)
755		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
756	else
757		wcount = status;
758
759	was_busy = tdc->busy;
760	tegra_dma_stop(tdc);
761
762	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
763		sgreq = list_first_entry(&tdc->pending_sg_req,
764					typeof(*sgreq), node);
765		sgreq->dma_desc->bytes_transferred +=
766				get_current_xferred_count(tdc, sgreq, wcount);
767	}
768	tegra_dma_resume(tdc);
769
770skip_dma_stop:
771	tegra_dma_abort_all(tdc);
772
773	while (!list_empty(&tdc->cb_desc)) {
774		dma_desc  = list_first_entry(&tdc->cb_desc,
775					typeof(*dma_desc), cb_node);
776		list_del(&dma_desc->cb_node);
777		dma_desc->cb_count = 0;
778	}
779	spin_unlock_irqrestore(&tdc->lock, flags);
780	return 0;
781}
782
783static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
784	dma_cookie_t cookie, struct dma_tx_state *txstate)
785{
786	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
787	struct tegra_dma_desc *dma_desc;
788	struct tegra_dma_sg_req *sg_req;
789	enum dma_status ret;
790	unsigned long flags;
791	unsigned int residual;
792
793	ret = dma_cookie_status(dc, cookie, txstate);
794	if (ret == DMA_COMPLETE)
795		return ret;
796
797	spin_lock_irqsave(&tdc->lock, flags);
798
799	/* Check on wait_ack desc status */
800	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
801		if (dma_desc->txd.cookie == cookie) {
802			residual =  dma_desc->bytes_requested -
803					(dma_desc->bytes_transferred %
804						dma_desc->bytes_requested);
805			dma_set_residue(txstate, residual);
806			ret = dma_desc->dma_status;
807			spin_unlock_irqrestore(&tdc->lock, flags);
808			return ret;
809		}
810	}
811
812	/* Check in pending list */
813	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
814		dma_desc = sg_req->dma_desc;
815		if (dma_desc->txd.cookie == cookie) {
816			residual =  dma_desc->bytes_requested -
817					(dma_desc->bytes_transferred %
818						dma_desc->bytes_requested);
819			dma_set_residue(txstate, residual);
820			ret = dma_desc->dma_status;
821			spin_unlock_irqrestore(&tdc->lock, flags);
822			return ret;
823		}
824	}
825
826	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
827	spin_unlock_irqrestore(&tdc->lock, flags);
828	return ret;
829}
830
831static inline int get_bus_width(struct tegra_dma_channel *tdc,
832		enum dma_slave_buswidth slave_bw)
833{
834	switch (slave_bw) {
835	case DMA_SLAVE_BUSWIDTH_1_BYTE:
836		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
837	case DMA_SLAVE_BUSWIDTH_2_BYTES:
838		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
839	case DMA_SLAVE_BUSWIDTH_4_BYTES:
840		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
841	case DMA_SLAVE_BUSWIDTH_8_BYTES:
842		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
843	default:
844		dev_warn(tdc2dev(tdc),
845			"slave bw is not supported, using 32bits\n");
846		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
847	}
848}
849
850static inline int get_burst_size(struct tegra_dma_channel *tdc,
851	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
852{
853	int burst_byte;
854	int burst_ahb_width;
855
856	/*
857	 * burst_size from client is in terms of the bus_width.
858	 * convert them into AHB memory width which is 4 byte.
859	 */
860	burst_byte = burst_size * slave_bw;
861	burst_ahb_width = burst_byte / 4;
862
863	/* If burst size is 0 then calculate the burst size based on length */
864	if (!burst_ahb_width) {
865		if (len & 0xF)
866			return TEGRA_APBDMA_AHBSEQ_BURST_1;
867		else if ((len >> 4) & 0x1)
868			return TEGRA_APBDMA_AHBSEQ_BURST_4;
869		else
870			return TEGRA_APBDMA_AHBSEQ_BURST_8;
871	}
872	if (burst_ahb_width < 4)
873		return TEGRA_APBDMA_AHBSEQ_BURST_1;
874	else if (burst_ahb_width < 8)
875		return TEGRA_APBDMA_AHBSEQ_BURST_4;
876	else
877		return TEGRA_APBDMA_AHBSEQ_BURST_8;
878}
879
880static int get_transfer_param(struct tegra_dma_channel *tdc,
881	enum dma_transfer_direction direction, unsigned long *apb_addr,
882	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
883	enum dma_slave_buswidth *slave_bw)
884{
885
886	switch (direction) {
887	case DMA_MEM_TO_DEV:
888		*apb_addr = tdc->dma_sconfig.dst_addr;
889		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
890		*burst_size = tdc->dma_sconfig.dst_maxburst;
891		*slave_bw = tdc->dma_sconfig.dst_addr_width;
892		*csr = TEGRA_APBDMA_CSR_DIR;
893		return 0;
894
895	case DMA_DEV_TO_MEM:
896		*apb_addr = tdc->dma_sconfig.src_addr;
897		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
898		*burst_size = tdc->dma_sconfig.src_maxburst;
899		*slave_bw = tdc->dma_sconfig.src_addr_width;
900		*csr = 0;
901		return 0;
902
903	default:
904		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
905		return -EINVAL;
906	}
907	return -EINVAL;
908}
909
910static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
911	struct tegra_dma_channel_regs *ch_regs, u32 len)
912{
913	u32 len_field = (len - 4) & 0xFFFC;
914
915	if (tdc->tdma->chip_data->support_separate_wcount_reg)
916		ch_regs->wcount = len_field;
917	else
918		ch_regs->csr |= len_field;
919}
920
921static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
922	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
923	enum dma_transfer_direction direction, unsigned long flags,
924	void *context)
925{
926	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
927	struct tegra_dma_desc *dma_desc;
928	unsigned int	    i;
929	struct scatterlist      *sg;
930	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
931	struct list_head req_list;
932	struct tegra_dma_sg_req  *sg_req = NULL;
933	u32 burst_size;
934	enum dma_slave_buswidth slave_bw;
935	int ret;
936
937	if (!tdc->config_init) {
938		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
939		return NULL;
940	}
941	if (sg_len < 1) {
942		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
943		return NULL;
944	}
945
946	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
947				&burst_size, &slave_bw);
948	if (ret < 0)
949		return NULL;
950
951	INIT_LIST_HEAD(&req_list);
952
953	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
954	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
955					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
956	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
957
958	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
959	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
960	if (flags & DMA_PREP_INTERRUPT)
961		csr |= TEGRA_APBDMA_CSR_IE_EOC;
962
963	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
964
965	dma_desc = tegra_dma_desc_get(tdc);
966	if (!dma_desc) {
967		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
968		return NULL;
969	}
970	INIT_LIST_HEAD(&dma_desc->tx_list);
971	INIT_LIST_HEAD(&dma_desc->cb_node);
972	dma_desc->cb_count = 0;
973	dma_desc->bytes_requested = 0;
974	dma_desc->bytes_transferred = 0;
975	dma_desc->dma_status = DMA_IN_PROGRESS;
976
977	/* Make transfer requests */
978	for_each_sg(sgl, sg, sg_len, i) {
979		u32 len, mem;
980
981		mem = sg_dma_address(sg);
982		len = sg_dma_len(sg);
983
984		if ((len & 3) || (mem & 3) ||
985				(len > tdc->tdma->chip_data->max_dma_count)) {
986			dev_err(tdc2dev(tdc),
987				"Dma length/memory address is not supported\n");
988			tegra_dma_desc_put(tdc, dma_desc);
989			return NULL;
990		}
991
992		sg_req = tegra_dma_sg_req_get(tdc);
993		if (!sg_req) {
994			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
995			tegra_dma_desc_put(tdc, dma_desc);
996			return NULL;
997		}
998
999		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1000		dma_desc->bytes_requested += len;
1001
1002		sg_req->ch_regs.apb_ptr = apb_ptr;
1003		sg_req->ch_regs.ahb_ptr = mem;
1004		sg_req->ch_regs.csr = csr;
1005		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1006		sg_req->ch_regs.apb_seq = apb_seq;
1007		sg_req->ch_regs.ahb_seq = ahb_seq;
1008		sg_req->configured = false;
1009		sg_req->last_sg = false;
1010		sg_req->dma_desc = dma_desc;
1011		sg_req->req_len = len;
1012
1013		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1014	}
1015	sg_req->last_sg = true;
1016	if (flags & DMA_CTRL_ACK)
1017		dma_desc->txd.flags = DMA_CTRL_ACK;
1018
1019	/*
1020	 * Make sure that mode should not be conflicting with currently
1021	 * configured mode.
1022	 */
1023	if (!tdc->isr_handler) {
1024		tdc->isr_handler = handle_once_dma_done;
1025		tdc->cyclic = false;
1026	} else {
1027		if (tdc->cyclic) {
1028			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1029			tegra_dma_desc_put(tdc, dma_desc);
1030			return NULL;
1031		}
1032	}
1033
1034	return &dma_desc->txd;
1035}
1036
1037static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1038	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1039	size_t period_len, enum dma_transfer_direction direction,
1040	unsigned long flags)
1041{
1042	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1043	struct tegra_dma_desc *dma_desc = NULL;
1044	struct tegra_dma_sg_req  *sg_req = NULL;
1045	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1046	int len;
1047	size_t remain_len;
1048	dma_addr_t mem = buf_addr;
1049	u32 burst_size;
1050	enum dma_slave_buswidth slave_bw;
1051	int ret;
1052
1053	if (!buf_len || !period_len) {
1054		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1055		return NULL;
1056	}
1057
1058	if (!tdc->config_init) {
1059		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1060		return NULL;
1061	}
1062
1063	/*
1064	 * We allow to take more number of requests till DMA is
1065	 * not started. The driver will loop over all requests.
1066	 * Once DMA is started then new requests can be queued only after
1067	 * terminating the DMA.
1068	 */
1069	if (tdc->busy) {
1070		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1071		return NULL;
1072	}
1073
1074	/*
1075	 * We only support cycle transfer when buf_len is multiple of
1076	 * period_len.
1077	 */
1078	if (buf_len % period_len) {
1079		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1080		return NULL;
1081	}
1082
1083	len = period_len;
1084	if ((len & 3) || (buf_addr & 3) ||
1085			(len > tdc->tdma->chip_data->max_dma_count)) {
1086		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1087		return NULL;
1088	}
1089
1090	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1091				&burst_size, &slave_bw);
1092	if (ret < 0)
1093		return NULL;
1094
1095
1096	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1097	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1098					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1099	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1100
1101	csr |= TEGRA_APBDMA_CSR_FLOW;
1102	if (flags & DMA_PREP_INTERRUPT)
1103		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1104	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1105
1106	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1107
1108	dma_desc = tegra_dma_desc_get(tdc);
1109	if (!dma_desc) {
1110		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1111		return NULL;
1112	}
1113
1114	INIT_LIST_HEAD(&dma_desc->tx_list);
1115	INIT_LIST_HEAD(&dma_desc->cb_node);
1116	dma_desc->cb_count = 0;
1117
1118	dma_desc->bytes_transferred = 0;
1119	dma_desc->bytes_requested = buf_len;
1120	remain_len = buf_len;
1121
1122	/* Split transfer equal to period size */
1123	while (remain_len) {
1124		sg_req = tegra_dma_sg_req_get(tdc);
1125		if (!sg_req) {
1126			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1127			tegra_dma_desc_put(tdc, dma_desc);
1128			return NULL;
1129		}
1130
1131		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1132		sg_req->ch_regs.apb_ptr = apb_ptr;
1133		sg_req->ch_regs.ahb_ptr = mem;
1134		sg_req->ch_regs.csr = csr;
1135		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1136		sg_req->ch_regs.apb_seq = apb_seq;
1137		sg_req->ch_regs.ahb_seq = ahb_seq;
1138		sg_req->configured = false;
1139		sg_req->half_done = false;
1140		sg_req->last_sg = false;
1141		sg_req->dma_desc = dma_desc;
1142		sg_req->req_len = len;
1143
1144		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1145		remain_len -= len;
1146		mem += len;
1147	}
1148	sg_req->last_sg = true;
1149	if (flags & DMA_CTRL_ACK)
1150		dma_desc->txd.flags = DMA_CTRL_ACK;
1151
1152	/*
1153	 * Make sure that mode should not be conflicting with currently
1154	 * configured mode.
1155	 */
1156	if (!tdc->isr_handler) {
1157		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1158		tdc->cyclic = true;
1159	} else {
1160		if (!tdc->cyclic) {
1161			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1162			tegra_dma_desc_put(tdc, dma_desc);
1163			return NULL;
1164		}
1165	}
1166
1167	return &dma_desc->txd;
1168}
1169
1170static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1171{
1172	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1173	struct tegra_dma *tdma = tdc->tdma;
1174	int ret;
1175
1176	dma_cookie_init(&tdc->dma_chan);
1177	tdc->config_init = false;
1178	ret = clk_prepare_enable(tdma->dma_clk);
1179	if (ret < 0)
1180		dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1181	return ret;
1182}
1183
1184static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1185{
1186	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1187	struct tegra_dma *tdma = tdc->tdma;
1188
1189	struct tegra_dma_desc *dma_desc;
1190	struct tegra_dma_sg_req *sg_req;
1191	struct list_head dma_desc_list;
1192	struct list_head sg_req_list;
1193	unsigned long flags;
1194
1195	INIT_LIST_HEAD(&dma_desc_list);
1196	INIT_LIST_HEAD(&sg_req_list);
1197
1198	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1199
1200	if (tdc->busy)
1201		tegra_dma_terminate_all(dc);
1202
1203	spin_lock_irqsave(&tdc->lock, flags);
1204	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1205	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1206	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1207	INIT_LIST_HEAD(&tdc->cb_desc);
1208	tdc->config_init = false;
1209	tdc->isr_handler = NULL;
1210	spin_unlock_irqrestore(&tdc->lock, flags);
1211
1212	while (!list_empty(&dma_desc_list)) {
1213		dma_desc = list_first_entry(&dma_desc_list,
1214					typeof(*dma_desc), node);
1215		list_del(&dma_desc->node);
1216		kfree(dma_desc);
1217	}
1218
1219	while (!list_empty(&sg_req_list)) {
1220		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1221		list_del(&sg_req->node);
1222		kfree(sg_req);
1223	}
1224	clk_disable_unprepare(tdma->dma_clk);
1225
1226	tdc->slave_id = 0;
1227}
1228
1229static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1230					   struct of_dma *ofdma)
1231{
1232	struct tegra_dma *tdma = ofdma->of_dma_data;
1233	struct dma_chan *chan;
1234	struct tegra_dma_channel *tdc;
1235
1236	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1237	if (!chan)
1238		return NULL;
1239
1240	tdc = to_tegra_dma_chan(chan);
1241	tdc->slave_id = dma_spec->args[0];
1242
1243	return chan;
1244}
1245
1246/* Tegra20 specific DMA controller information */
1247static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1248	.nr_channels		= 16,
1249	.channel_reg_size	= 0x20,
1250	.max_dma_count		= 1024UL * 64,
1251	.support_channel_pause	= false,
1252	.support_separate_wcount_reg = false,
1253};
1254
1255/* Tegra30 specific DMA controller information */
1256static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1257	.nr_channels		= 32,
1258	.channel_reg_size	= 0x20,
1259	.max_dma_count		= 1024UL * 64,
1260	.support_channel_pause	= false,
1261	.support_separate_wcount_reg = false,
1262};
1263
1264/* Tegra114 specific DMA controller information */
1265static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1266	.nr_channels		= 32,
1267	.channel_reg_size	= 0x20,
1268	.max_dma_count		= 1024UL * 64,
1269	.support_channel_pause	= true,
1270	.support_separate_wcount_reg = false,
1271};
1272
1273/* Tegra148 specific DMA controller information */
1274static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1275	.nr_channels		= 32,
1276	.channel_reg_size	= 0x40,
1277	.max_dma_count		= 1024UL * 64,
1278	.support_channel_pause	= true,
1279	.support_separate_wcount_reg = true,
1280};
1281
1282
1283static const struct of_device_id tegra_dma_of_match[] = {
1284	{
1285		.compatible = "nvidia,tegra148-apbdma",
1286		.data = &tegra148_dma_chip_data,
1287	}, {
1288		.compatible = "nvidia,tegra114-apbdma",
1289		.data = &tegra114_dma_chip_data,
1290	}, {
1291		.compatible = "nvidia,tegra30-apbdma",
1292		.data = &tegra30_dma_chip_data,
1293	}, {
1294		.compatible = "nvidia,tegra20-apbdma",
1295		.data = &tegra20_dma_chip_data,
1296	}, {
1297	},
1298};
1299MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1300
1301static int tegra_dma_probe(struct platform_device *pdev)
1302{
1303	struct resource	*res;
1304	struct tegra_dma *tdma;
1305	int ret;
1306	int i;
1307	const struct tegra_dma_chip_data *cdata = NULL;
1308	const struct of_device_id *match;
1309
1310	match = of_match_device(tegra_dma_of_match, &pdev->dev);
1311	if (!match) {
1312		dev_err(&pdev->dev, "Error: No device match found\n");
1313		return -ENODEV;
1314	}
1315	cdata = match->data;
1316
1317	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1318			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1319	if (!tdma) {
1320		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1321		return -ENOMEM;
1322	}
1323
1324	tdma->dev = &pdev->dev;
1325	tdma->chip_data = cdata;
1326	platform_set_drvdata(pdev, tdma);
1327
1328	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1329	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1330	if (IS_ERR(tdma->base_addr))
1331		return PTR_ERR(tdma->base_addr);
1332
1333	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1334	if (IS_ERR(tdma->dma_clk)) {
1335		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1336		return PTR_ERR(tdma->dma_clk);
1337	}
1338
1339	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1340	if (IS_ERR(tdma->rst)) {
1341		dev_err(&pdev->dev, "Error: Missing reset\n");
1342		return PTR_ERR(tdma->rst);
1343	}
1344
1345	spin_lock_init(&tdma->global_lock);
1346
1347	pm_runtime_enable(&pdev->dev);
1348	if (!pm_runtime_enabled(&pdev->dev)) {
1349		ret = tegra_dma_runtime_resume(&pdev->dev);
1350		if (ret) {
1351			dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1352				ret);
1353			goto err_pm_disable;
1354		}
1355	}
1356
1357	/* Enable clock before accessing registers */
1358	ret = clk_prepare_enable(tdma->dma_clk);
1359	if (ret < 0) {
1360		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1361		goto err_pm_disable;
1362	}
1363
1364	/* Reset DMA controller */
1365	reset_control_assert(tdma->rst);
1366	udelay(2);
1367	reset_control_deassert(tdma->rst);
1368
1369	/* Enable global DMA registers */
1370	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1371	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1372	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1373
1374	clk_disable_unprepare(tdma->dma_clk);
1375
1376	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1377	for (i = 0; i < cdata->nr_channels; i++) {
1378		struct tegra_dma_channel *tdc = &tdma->channels[i];
1379
1380		tdc->chan_base_offset = TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1381					i * cdata->channel_reg_size;
1382
1383		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1384		if (!res) {
1385			ret = -EINVAL;
1386			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1387			goto err_irq;
1388		}
1389		tdc->irq = res->start;
1390		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1391		ret = devm_request_irq(&pdev->dev, tdc->irq,
1392				tegra_dma_isr, 0, tdc->name, tdc);
1393		if (ret) {
1394			dev_err(&pdev->dev,
1395				"request_irq failed with err %d channel %d\n",
1396				ret, i);
1397			goto err_irq;
1398		}
1399
1400		tdc->dma_chan.device = &tdma->dma_dev;
1401		dma_cookie_init(&tdc->dma_chan);
1402		list_add_tail(&tdc->dma_chan.device_node,
1403				&tdma->dma_dev.channels);
1404		tdc->tdma = tdma;
1405		tdc->id = i;
1406
1407		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1408				(unsigned long)tdc);
1409		spin_lock_init(&tdc->lock);
1410
1411		INIT_LIST_HEAD(&tdc->pending_sg_req);
1412		INIT_LIST_HEAD(&tdc->free_sg_req);
1413		INIT_LIST_HEAD(&tdc->free_dma_desc);
1414		INIT_LIST_HEAD(&tdc->cb_desc);
1415	}
1416
1417	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1418	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1419	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1420
1421	tdma->dma_dev.dev = &pdev->dev;
1422	tdma->dma_dev.device_alloc_chan_resources =
1423					tegra_dma_alloc_chan_resources;
1424	tdma->dma_dev.device_free_chan_resources =
1425					tegra_dma_free_chan_resources;
1426	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1427	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1428	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1429		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1430		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1431		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1432	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1433		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1434		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1435		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1436	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1437	/*
1438	 * XXX The hardware appears to support
1439	 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1440	 * only used by this driver during tegra_dma_terminate_all()
1441	 */
1442	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1443	tdma->dma_dev.device_config = tegra_dma_slave_config;
1444	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1445	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1446	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1447
1448	ret = dma_async_device_register(&tdma->dma_dev);
1449	if (ret < 0) {
1450		dev_err(&pdev->dev,
1451			"Tegra20 APB DMA driver registration failed %d\n", ret);
1452		goto err_irq;
1453	}
1454
1455	ret = of_dma_controller_register(pdev->dev.of_node,
1456					 tegra_dma_of_xlate, tdma);
1457	if (ret < 0) {
1458		dev_err(&pdev->dev,
1459			"Tegra20 APB DMA OF registration failed %d\n", ret);
1460		goto err_unregister_dma_dev;
1461	}
1462
1463	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1464			cdata->nr_channels);
1465	return 0;
1466
1467err_unregister_dma_dev:
1468	dma_async_device_unregister(&tdma->dma_dev);
1469err_irq:
1470	while (--i >= 0) {
1471		struct tegra_dma_channel *tdc = &tdma->channels[i];
1472		tasklet_kill(&tdc->tasklet);
1473	}
1474
1475err_pm_disable:
1476	pm_runtime_disable(&pdev->dev);
1477	if (!pm_runtime_status_suspended(&pdev->dev))
1478		tegra_dma_runtime_suspend(&pdev->dev);
1479	return ret;
1480}
1481
1482static int tegra_dma_remove(struct platform_device *pdev)
1483{
1484	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1485	int i;
1486	struct tegra_dma_channel *tdc;
1487
1488	dma_async_device_unregister(&tdma->dma_dev);
1489
1490	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1491		tdc = &tdma->channels[i];
1492		tasklet_kill(&tdc->tasklet);
1493	}
1494
1495	pm_runtime_disable(&pdev->dev);
1496	if (!pm_runtime_status_suspended(&pdev->dev))
1497		tegra_dma_runtime_suspend(&pdev->dev);
1498
1499	return 0;
1500}
1501
1502static int tegra_dma_runtime_suspend(struct device *dev)
1503{
1504	struct platform_device *pdev = to_platform_device(dev);
1505	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1506
1507	clk_disable_unprepare(tdma->dma_clk);
1508	return 0;
1509}
1510
1511static int tegra_dma_runtime_resume(struct device *dev)
1512{
1513	struct platform_device *pdev = to_platform_device(dev);
1514	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1515	int ret;
1516
1517	ret = clk_prepare_enable(tdma->dma_clk);
1518	if (ret < 0) {
1519		dev_err(dev, "clk_enable failed: %d\n", ret);
1520		return ret;
1521	}
1522	return 0;
1523}
1524
1525#ifdef CONFIG_PM_SLEEP
1526static int tegra_dma_pm_suspend(struct device *dev)
1527{
1528	struct tegra_dma *tdma = dev_get_drvdata(dev);
1529	int i;
1530	int ret;
1531
1532	/* Enable clock before accessing register */
1533	ret = tegra_dma_runtime_resume(dev);
1534	if (ret < 0)
1535		return ret;
1536
1537	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1538	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1539		struct tegra_dma_channel *tdc = &tdma->channels[i];
1540		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1541
1542		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1543		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1544		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1545		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1546		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1547	}
1548
1549	/* Disable clock */
1550	tegra_dma_runtime_suspend(dev);
1551	return 0;
1552}
1553
1554static int tegra_dma_pm_resume(struct device *dev)
1555{
1556	struct tegra_dma *tdma = dev_get_drvdata(dev);
1557	int i;
1558	int ret;
1559
1560	/* Enable clock before accessing register */
1561	ret = tegra_dma_runtime_resume(dev);
1562	if (ret < 0)
1563		return ret;
1564
1565	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1566	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1567	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1568
1569	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1570		struct tegra_dma_channel *tdc = &tdma->channels[i];
1571		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1572
1573		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1574		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1575		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1576		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1577		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1578			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1579	}
1580
1581	/* Disable clock */
1582	tegra_dma_runtime_suspend(dev);
1583	return 0;
1584}
1585#endif
1586
1587static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1588#ifdef CONFIG_PM
1589	.runtime_suspend = tegra_dma_runtime_suspend,
1590	.runtime_resume = tegra_dma_runtime_resume,
1591#endif
1592	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1593};
1594
1595static struct platform_driver tegra_dmac_driver = {
1596	.driver = {
1597		.name	= "tegra-apbdma",
1598		.pm	= &tegra_dma_dev_pm_ops,
1599		.of_match_table = tegra_dma_of_match,
1600	},
1601	.probe		= tegra_dma_probe,
1602	.remove		= tegra_dma_remove,
1603};
1604
1605module_platform_driver(tegra_dmac_driver);
1606
1607MODULE_ALIAS("platform:tegra20-apbdma");
1608MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1609MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1610MODULE_LICENSE("GPL v2");
1611