1/*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/completion.h>
23#include <linux/device.h>
24#include <linux/errno.h>
25#include <linux/firewire.h>
26#include <linux/firewire-constants.h>
27#include <linux/fs.h>
28#include <linux/init.h>
29#include <linux/idr.h>
30#include <linux/jiffies.h>
31#include <linux/kernel.h>
32#include <linux/list.h>
33#include <linux/module.h>
34#include <linux/rculist.h>
35#include <linux/slab.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/timer.h>
39#include <linux/types.h>
40#include <linux/workqueue.h>
41
42#include <asm/byteorder.h>
43
44#include "core.h"
45
46#define HEADER_PRI(pri)			((pri) << 0)
47#define HEADER_TCODE(tcode)		((tcode) << 4)
48#define HEADER_RETRY(retry)		((retry) << 8)
49#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
50#define HEADER_DESTINATION(destination)	((destination) << 16)
51#define HEADER_SOURCE(source)		((source) << 16)
52#define HEADER_RCODE(rcode)		((rcode) << 12)
53#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
54#define HEADER_DATA_LENGTH(length)	((length) << 16)
55#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
56
57#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
58#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
59#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
60#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
61#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
62#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
63#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
64#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
65
66#define HEADER_DESTINATION_IS_BROADCAST(q) \
67	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
68
69#define PHY_PACKET_CONFIG	0x0
70#define PHY_PACKET_LINK_ON	0x1
71#define PHY_PACKET_SELF_ID	0x2
72
73#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
74#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
75#define PHY_IDENTIFIER(id)		((id) << 30)
76
77/* returns 0 if the split timeout handler is already running */
78static int try_cancel_split_timeout(struct fw_transaction *t)
79{
80	if (t->is_split_transaction)
81		return del_timer(&t->split_timeout_timer);
82	else
83		return 1;
84}
85
86static int close_transaction(struct fw_transaction *transaction,
87			     struct fw_card *card, int rcode)
88{
89	struct fw_transaction *t;
90	unsigned long flags;
91
92	spin_lock_irqsave(&card->lock, flags);
93	list_for_each_entry(t, &card->transaction_list, link) {
94		if (t == transaction) {
95			if (!try_cancel_split_timeout(t)) {
96				spin_unlock_irqrestore(&card->lock, flags);
97				goto timed_out;
98			}
99			list_del_init(&t->link);
100			card->tlabel_mask &= ~(1ULL << t->tlabel);
101			break;
102		}
103	}
104	spin_unlock_irqrestore(&card->lock, flags);
105
106	if (&t->link != &card->transaction_list) {
107		t->callback(card, rcode, NULL, 0, t->callback_data);
108		return 0;
109	}
110
111 timed_out:
112	return -ENOENT;
113}
114
115/*
116 * Only valid for transactions that are potentially pending (ie have
117 * been sent).
118 */
119int fw_cancel_transaction(struct fw_card *card,
120			  struct fw_transaction *transaction)
121{
122	/*
123	 * Cancel the packet transmission if it's still queued.  That
124	 * will call the packet transmission callback which cancels
125	 * the transaction.
126	 */
127
128	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
129		return 0;
130
131	/*
132	 * If the request packet has already been sent, we need to see
133	 * if the transaction is still pending and remove it in that case.
134	 */
135
136	return close_transaction(transaction, card, RCODE_CANCELLED);
137}
138EXPORT_SYMBOL(fw_cancel_transaction);
139
140static void split_transaction_timeout_callback(unsigned long data)
141{
142	struct fw_transaction *t = (struct fw_transaction *)data;
143	struct fw_card *card = t->card;
144	unsigned long flags;
145
146	spin_lock_irqsave(&card->lock, flags);
147	if (list_empty(&t->link)) {
148		spin_unlock_irqrestore(&card->lock, flags);
149		return;
150	}
151	list_del(&t->link);
152	card->tlabel_mask &= ~(1ULL << t->tlabel);
153	spin_unlock_irqrestore(&card->lock, flags);
154
155	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
156}
157
158static void start_split_transaction_timeout(struct fw_transaction *t,
159					    struct fw_card *card)
160{
161	unsigned long flags;
162
163	spin_lock_irqsave(&card->lock, flags);
164
165	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
166		spin_unlock_irqrestore(&card->lock, flags);
167		return;
168	}
169
170	t->is_split_transaction = true;
171	mod_timer(&t->split_timeout_timer,
172		  jiffies + card->split_timeout_jiffies);
173
174	spin_unlock_irqrestore(&card->lock, flags);
175}
176
177static void transmit_complete_callback(struct fw_packet *packet,
178				       struct fw_card *card, int status)
179{
180	struct fw_transaction *t =
181	    container_of(packet, struct fw_transaction, packet);
182
183	switch (status) {
184	case ACK_COMPLETE:
185		close_transaction(t, card, RCODE_COMPLETE);
186		break;
187	case ACK_PENDING:
188		start_split_transaction_timeout(t, card);
189		break;
190	case ACK_BUSY_X:
191	case ACK_BUSY_A:
192	case ACK_BUSY_B:
193		close_transaction(t, card, RCODE_BUSY);
194		break;
195	case ACK_DATA_ERROR:
196		close_transaction(t, card, RCODE_DATA_ERROR);
197		break;
198	case ACK_TYPE_ERROR:
199		close_transaction(t, card, RCODE_TYPE_ERROR);
200		break;
201	default:
202		/*
203		 * In this case the ack is really a juju specific
204		 * rcode, so just forward that to the callback.
205		 */
206		close_transaction(t, card, status);
207		break;
208	}
209}
210
211static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
212		int destination_id, int source_id, int generation, int speed,
213		unsigned long long offset, void *payload, size_t length)
214{
215	int ext_tcode;
216
217	if (tcode == TCODE_STREAM_DATA) {
218		packet->header[0] =
219			HEADER_DATA_LENGTH(length) |
220			destination_id |
221			HEADER_TCODE(TCODE_STREAM_DATA);
222		packet->header_length = 4;
223		packet->payload = payload;
224		packet->payload_length = length;
225
226		goto common;
227	}
228
229	if (tcode > 0x10) {
230		ext_tcode = tcode & ~0x10;
231		tcode = TCODE_LOCK_REQUEST;
232	} else
233		ext_tcode = 0;
234
235	packet->header[0] =
236		HEADER_RETRY(RETRY_X) |
237		HEADER_TLABEL(tlabel) |
238		HEADER_TCODE(tcode) |
239		HEADER_DESTINATION(destination_id);
240	packet->header[1] =
241		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
242	packet->header[2] =
243		offset;
244
245	switch (tcode) {
246	case TCODE_WRITE_QUADLET_REQUEST:
247		packet->header[3] = *(u32 *)payload;
248		packet->header_length = 16;
249		packet->payload_length = 0;
250		break;
251
252	case TCODE_LOCK_REQUEST:
253	case TCODE_WRITE_BLOCK_REQUEST:
254		packet->header[3] =
255			HEADER_DATA_LENGTH(length) |
256			HEADER_EXTENDED_TCODE(ext_tcode);
257		packet->header_length = 16;
258		packet->payload = payload;
259		packet->payload_length = length;
260		break;
261
262	case TCODE_READ_QUADLET_REQUEST:
263		packet->header_length = 12;
264		packet->payload_length = 0;
265		break;
266
267	case TCODE_READ_BLOCK_REQUEST:
268		packet->header[3] =
269			HEADER_DATA_LENGTH(length) |
270			HEADER_EXTENDED_TCODE(ext_tcode);
271		packet->header_length = 16;
272		packet->payload_length = 0;
273		break;
274
275	default:
276		WARN(1, "wrong tcode %d\n", tcode);
277	}
278 common:
279	packet->speed = speed;
280	packet->generation = generation;
281	packet->ack = 0;
282	packet->payload_mapped = false;
283}
284
285static int allocate_tlabel(struct fw_card *card)
286{
287	int tlabel;
288
289	tlabel = card->current_tlabel;
290	while (card->tlabel_mask & (1ULL << tlabel)) {
291		tlabel = (tlabel + 1) & 0x3f;
292		if (tlabel == card->current_tlabel)
293			return -EBUSY;
294	}
295
296	card->current_tlabel = (tlabel + 1) & 0x3f;
297	card->tlabel_mask |= 1ULL << tlabel;
298
299	return tlabel;
300}
301
302/**
303 * fw_send_request() - submit a request packet for transmission
304 * @card:		interface to send the request at
305 * @t:			transaction instance to which the request belongs
306 * @tcode:		transaction code
307 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
308 * @generation:		bus generation in which request and response are valid
309 * @speed:		transmission speed
310 * @offset:		48bit wide offset into destination's address space
311 * @payload:		data payload for the request subaction
312 * @length:		length of the payload, in bytes
313 * @callback:		function to be called when the transaction is completed
314 * @callback_data:	data to be passed to the transaction completion callback
315 *
316 * Submit a request packet into the asynchronous request transmission queue.
317 * Can be called from atomic context.  If you prefer a blocking API, use
318 * fw_run_transaction() in a context that can sleep.
319 *
320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322 *
323 * Make sure that the value in @destination_id is not older than the one in
324 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
325 *
326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
328 * It will contain tag, channel, and sy data instead of a node ID then.
329 *
330 * The payload buffer at @data is going to be DMA-mapped except in case of
331 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
332 * buffer complies with the restrictions of the streaming DMA mapping API.
333 * @payload must not be freed before the @callback is called.
334 *
335 * In case of request types without payload, @data is NULL and @length is 0.
336 *
337 * After the transaction is completed successfully or unsuccessfully, the
338 * @callback will be called.  Among its parameters is the response code which
339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
340 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
343 * generation, or missing ACK respectively.
344 *
345 * Note some timing corner cases:  fw_send_request() may complete much earlier
346 * than when the request packet actually hits the wire.  On the other hand,
347 * transaction completion and hence execution of @callback may happen even
348 * before fw_send_request() returns.
349 */
350void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
351		     int destination_id, int generation, int speed,
352		     unsigned long long offset, void *payload, size_t length,
353		     fw_transaction_callback_t callback, void *callback_data)
354{
355	unsigned long flags;
356	int tlabel;
357
358	/*
359	 * Allocate tlabel from the bitmap and put the transaction on
360	 * the list while holding the card spinlock.
361	 */
362
363	spin_lock_irqsave(&card->lock, flags);
364
365	tlabel = allocate_tlabel(card);
366	if (tlabel < 0) {
367		spin_unlock_irqrestore(&card->lock, flags);
368		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
369		return;
370	}
371
372	t->node_id = destination_id;
373	t->tlabel = tlabel;
374	t->card = card;
375	t->is_split_transaction = false;
376	setup_timer(&t->split_timeout_timer,
377		    split_transaction_timeout_callback, (unsigned long)t);
378	t->callback = callback;
379	t->callback_data = callback_data;
380
381	fw_fill_request(&t->packet, tcode, t->tlabel,
382			destination_id, card->node_id, generation,
383			speed, offset, payload, length);
384	t->packet.callback = transmit_complete_callback;
385
386	list_add_tail(&t->link, &card->transaction_list);
387
388	spin_unlock_irqrestore(&card->lock, flags);
389
390	card->driver->send_request(card, &t->packet);
391}
392EXPORT_SYMBOL(fw_send_request);
393
394struct transaction_callback_data {
395	struct completion done;
396	void *payload;
397	int rcode;
398};
399
400static void transaction_callback(struct fw_card *card, int rcode,
401				 void *payload, size_t length, void *data)
402{
403	struct transaction_callback_data *d = data;
404
405	if (rcode == RCODE_COMPLETE)
406		memcpy(d->payload, payload, length);
407	d->rcode = rcode;
408	complete(&d->done);
409}
410
411/**
412 * fw_run_transaction() - send request and sleep until transaction is completed
413 *
414 * Returns the RCODE.  See fw_send_request() for parameter documentation.
415 * Unlike fw_send_request(), @data points to the payload of the request or/and
416 * to the payload of the response.  DMA mapping restrictions apply to outbound
417 * request payloads of >= 8 bytes but not to inbound response payloads.
418 */
419int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
420		       int generation, int speed, unsigned long long offset,
421		       void *payload, size_t length)
422{
423	struct transaction_callback_data d;
424	struct fw_transaction t;
425
426	init_timer_on_stack(&t.split_timeout_timer);
427	init_completion(&d.done);
428	d.payload = payload;
429	fw_send_request(card, &t, tcode, destination_id, generation, speed,
430			offset, payload, length, transaction_callback, &d);
431	wait_for_completion(&d.done);
432	destroy_timer_on_stack(&t.split_timeout_timer);
433
434	return d.rcode;
435}
436EXPORT_SYMBOL(fw_run_transaction);
437
438static DEFINE_MUTEX(phy_config_mutex);
439static DECLARE_COMPLETION(phy_config_done);
440
441static void transmit_phy_packet_callback(struct fw_packet *packet,
442					 struct fw_card *card, int status)
443{
444	complete(&phy_config_done);
445}
446
447static struct fw_packet phy_config_packet = {
448	.header_length	= 12,
449	.header[0]	= TCODE_LINK_INTERNAL << 4,
450	.payload_length	= 0,
451	.speed		= SCODE_100,
452	.callback	= transmit_phy_packet_callback,
453};
454
455void fw_send_phy_config(struct fw_card *card,
456			int node_id, int generation, int gap_count)
457{
458	long timeout = DIV_ROUND_UP(HZ, 10);
459	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
460
461	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
462		data |= PHY_CONFIG_ROOT_ID(node_id);
463
464	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
465		gap_count = card->driver->read_phy_reg(card, 1);
466		if (gap_count < 0)
467			return;
468
469		gap_count &= 63;
470		if (gap_count == 63)
471			return;
472	}
473	data |= PHY_CONFIG_GAP_COUNT(gap_count);
474
475	mutex_lock(&phy_config_mutex);
476
477	phy_config_packet.header[1] = data;
478	phy_config_packet.header[2] = ~data;
479	phy_config_packet.generation = generation;
480	reinit_completion(&phy_config_done);
481
482	card->driver->send_request(card, &phy_config_packet);
483	wait_for_completion_timeout(&phy_config_done, timeout);
484
485	mutex_unlock(&phy_config_mutex);
486}
487
488static struct fw_address_handler *lookup_overlapping_address_handler(
489	struct list_head *list, unsigned long long offset, size_t length)
490{
491	struct fw_address_handler *handler;
492
493	list_for_each_entry_rcu(handler, list, link) {
494		if (handler->offset < offset + length &&
495		    offset < handler->offset + handler->length)
496			return handler;
497	}
498
499	return NULL;
500}
501
502static bool is_enclosing_handler(struct fw_address_handler *handler,
503				 unsigned long long offset, size_t length)
504{
505	return handler->offset <= offset &&
506		offset + length <= handler->offset + handler->length;
507}
508
509static struct fw_address_handler *lookup_enclosing_address_handler(
510	struct list_head *list, unsigned long long offset, size_t length)
511{
512	struct fw_address_handler *handler;
513
514	list_for_each_entry_rcu(handler, list, link) {
515		if (is_enclosing_handler(handler, offset, length))
516			return handler;
517	}
518
519	return NULL;
520}
521
522static DEFINE_SPINLOCK(address_handler_list_lock);
523static LIST_HEAD(address_handler_list);
524
525const struct fw_address_region fw_high_memory_region =
526	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
527EXPORT_SYMBOL(fw_high_memory_region);
528
529static const struct fw_address_region low_memory_region =
530	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
531
532#if 0
533const struct fw_address_region fw_private_region =
534	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
535const struct fw_address_region fw_csr_region =
536	{ .start = CSR_REGISTER_BASE,
537	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
538const struct fw_address_region fw_unit_space_region =
539	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
540#endif  /*  0  */
541
542static bool is_in_fcp_region(u64 offset, size_t length)
543{
544	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
545		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
546}
547
548/**
549 * fw_core_add_address_handler() - register for incoming requests
550 * @handler:	callback
551 * @region:	region in the IEEE 1212 node space address range
552 *
553 * region->start, ->end, and handler->length have to be quadlet-aligned.
554 *
555 * When a request is received that falls within the specified address range,
556 * the specified callback is invoked.  The parameters passed to the callback
557 * give the details of the particular request.
558 *
559 * To be called in process context.
560 * Return value:  0 on success, non-zero otherwise.
561 *
562 * The start offset of the handler's address region is determined by
563 * fw_core_add_address_handler() and is returned in handler->offset.
564 *
565 * Address allocations are exclusive, except for the FCP registers.
566 */
567int fw_core_add_address_handler(struct fw_address_handler *handler,
568				const struct fw_address_region *region)
569{
570	struct fw_address_handler *other;
571	int ret = -EBUSY;
572
573	if (region->start & 0xffff000000000003ULL ||
574	    region->start >= region->end ||
575	    region->end   > 0x0001000000000000ULL ||
576	    handler->length & 3 ||
577	    handler->length == 0)
578		return -EINVAL;
579
580	spin_lock(&address_handler_list_lock);
581
582	handler->offset = region->start;
583	while (handler->offset + handler->length <= region->end) {
584		if (is_in_fcp_region(handler->offset, handler->length))
585			other = NULL;
586		else
587			other = lookup_overlapping_address_handler
588					(&address_handler_list,
589					 handler->offset, handler->length);
590		if (other != NULL) {
591			handler->offset += other->length;
592		} else {
593			list_add_tail_rcu(&handler->link, &address_handler_list);
594			ret = 0;
595			break;
596		}
597	}
598
599	spin_unlock(&address_handler_list_lock);
600
601	return ret;
602}
603EXPORT_SYMBOL(fw_core_add_address_handler);
604
605/**
606 * fw_core_remove_address_handler() - unregister an address handler
607 *
608 * To be called in process context.
609 *
610 * When fw_core_remove_address_handler() returns, @handler->callback() is
611 * guaranteed to not run on any CPU anymore.
612 */
613void fw_core_remove_address_handler(struct fw_address_handler *handler)
614{
615	spin_lock(&address_handler_list_lock);
616	list_del_rcu(&handler->link);
617	spin_unlock(&address_handler_list_lock);
618	synchronize_rcu();
619}
620EXPORT_SYMBOL(fw_core_remove_address_handler);
621
622struct fw_request {
623	struct fw_packet response;
624	u32 request_header[4];
625	int ack;
626	u32 length;
627	u32 data[0];
628};
629
630static void free_response_callback(struct fw_packet *packet,
631				   struct fw_card *card, int status)
632{
633	struct fw_request *request;
634
635	request = container_of(packet, struct fw_request, response);
636	kfree(request);
637}
638
639int fw_get_response_length(struct fw_request *r)
640{
641	int tcode, ext_tcode, data_length;
642
643	tcode = HEADER_GET_TCODE(r->request_header[0]);
644
645	switch (tcode) {
646	case TCODE_WRITE_QUADLET_REQUEST:
647	case TCODE_WRITE_BLOCK_REQUEST:
648		return 0;
649
650	case TCODE_READ_QUADLET_REQUEST:
651		return 4;
652
653	case TCODE_READ_BLOCK_REQUEST:
654		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
655		return data_length;
656
657	case TCODE_LOCK_REQUEST:
658		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
659		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
660		switch (ext_tcode) {
661		case EXTCODE_FETCH_ADD:
662		case EXTCODE_LITTLE_ADD:
663			return data_length;
664		default:
665			return data_length / 2;
666		}
667
668	default:
669		WARN(1, "wrong tcode %d\n", tcode);
670		return 0;
671	}
672}
673
674void fw_fill_response(struct fw_packet *response, u32 *request_header,
675		      int rcode, void *payload, size_t length)
676{
677	int tcode, tlabel, extended_tcode, source, destination;
678
679	tcode          = HEADER_GET_TCODE(request_header[0]);
680	tlabel         = HEADER_GET_TLABEL(request_header[0]);
681	source         = HEADER_GET_DESTINATION(request_header[0]);
682	destination    = HEADER_GET_SOURCE(request_header[1]);
683	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
684
685	response->header[0] =
686		HEADER_RETRY(RETRY_1) |
687		HEADER_TLABEL(tlabel) |
688		HEADER_DESTINATION(destination);
689	response->header[1] =
690		HEADER_SOURCE(source) |
691		HEADER_RCODE(rcode);
692	response->header[2] = 0;
693
694	switch (tcode) {
695	case TCODE_WRITE_QUADLET_REQUEST:
696	case TCODE_WRITE_BLOCK_REQUEST:
697		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
698		response->header_length = 12;
699		response->payload_length = 0;
700		break;
701
702	case TCODE_READ_QUADLET_REQUEST:
703		response->header[0] |=
704			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
705		if (payload != NULL)
706			response->header[3] = *(u32 *)payload;
707		else
708			response->header[3] = 0;
709		response->header_length = 16;
710		response->payload_length = 0;
711		break;
712
713	case TCODE_READ_BLOCK_REQUEST:
714	case TCODE_LOCK_REQUEST:
715		response->header[0] |= HEADER_TCODE(tcode + 2);
716		response->header[3] =
717			HEADER_DATA_LENGTH(length) |
718			HEADER_EXTENDED_TCODE(extended_tcode);
719		response->header_length = 16;
720		response->payload = payload;
721		response->payload_length = length;
722		break;
723
724	default:
725		WARN(1, "wrong tcode %d\n", tcode);
726	}
727
728	response->payload_mapped = false;
729}
730EXPORT_SYMBOL(fw_fill_response);
731
732static u32 compute_split_timeout_timestamp(struct fw_card *card,
733					   u32 request_timestamp)
734{
735	unsigned int cycles;
736	u32 timestamp;
737
738	cycles = card->split_timeout_cycles;
739	cycles += request_timestamp & 0x1fff;
740
741	timestamp = request_timestamp & ~0x1fff;
742	timestamp += (cycles / 8000) << 13;
743	timestamp |= cycles % 8000;
744
745	return timestamp;
746}
747
748static struct fw_request *allocate_request(struct fw_card *card,
749					   struct fw_packet *p)
750{
751	struct fw_request *request;
752	u32 *data, length;
753	int request_tcode;
754
755	request_tcode = HEADER_GET_TCODE(p->header[0]);
756	switch (request_tcode) {
757	case TCODE_WRITE_QUADLET_REQUEST:
758		data = &p->header[3];
759		length = 4;
760		break;
761
762	case TCODE_WRITE_BLOCK_REQUEST:
763	case TCODE_LOCK_REQUEST:
764		data = p->payload;
765		length = HEADER_GET_DATA_LENGTH(p->header[3]);
766		break;
767
768	case TCODE_READ_QUADLET_REQUEST:
769		data = NULL;
770		length = 4;
771		break;
772
773	case TCODE_READ_BLOCK_REQUEST:
774		data = NULL;
775		length = HEADER_GET_DATA_LENGTH(p->header[3]);
776		break;
777
778	default:
779		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
780			 p->header[0], p->header[1], p->header[2]);
781		return NULL;
782	}
783
784	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
785	if (request == NULL)
786		return NULL;
787
788	request->response.speed = p->speed;
789	request->response.timestamp =
790			compute_split_timeout_timestamp(card, p->timestamp);
791	request->response.generation = p->generation;
792	request->response.ack = 0;
793	request->response.callback = free_response_callback;
794	request->ack = p->ack;
795	request->length = length;
796	if (data)
797		memcpy(request->data, data, length);
798
799	memcpy(request->request_header, p->header, sizeof(p->header));
800
801	return request;
802}
803
804void fw_send_response(struct fw_card *card,
805		      struct fw_request *request, int rcode)
806{
807	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
808		return;
809
810	/* unified transaction or broadcast transaction: don't respond */
811	if (request->ack != ACK_PENDING ||
812	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
813		kfree(request);
814		return;
815	}
816
817	if (rcode == RCODE_COMPLETE)
818		fw_fill_response(&request->response, request->request_header,
819				 rcode, request->data,
820				 fw_get_response_length(request));
821	else
822		fw_fill_response(&request->response, request->request_header,
823				 rcode, NULL, 0);
824
825	card->driver->send_response(card, &request->response);
826}
827EXPORT_SYMBOL(fw_send_response);
828
829/**
830 * fw_get_request_speed() - returns speed at which the @request was received
831 */
832int fw_get_request_speed(struct fw_request *request)
833{
834	return request->response.speed;
835}
836EXPORT_SYMBOL(fw_get_request_speed);
837
838static void handle_exclusive_region_request(struct fw_card *card,
839					    struct fw_packet *p,
840					    struct fw_request *request,
841					    unsigned long long offset)
842{
843	struct fw_address_handler *handler;
844	int tcode, destination, source;
845
846	destination = HEADER_GET_DESTINATION(p->header[0]);
847	source      = HEADER_GET_SOURCE(p->header[1]);
848	tcode       = HEADER_GET_TCODE(p->header[0]);
849	if (tcode == TCODE_LOCK_REQUEST)
850		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
851
852	rcu_read_lock();
853	handler = lookup_enclosing_address_handler(&address_handler_list,
854						   offset, request->length);
855	if (handler)
856		handler->address_callback(card, request,
857					  tcode, destination, source,
858					  p->generation, offset,
859					  request->data, request->length,
860					  handler->callback_data);
861	rcu_read_unlock();
862
863	if (!handler)
864		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
865}
866
867static void handle_fcp_region_request(struct fw_card *card,
868				      struct fw_packet *p,
869				      struct fw_request *request,
870				      unsigned long long offset)
871{
872	struct fw_address_handler *handler;
873	int tcode, destination, source;
874
875	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
876	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
877	    request->length > 0x200) {
878		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
879
880		return;
881	}
882
883	tcode       = HEADER_GET_TCODE(p->header[0]);
884	destination = HEADER_GET_DESTINATION(p->header[0]);
885	source      = HEADER_GET_SOURCE(p->header[1]);
886
887	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
888	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
889		fw_send_response(card, request, RCODE_TYPE_ERROR);
890
891		return;
892	}
893
894	rcu_read_lock();
895	list_for_each_entry_rcu(handler, &address_handler_list, link) {
896		if (is_enclosing_handler(handler, offset, request->length))
897			handler->address_callback(card, NULL, tcode,
898						  destination, source,
899						  p->generation, offset,
900						  request->data,
901						  request->length,
902						  handler->callback_data);
903	}
904	rcu_read_unlock();
905
906	fw_send_response(card, request, RCODE_COMPLETE);
907}
908
909void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
910{
911	struct fw_request *request;
912	unsigned long long offset;
913
914	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
915		return;
916
917	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
918		fw_cdev_handle_phy_packet(card, p);
919		return;
920	}
921
922	request = allocate_request(card, p);
923	if (request == NULL) {
924		/* FIXME: send statically allocated busy packet. */
925		return;
926	}
927
928	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
929		p->header[2];
930
931	if (!is_in_fcp_region(offset, request->length))
932		handle_exclusive_region_request(card, p, request, offset);
933	else
934		handle_fcp_region_request(card, p, request, offset);
935
936}
937EXPORT_SYMBOL(fw_core_handle_request);
938
939void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
940{
941	struct fw_transaction *t;
942	unsigned long flags;
943	u32 *data;
944	size_t data_length;
945	int tcode, tlabel, source, rcode;
946
947	tcode	= HEADER_GET_TCODE(p->header[0]);
948	tlabel	= HEADER_GET_TLABEL(p->header[0]);
949	source	= HEADER_GET_SOURCE(p->header[1]);
950	rcode	= HEADER_GET_RCODE(p->header[1]);
951
952	spin_lock_irqsave(&card->lock, flags);
953	list_for_each_entry(t, &card->transaction_list, link) {
954		if (t->node_id == source && t->tlabel == tlabel) {
955			if (!try_cancel_split_timeout(t)) {
956				spin_unlock_irqrestore(&card->lock, flags);
957				goto timed_out;
958			}
959			list_del_init(&t->link);
960			card->tlabel_mask &= ~(1ULL << t->tlabel);
961			break;
962		}
963	}
964	spin_unlock_irqrestore(&card->lock, flags);
965
966	if (&t->link == &card->transaction_list) {
967 timed_out:
968		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
969			  source, tlabel);
970		return;
971	}
972
973	/*
974	 * FIXME: sanity check packet, is length correct, does tcodes
975	 * and addresses match.
976	 */
977
978	switch (tcode) {
979	case TCODE_READ_QUADLET_RESPONSE:
980		data = (u32 *) &p->header[3];
981		data_length = 4;
982		break;
983
984	case TCODE_WRITE_RESPONSE:
985		data = NULL;
986		data_length = 0;
987		break;
988
989	case TCODE_READ_BLOCK_RESPONSE:
990	case TCODE_LOCK_RESPONSE:
991		data = p->payload;
992		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
993		break;
994
995	default:
996		/* Should never happen, this is just to shut up gcc. */
997		data = NULL;
998		data_length = 0;
999		break;
1000	}
1001
1002	/*
1003	 * The response handler may be executed while the request handler
1004	 * is still pending.  Cancel the request handler.
1005	 */
1006	card->driver->cancel_packet(card, &t->packet);
1007
1008	t->callback(card, rcode, data, data_length, t->callback_data);
1009}
1010EXPORT_SYMBOL(fw_core_handle_response);
1011
1012/**
1013 * fw_rcode_string - convert a firewire result code to an error description
1014 * @rcode: the result code
1015 */
1016const char *fw_rcode_string(int rcode)
1017{
1018	static const char *const names[] = {
1019		[RCODE_COMPLETE]       = "no error",
1020		[RCODE_CONFLICT_ERROR] = "conflict error",
1021		[RCODE_DATA_ERROR]     = "data error",
1022		[RCODE_TYPE_ERROR]     = "type error",
1023		[RCODE_ADDRESS_ERROR]  = "address error",
1024		[RCODE_SEND_ERROR]     = "send error",
1025		[RCODE_CANCELLED]      = "timeout",
1026		[RCODE_BUSY]           = "busy",
1027		[RCODE_GENERATION]     = "bus reset",
1028		[RCODE_NO_ACK]         = "no ack",
1029	};
1030
1031	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1032		return names[rcode];
1033	else
1034		return "unknown";
1035}
1036EXPORT_SYMBOL(fw_rcode_string);
1037
1038static const struct fw_address_region topology_map_region =
1039	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1040	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1041
1042static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1043		int tcode, int destination, int source, int generation,
1044		unsigned long long offset, void *payload, size_t length,
1045		void *callback_data)
1046{
1047	int start;
1048
1049	if (!TCODE_IS_READ_REQUEST(tcode)) {
1050		fw_send_response(card, request, RCODE_TYPE_ERROR);
1051		return;
1052	}
1053
1054	if ((offset & 3) > 0 || (length & 3) > 0) {
1055		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1056		return;
1057	}
1058
1059	start = (offset - topology_map_region.start) / 4;
1060	memcpy(payload, &card->topology_map[start], length);
1061
1062	fw_send_response(card, request, RCODE_COMPLETE);
1063}
1064
1065static struct fw_address_handler topology_map = {
1066	.length			= 0x400,
1067	.address_callback	= handle_topology_map,
1068};
1069
1070static const struct fw_address_region registers_region =
1071	{ .start = CSR_REGISTER_BASE,
1072	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1073
1074static void update_split_timeout(struct fw_card *card)
1075{
1076	unsigned int cycles;
1077
1078	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1079
1080	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1081	cycles = clamp(cycles, 800u, 3u * 8000u);
1082
1083	card->split_timeout_cycles = cycles;
1084	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1085}
1086
1087static void handle_registers(struct fw_card *card, struct fw_request *request,
1088		int tcode, int destination, int source, int generation,
1089		unsigned long long offset, void *payload, size_t length,
1090		void *callback_data)
1091{
1092	int reg = offset & ~CSR_REGISTER_BASE;
1093	__be32 *data = payload;
1094	int rcode = RCODE_COMPLETE;
1095	unsigned long flags;
1096
1097	switch (reg) {
1098	case CSR_PRIORITY_BUDGET:
1099		if (!card->priority_budget_implemented) {
1100			rcode = RCODE_ADDRESS_ERROR;
1101			break;
1102		}
1103		/* else fall through */
1104
1105	case CSR_NODE_IDS:
1106		/*
1107		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1108		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1109		 */
1110		/* fall through */
1111
1112	case CSR_STATE_CLEAR:
1113	case CSR_STATE_SET:
1114	case CSR_CYCLE_TIME:
1115	case CSR_BUS_TIME:
1116	case CSR_BUSY_TIMEOUT:
1117		if (tcode == TCODE_READ_QUADLET_REQUEST)
1118			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1119		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1120			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1121		else
1122			rcode = RCODE_TYPE_ERROR;
1123		break;
1124
1125	case CSR_RESET_START:
1126		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1127			card->driver->write_csr(card, CSR_STATE_CLEAR,
1128						CSR_STATE_BIT_ABDICATE);
1129		else
1130			rcode = RCODE_TYPE_ERROR;
1131		break;
1132
1133	case CSR_SPLIT_TIMEOUT_HI:
1134		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1135			*data = cpu_to_be32(card->split_timeout_hi);
1136		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1137			spin_lock_irqsave(&card->lock, flags);
1138			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1139			update_split_timeout(card);
1140			spin_unlock_irqrestore(&card->lock, flags);
1141		} else {
1142			rcode = RCODE_TYPE_ERROR;
1143		}
1144		break;
1145
1146	case CSR_SPLIT_TIMEOUT_LO:
1147		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1148			*data = cpu_to_be32(card->split_timeout_lo);
1149		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1150			spin_lock_irqsave(&card->lock, flags);
1151			card->split_timeout_lo =
1152					be32_to_cpu(*data) & 0xfff80000;
1153			update_split_timeout(card);
1154			spin_unlock_irqrestore(&card->lock, flags);
1155		} else {
1156			rcode = RCODE_TYPE_ERROR;
1157		}
1158		break;
1159
1160	case CSR_MAINT_UTILITY:
1161		if (tcode == TCODE_READ_QUADLET_REQUEST)
1162			*data = card->maint_utility_register;
1163		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1164			card->maint_utility_register = *data;
1165		else
1166			rcode = RCODE_TYPE_ERROR;
1167		break;
1168
1169	case CSR_BROADCAST_CHANNEL:
1170		if (tcode == TCODE_READ_QUADLET_REQUEST)
1171			*data = cpu_to_be32(card->broadcast_channel);
1172		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1173			card->broadcast_channel =
1174			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1175			    BROADCAST_CHANNEL_INITIAL;
1176		else
1177			rcode = RCODE_TYPE_ERROR;
1178		break;
1179
1180	case CSR_BUS_MANAGER_ID:
1181	case CSR_BANDWIDTH_AVAILABLE:
1182	case CSR_CHANNELS_AVAILABLE_HI:
1183	case CSR_CHANNELS_AVAILABLE_LO:
1184		/*
1185		 * FIXME: these are handled by the OHCI hardware and
1186		 * the stack never sees these request. If we add
1187		 * support for a new type of controller that doesn't
1188		 * handle this in hardware we need to deal with these
1189		 * transactions.
1190		 */
1191		BUG();
1192		break;
1193
1194	default:
1195		rcode = RCODE_ADDRESS_ERROR;
1196		break;
1197	}
1198
1199	fw_send_response(card, request, rcode);
1200}
1201
1202static struct fw_address_handler registers = {
1203	.length			= 0x400,
1204	.address_callback	= handle_registers,
1205};
1206
1207static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1208		int tcode, int destination, int source, int generation,
1209		unsigned long long offset, void *payload, size_t length,
1210		void *callback_data)
1211{
1212	/*
1213	 * This catches requests not handled by the physical DMA unit,
1214	 * i.e., wrong transaction types or unauthorized source nodes.
1215	 */
1216	fw_send_response(card, request, RCODE_TYPE_ERROR);
1217}
1218
1219static struct fw_address_handler low_memory = {
1220	.length			= FW_MAX_PHYSICAL_RANGE,
1221	.address_callback	= handle_low_memory,
1222};
1223
1224MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1225MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1226MODULE_LICENSE("GPL");
1227
1228static const u32 vendor_textual_descriptor[] = {
1229	/* textual descriptor leaf () */
1230	0x00060000,
1231	0x00000000,
1232	0x00000000,
1233	0x4c696e75,		/* L i n u */
1234	0x78204669,		/* x   F i */
1235	0x72657769,		/* r e w i */
1236	0x72650000,		/* r e     */
1237};
1238
1239static const u32 model_textual_descriptor[] = {
1240	/* model descriptor leaf () */
1241	0x00030000,
1242	0x00000000,
1243	0x00000000,
1244	0x4a756a75,		/* J u j u */
1245};
1246
1247static struct fw_descriptor vendor_id_descriptor = {
1248	.length = ARRAY_SIZE(vendor_textual_descriptor),
1249	.immediate = 0x03001f11,
1250	.key = 0x81000000,
1251	.data = vendor_textual_descriptor,
1252};
1253
1254static struct fw_descriptor model_id_descriptor = {
1255	.length = ARRAY_SIZE(model_textual_descriptor),
1256	.immediate = 0x17023901,
1257	.key = 0x81000000,
1258	.data = model_textual_descriptor,
1259};
1260
1261static int __init fw_core_init(void)
1262{
1263	int ret;
1264
1265	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1266	if (!fw_workqueue)
1267		return -ENOMEM;
1268
1269	ret = bus_register(&fw_bus_type);
1270	if (ret < 0) {
1271		destroy_workqueue(fw_workqueue);
1272		return ret;
1273	}
1274
1275	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1276	if (fw_cdev_major < 0) {
1277		bus_unregister(&fw_bus_type);
1278		destroy_workqueue(fw_workqueue);
1279		return fw_cdev_major;
1280	}
1281
1282	fw_core_add_address_handler(&topology_map, &topology_map_region);
1283	fw_core_add_address_handler(&registers, &registers_region);
1284	fw_core_add_address_handler(&low_memory, &low_memory_region);
1285	fw_core_add_descriptor(&vendor_id_descriptor);
1286	fw_core_add_descriptor(&model_id_descriptor);
1287
1288	return 0;
1289}
1290
1291static void __exit fw_core_cleanup(void)
1292{
1293	unregister_chrdev(fw_cdev_major, "firewire");
1294	bus_unregister(&fw_bus_type);
1295	destroy_workqueue(fw_workqueue);
1296	idr_destroy(&fw_device_idr);
1297}
1298
1299module_init(fw_core_init);
1300module_exit(fw_core_cleanup);
1301