1/*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 *     James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 *     Ben Collins <bcollins@debian.org>,
27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31#include <linux/blkdev.h>
32#include <linux/bug.h>
33#include <linux/completion.h>
34#include <linux/delay.h>
35#include <linux/device.h>
36#include <linux/dma-mapping.h>
37#include <linux/firewire.h>
38#include <linux/firewire-constants.h>
39#include <linux/init.h>
40#include <linux/jiffies.h>
41#include <linux/kernel.h>
42#include <linux/kref.h>
43#include <linux/list.h>
44#include <linux/mod_devicetable.h>
45#include <linux/module.h>
46#include <linux/moduleparam.h>
47#include <linux/scatterlist.h>
48#include <linux/slab.h>
49#include <linux/spinlock.h>
50#include <linux/string.h>
51#include <linux/stringify.h>
52#include <linux/workqueue.h>
53
54#include <asm/byteorder.h>
55
56#include <scsi/scsi.h>
57#include <scsi/scsi_cmnd.h>
58#include <scsi/scsi_device.h>
59#include <scsi/scsi_host.h>
60
61/*
62 * So far only bridges from Oxford Semiconductor are known to support
63 * concurrent logins. Depending on firmware, four or two concurrent logins
64 * are possible on OXFW911 and newer Oxsemi bridges.
65 *
66 * Concurrent logins are useful together with cluster filesystems.
67 */
68static bool sbp2_param_exclusive_login = 1;
69module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
70MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
71		 "(default = Y, use N for concurrent initiators)");
72
73/*
74 * Flags for firmware oddities
75 *
76 * - 128kB max transfer
77 *   Limit transfer size. Necessary for some old bridges.
78 *
79 * - 36 byte inquiry
80 *   When scsi_mod probes the device, let the inquiry command look like that
81 *   from MS Windows.
82 *
83 * - skip mode page 8
84 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
85 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
86 *
87 * - fix capacity
88 *   Tell sd_mod to correct the last sector number reported by read_capacity.
89 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
90 *   Don't use this with devices which don't have this bug.
91 *
92 * - delay inquiry
93 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
94 *
95 * - power condition
96 *   Set the power condition field in the START STOP UNIT commands sent by
97 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
98 *   Some disks need this to spin down or to resume properly.
99 *
100 * - override internal blacklist
101 *   Instead of adding to the built-in blacklist, use only the workarounds
102 *   specified in the module load parameter.
103 *   Useful if a blacklist entry interfered with a non-broken device.
104 */
105#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
106#define SBP2_WORKAROUND_INQUIRY_36	0x2
107#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
108#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
109#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
110#define SBP2_INQUIRY_DELAY		12
111#define SBP2_WORKAROUND_POWER_CONDITION	0x20
112#define SBP2_WORKAROUND_OVERRIDE	0x100
113
114static int sbp2_param_workarounds;
115module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
116MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
117	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
118	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
119	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
120	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
121	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
122	", set power condition in start stop unit = "
123				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
124	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
125	", or a combination)");
126
127/*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131struct sbp2_logical_unit {
132	struct sbp2_target *tgt;
133	struct list_head link;
134	struct fw_address_handler address_handler;
135	struct list_head orb_list;
136
137	u64 command_block_agent_address;
138	u16 lun;
139	int login_id;
140
141	/*
142	 * The generation is updated once we've logged in or reconnected
143	 * to the logical unit.  Thus, I/O to the device will automatically
144	 * fail and get retried if it happens in a window where the device
145	 * is not ready, e.g. after a bus reset but before we reconnect.
146	 */
147	int generation;
148	int retries;
149	work_func_t workfn;
150	struct delayed_work work;
151	bool has_sdev;
152	bool blocked;
153};
154
155static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
156{
157	queue_delayed_work(fw_workqueue, &lu->work, delay);
158}
159
160/*
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
163 */
164struct sbp2_target {
165	struct fw_unit *unit;
166	struct list_head lu_list;
167
168	u64 management_agent_address;
169	u64 guid;
170	int directory_id;
171	int node_id;
172	int address_high;
173	unsigned int workarounds;
174	unsigned int mgt_orb_timeout;
175	unsigned int max_payload;
176
177	spinlock_t lock;
178	int dont_block;	/* counter for each logical unit */
179	int blocked;	/* ditto */
180};
181
182static struct fw_device *target_parent_device(struct sbp2_target *tgt)
183{
184	return fw_parent_device(tgt->unit);
185}
186
187static const struct device *tgt_dev(const struct sbp2_target *tgt)
188{
189	return &tgt->unit->device;
190}
191
192static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
193{
194	return &lu->tgt->unit->device;
195}
196
197/* Impossible login_id, to detect logout attempt before successful login */
198#define INVALID_LOGIN_ID 0x10000
199
200#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
201#define SBP2_ORB_NULL			0x80000000
202#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
203#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
204
205/*
206 * There is no transport protocol limit to the CDB length,  but we implement
207 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
208 */
209#define SBP2_MAX_CDB_SIZE		16
210
211/*
212 * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
213 * for compatibility with earlier versions of this driver.
214 */
215#define SBP2_MAX_SEG_SIZE		0xfffc
216
217/* Unit directory keys */
218#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
219#define SBP2_CSR_FIRMWARE_REVISION	0x3c
220#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
221#define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
222#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
223
224/* Management orb opcodes */
225#define SBP2_LOGIN_REQUEST		0x0
226#define SBP2_QUERY_LOGINS_REQUEST	0x1
227#define SBP2_RECONNECT_REQUEST		0x3
228#define SBP2_SET_PASSWORD_REQUEST	0x4
229#define SBP2_LOGOUT_REQUEST		0x7
230#define SBP2_ABORT_TASK_REQUEST		0xb
231#define SBP2_ABORT_TASK_SET		0xc
232#define SBP2_LOGICAL_UNIT_RESET		0xe
233#define SBP2_TARGET_RESET_REQUEST	0xf
234
235/* Offsets for command block agent registers */
236#define SBP2_AGENT_STATE		0x00
237#define SBP2_AGENT_RESET		0x04
238#define SBP2_ORB_POINTER		0x08
239#define SBP2_DOORBELL			0x10
240#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
241
242/* Status write response codes */
243#define SBP2_STATUS_REQUEST_COMPLETE	0x0
244#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
245#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
246#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
247
248#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
249#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
250#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
251#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
252#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
253#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
254#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
255#define STATUS_GET_DATA(v)		((v).data)
256
257struct sbp2_status {
258	u32 status;
259	u32 orb_low;
260	u8 data[24];
261};
262
263struct sbp2_pointer {
264	__be32 high;
265	__be32 low;
266};
267
268struct sbp2_orb {
269	struct fw_transaction t;
270	struct kref kref;
271	dma_addr_t request_bus;
272	int rcode;
273	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
274	struct sbp2_logical_unit *lu;
275	struct list_head link;
276};
277
278#define MANAGEMENT_ORB_LUN(v)			((v))
279#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
280#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
281#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
282#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
283#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
284
285#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
286#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
287
288struct sbp2_management_orb {
289	struct sbp2_orb base;
290	struct {
291		struct sbp2_pointer password;
292		struct sbp2_pointer response;
293		__be32 misc;
294		__be32 length;
295		struct sbp2_pointer status_fifo;
296	} request;
297	__be32 response[4];
298	dma_addr_t response_bus;
299	struct completion done;
300	struct sbp2_status status;
301};
302
303struct sbp2_login_response {
304	__be32 misc;
305	struct sbp2_pointer command_block_agent;
306	__be32 reconnect_hold;
307};
308#define COMMAND_ORB_DATA_SIZE(v)	((v))
309#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
310#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
311#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
312#define COMMAND_ORB_SPEED(v)		((v) << 24)
313#define COMMAND_ORB_DIRECTION		((1) << 27)
314#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
315#define COMMAND_ORB_NOTIFY		((1) << 31)
316
317struct sbp2_command_orb {
318	struct sbp2_orb base;
319	struct {
320		struct sbp2_pointer next;
321		struct sbp2_pointer data_descriptor;
322		__be32 misc;
323		u8 command_block[SBP2_MAX_CDB_SIZE];
324	} request;
325	struct scsi_cmnd *cmd;
326
327	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
328	dma_addr_t page_table_bus;
329};
330
331#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
332#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
333
334/*
335 * List of devices with known bugs.
336 *
337 * The firmware_revision field, masked with 0xffff00, is the best
338 * indicator for the type of bridge chip of a device.  It yields a few
339 * false positives but this did not break correctly behaving devices
340 * so far.
341 */
342static const struct {
343	u32 firmware_revision;
344	u32 model;
345	unsigned int workarounds;
346} sbp2_workarounds_table[] = {
347	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
348		.firmware_revision	= 0x002800,
349		.model			= 0x001010,
350		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
351					  SBP2_WORKAROUND_MODE_SENSE_8 |
352					  SBP2_WORKAROUND_POWER_CONDITION,
353	},
354	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
355		.firmware_revision	= 0x002800,
356		.model			= 0x000000,
357		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
358	},
359	/* Initio bridges, actually only needed for some older ones */ {
360		.firmware_revision	= 0x000200,
361		.model			= SBP2_ROM_VALUE_WILDCARD,
362		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
363	},
364	/* PL-3507 bridge with Prolific firmware */ {
365		.firmware_revision	= 0x012800,
366		.model			= SBP2_ROM_VALUE_WILDCARD,
367		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
368	},
369	/* Symbios bridge */ {
370		.firmware_revision	= 0xa0b800,
371		.model			= SBP2_ROM_VALUE_WILDCARD,
372		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
373	},
374	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
375		.firmware_revision	= 0x002600,
376		.model			= SBP2_ROM_VALUE_WILDCARD,
377		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
378	},
379	/*
380	 * iPod 2nd generation: needs 128k max transfer size workaround
381	 * iPod 3rd generation: needs fix capacity workaround
382	 */
383	{
384		.firmware_revision	= 0x0a2700,
385		.model			= 0x000000,
386		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
387					  SBP2_WORKAROUND_FIX_CAPACITY,
388	},
389	/* iPod 4th generation */ {
390		.firmware_revision	= 0x0a2700,
391		.model			= 0x000021,
392		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
393	},
394	/* iPod mini */ {
395		.firmware_revision	= 0x0a2700,
396		.model			= 0x000022,
397		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
398	},
399	/* iPod mini */ {
400		.firmware_revision	= 0x0a2700,
401		.model			= 0x000023,
402		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
403	},
404	/* iPod Photo */ {
405		.firmware_revision	= 0x0a2700,
406		.model			= 0x00007e,
407		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
408	}
409};
410
411static void free_orb(struct kref *kref)
412{
413	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
414
415	kfree(orb);
416}
417
418static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
419			      int tcode, int destination, int source,
420			      int generation, unsigned long long offset,
421			      void *payload, size_t length, void *callback_data)
422{
423	struct sbp2_logical_unit *lu = callback_data;
424	struct sbp2_orb *orb;
425	struct sbp2_status status;
426	unsigned long flags;
427
428	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
429	    length < 8 || length > sizeof(status)) {
430		fw_send_response(card, request, RCODE_TYPE_ERROR);
431		return;
432	}
433
434	status.status  = be32_to_cpup(payload);
435	status.orb_low = be32_to_cpup(payload + 4);
436	memset(status.data, 0, sizeof(status.data));
437	if (length > 8)
438		memcpy(status.data, payload + 8, length - 8);
439
440	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
441		dev_notice(lu_dev(lu),
442			   "non-ORB related status write, not handled\n");
443		fw_send_response(card, request, RCODE_COMPLETE);
444		return;
445	}
446
447	/* Lookup the orb corresponding to this status write. */
448	spin_lock_irqsave(&lu->tgt->lock, flags);
449	list_for_each_entry(orb, &lu->orb_list, link) {
450		if (STATUS_GET_ORB_HIGH(status) == 0 &&
451		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
452			orb->rcode = RCODE_COMPLETE;
453			list_del(&orb->link);
454			break;
455		}
456	}
457	spin_unlock_irqrestore(&lu->tgt->lock, flags);
458
459	if (&orb->link != &lu->orb_list) {
460		orb->callback(orb, &status);
461		kref_put(&orb->kref, free_orb); /* orb callback reference */
462	} else {
463		dev_err(lu_dev(lu), "status write for unknown ORB\n");
464	}
465
466	fw_send_response(card, request, RCODE_COMPLETE);
467}
468
469static void complete_transaction(struct fw_card *card, int rcode,
470				 void *payload, size_t length, void *data)
471{
472	struct sbp2_orb *orb = data;
473	unsigned long flags;
474
475	/*
476	 * This is a little tricky.  We can get the status write for
477	 * the orb before we get this callback.  The status write
478	 * handler above will assume the orb pointer transaction was
479	 * successful and set the rcode to RCODE_COMPLETE for the orb.
480	 * So this callback only sets the rcode if it hasn't already
481	 * been set and only does the cleanup if the transaction
482	 * failed and we didn't already get a status write.
483	 */
484	spin_lock_irqsave(&orb->lu->tgt->lock, flags);
485
486	if (orb->rcode == -1)
487		orb->rcode = rcode;
488	if (orb->rcode != RCODE_COMPLETE) {
489		list_del(&orb->link);
490		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
491
492		orb->callback(orb, NULL);
493		kref_put(&orb->kref, free_orb); /* orb callback reference */
494	} else {
495		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
496	}
497
498	kref_put(&orb->kref, free_orb); /* transaction callback reference */
499}
500
501static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
502			  int node_id, int generation, u64 offset)
503{
504	struct fw_device *device = target_parent_device(lu->tgt);
505	struct sbp2_pointer orb_pointer;
506	unsigned long flags;
507
508	orb_pointer.high = 0;
509	orb_pointer.low = cpu_to_be32(orb->request_bus);
510
511	orb->lu = lu;
512	spin_lock_irqsave(&lu->tgt->lock, flags);
513	list_add_tail(&orb->link, &lu->orb_list);
514	spin_unlock_irqrestore(&lu->tgt->lock, flags);
515
516	kref_get(&orb->kref); /* transaction callback reference */
517	kref_get(&orb->kref); /* orb callback reference */
518
519	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
520			node_id, generation, device->max_speed, offset,
521			&orb_pointer, 8, complete_transaction, orb);
522}
523
524static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
525{
526	struct fw_device *device = target_parent_device(lu->tgt);
527	struct sbp2_orb *orb, *next;
528	struct list_head list;
529	int retval = -ENOENT;
530
531	INIT_LIST_HEAD(&list);
532	spin_lock_irq(&lu->tgt->lock);
533	list_splice_init(&lu->orb_list, &list);
534	spin_unlock_irq(&lu->tgt->lock);
535
536	list_for_each_entry_safe(orb, next, &list, link) {
537		retval = 0;
538		if (fw_cancel_transaction(device->card, &orb->t) == 0)
539			continue;
540
541		orb->rcode = RCODE_CANCELLED;
542		orb->callback(orb, NULL);
543		kref_put(&orb->kref, free_orb); /* orb callback reference */
544	}
545
546	return retval;
547}
548
549static void complete_management_orb(struct sbp2_orb *base_orb,
550				    struct sbp2_status *status)
551{
552	struct sbp2_management_orb *orb =
553		container_of(base_orb, struct sbp2_management_orb, base);
554
555	if (status)
556		memcpy(&orb->status, status, sizeof(*status));
557	complete(&orb->done);
558}
559
560static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
561				    int generation, int function,
562				    int lun_or_login_id, void *response)
563{
564	struct fw_device *device = target_parent_device(lu->tgt);
565	struct sbp2_management_orb *orb;
566	unsigned int timeout;
567	int retval = -ENOMEM;
568
569	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
570		return 0;
571
572	orb = kzalloc(sizeof(*orb), GFP_NOIO);
573	if (orb == NULL)
574		return -ENOMEM;
575
576	kref_init(&orb->base.kref);
577	orb->response_bus =
578		dma_map_single(device->card->device, &orb->response,
579			       sizeof(orb->response), DMA_FROM_DEVICE);
580	if (dma_mapping_error(device->card->device, orb->response_bus))
581		goto fail_mapping_response;
582
583	orb->request.response.high = 0;
584	orb->request.response.low  = cpu_to_be32(orb->response_bus);
585
586	orb->request.misc = cpu_to_be32(
587		MANAGEMENT_ORB_NOTIFY |
588		MANAGEMENT_ORB_FUNCTION(function) |
589		MANAGEMENT_ORB_LUN(lun_or_login_id));
590	orb->request.length = cpu_to_be32(
591		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
592
593	orb->request.status_fifo.high =
594		cpu_to_be32(lu->address_handler.offset >> 32);
595	orb->request.status_fifo.low  =
596		cpu_to_be32(lu->address_handler.offset);
597
598	if (function == SBP2_LOGIN_REQUEST) {
599		/* Ask for 2^2 == 4 seconds reconnect grace period */
600		orb->request.misc |= cpu_to_be32(
601			MANAGEMENT_ORB_RECONNECT(2) |
602			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
603		timeout = lu->tgt->mgt_orb_timeout;
604	} else {
605		timeout = SBP2_ORB_TIMEOUT;
606	}
607
608	init_completion(&orb->done);
609	orb->base.callback = complete_management_orb;
610
611	orb->base.request_bus =
612		dma_map_single(device->card->device, &orb->request,
613			       sizeof(orb->request), DMA_TO_DEVICE);
614	if (dma_mapping_error(device->card->device, orb->base.request_bus))
615		goto fail_mapping_request;
616
617	sbp2_send_orb(&orb->base, lu, node_id, generation,
618		      lu->tgt->management_agent_address);
619
620	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
621
622	retval = -EIO;
623	if (sbp2_cancel_orbs(lu) == 0) {
624		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
625			orb->base.rcode);
626		goto out;
627	}
628
629	if (orb->base.rcode != RCODE_COMPLETE) {
630		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
631			orb->base.rcode);
632		goto out;
633	}
634
635	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
636	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
637		dev_err(lu_dev(lu), "error status: %d:%d\n",
638			 STATUS_GET_RESPONSE(orb->status),
639			 STATUS_GET_SBP_STATUS(orb->status));
640		goto out;
641	}
642
643	retval = 0;
644 out:
645	dma_unmap_single(device->card->device, orb->base.request_bus,
646			 sizeof(orb->request), DMA_TO_DEVICE);
647 fail_mapping_request:
648	dma_unmap_single(device->card->device, orb->response_bus,
649			 sizeof(orb->response), DMA_FROM_DEVICE);
650 fail_mapping_response:
651	if (response)
652		memcpy(response, orb->response, sizeof(orb->response));
653	kref_put(&orb->base.kref, free_orb);
654
655	return retval;
656}
657
658static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
659{
660	struct fw_device *device = target_parent_device(lu->tgt);
661	__be32 d = 0;
662
663	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
664			   lu->tgt->node_id, lu->generation, device->max_speed,
665			   lu->command_block_agent_address + SBP2_AGENT_RESET,
666			   &d, 4);
667}
668
669static void complete_agent_reset_write_no_wait(struct fw_card *card,
670		int rcode, void *payload, size_t length, void *data)
671{
672	kfree(data);
673}
674
675static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
676{
677	struct fw_device *device = target_parent_device(lu->tgt);
678	struct fw_transaction *t;
679	static __be32 d;
680
681	t = kmalloc(sizeof(*t), GFP_ATOMIC);
682	if (t == NULL)
683		return;
684
685	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
686			lu->tgt->node_id, lu->generation, device->max_speed,
687			lu->command_block_agent_address + SBP2_AGENT_RESET,
688			&d, 4, complete_agent_reset_write_no_wait, t);
689}
690
691static inline void sbp2_allow_block(struct sbp2_target *tgt)
692{
693	spin_lock_irq(&tgt->lock);
694	--tgt->dont_block;
695	spin_unlock_irq(&tgt->lock);
696}
697
698/*
699 * Blocks lu->tgt if all of the following conditions are met:
700 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
701 *     logical units have been finished (indicated by dont_block == 0).
702 *   - lu->generation is stale.
703 *
704 * Note, scsi_block_requests() must be called while holding tgt->lock,
705 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
706 * unblock the target.
707 */
708static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
709{
710	struct sbp2_target *tgt = lu->tgt;
711	struct fw_card *card = target_parent_device(tgt)->card;
712	struct Scsi_Host *shost =
713		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
714	unsigned long flags;
715
716	spin_lock_irqsave(&tgt->lock, flags);
717	if (!tgt->dont_block && !lu->blocked &&
718	    lu->generation != card->generation) {
719		lu->blocked = true;
720		if (++tgt->blocked == 1)
721			scsi_block_requests(shost);
722	}
723	spin_unlock_irqrestore(&tgt->lock, flags);
724}
725
726/*
727 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
728 * Note, it is harmless to run scsi_unblock_requests() outside the
729 * tgt->lock protected section.  On the other hand, running it inside
730 * the section might clash with shost->host_lock.
731 */
732static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
733{
734	struct sbp2_target *tgt = lu->tgt;
735	struct fw_card *card = target_parent_device(tgt)->card;
736	struct Scsi_Host *shost =
737		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
738	bool unblock = false;
739
740	spin_lock_irq(&tgt->lock);
741	if (lu->blocked && lu->generation == card->generation) {
742		lu->blocked = false;
743		unblock = --tgt->blocked == 0;
744	}
745	spin_unlock_irq(&tgt->lock);
746
747	if (unblock)
748		scsi_unblock_requests(shost);
749}
750
751/*
752 * Prevents future blocking of tgt and unblocks it.
753 * Note, it is harmless to run scsi_unblock_requests() outside the
754 * tgt->lock protected section.  On the other hand, running it inside
755 * the section might clash with shost->host_lock.
756 */
757static void sbp2_unblock(struct sbp2_target *tgt)
758{
759	struct Scsi_Host *shost =
760		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
761
762	spin_lock_irq(&tgt->lock);
763	++tgt->dont_block;
764	spin_unlock_irq(&tgt->lock);
765
766	scsi_unblock_requests(shost);
767}
768
769static int sbp2_lun2int(u16 lun)
770{
771	struct scsi_lun eight_bytes_lun;
772
773	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
774	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
775	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
776
777	return scsilun_to_int(&eight_bytes_lun);
778}
779
780/*
781 * Write retransmit retry values into the BUSY_TIMEOUT register.
782 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
783 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
784 *   saner value after logging into the device.
785 * - The dual-phase retry protocol is optional to implement, and if not
786 *   supported, writes to the dual-phase portion of the register will be
787 *   ignored. We try to write the original 1394-1995 default here.
788 * - In the case of devices that are also SBP-3-compliant, all writes are
789 *   ignored, as the register is read-only, but contains single-phase retry of
790 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
791 *   write attempt is safe and yields more consistent behavior for all devices.
792 *
793 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
794 * and section 6.4 of the SBP-3 spec for further details.
795 */
796static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
797{
798	struct fw_device *device = target_parent_device(lu->tgt);
799	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
800
801	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
802			   lu->tgt->node_id, lu->generation, device->max_speed,
803			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
804}
805
806static void sbp2_reconnect(struct work_struct *work);
807
808static void sbp2_login(struct work_struct *work)
809{
810	struct sbp2_logical_unit *lu =
811		container_of(work, struct sbp2_logical_unit, work.work);
812	struct sbp2_target *tgt = lu->tgt;
813	struct fw_device *device = target_parent_device(tgt);
814	struct Scsi_Host *shost;
815	struct scsi_device *sdev;
816	struct sbp2_login_response response;
817	int generation, node_id, local_node_id;
818
819	if (fw_device_is_shutdown(device))
820		return;
821
822	generation    = device->generation;
823	smp_rmb();    /* node IDs must not be older than generation */
824	node_id       = device->node_id;
825	local_node_id = device->card->node_id;
826
827	/* If this is a re-login attempt, log out, or we might be rejected. */
828	if (lu->has_sdev)
829		sbp2_send_management_orb(lu, device->node_id, generation,
830				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
831
832	if (sbp2_send_management_orb(lu, node_id, generation,
833				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
834		if (lu->retries++ < 5) {
835			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
836		} else {
837			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
838				lu->lun);
839			/* Let any waiting I/O fail from now on. */
840			sbp2_unblock(lu->tgt);
841		}
842		return;
843	}
844
845	tgt->node_id	  = node_id;
846	tgt->address_high = local_node_id << 16;
847	smp_wmb();	  /* node IDs must not be older than generation */
848	lu->generation	  = generation;
849
850	lu->command_block_agent_address =
851		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
852		      << 32) | be32_to_cpu(response.command_block_agent.low);
853	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
854
855	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
856		   lu->lun, lu->retries);
857
858	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
859	sbp2_set_busy_timeout(lu);
860
861	lu->workfn = sbp2_reconnect;
862	sbp2_agent_reset(lu);
863
864	/* This was a re-login. */
865	if (lu->has_sdev) {
866		sbp2_cancel_orbs(lu);
867		sbp2_conditionally_unblock(lu);
868
869		return;
870	}
871
872	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
873		ssleep(SBP2_INQUIRY_DELAY);
874
875	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
876	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
877	/*
878	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
879	 * Therefore __scsi_add_device() will get into trouble if a bus reset
880	 * happens in parallel.  It will either fail or leave us with an
881	 * unusable sdev.  As a workaround we check for this and retry the
882	 * whole login and SCSI probing.
883	 */
884
885	/* Reported error during __scsi_add_device() */
886	if (IS_ERR(sdev))
887		goto out_logout_login;
888
889	/* Unreported error during __scsi_add_device() */
890	smp_rmb(); /* get current card generation */
891	if (generation != device->card->generation) {
892		scsi_remove_device(sdev);
893		scsi_device_put(sdev);
894		goto out_logout_login;
895	}
896
897	/* No error during __scsi_add_device() */
898	lu->has_sdev = true;
899	scsi_device_put(sdev);
900	sbp2_allow_block(tgt);
901
902	return;
903
904 out_logout_login:
905	smp_rmb(); /* generation may have changed */
906	generation = device->generation;
907	smp_rmb(); /* node_id must not be older than generation */
908
909	sbp2_send_management_orb(lu, device->node_id, generation,
910				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
911	/*
912	 * If a bus reset happened, sbp2_update will have requeued
913	 * lu->work already.  Reset the work from reconnect to login.
914	 */
915	lu->workfn = sbp2_login;
916}
917
918static void sbp2_reconnect(struct work_struct *work)
919{
920	struct sbp2_logical_unit *lu =
921		container_of(work, struct sbp2_logical_unit, work.work);
922	struct sbp2_target *tgt = lu->tgt;
923	struct fw_device *device = target_parent_device(tgt);
924	int generation, node_id, local_node_id;
925
926	if (fw_device_is_shutdown(device))
927		return;
928
929	generation    = device->generation;
930	smp_rmb();    /* node IDs must not be older than generation */
931	node_id       = device->node_id;
932	local_node_id = device->card->node_id;
933
934	if (sbp2_send_management_orb(lu, node_id, generation,
935				     SBP2_RECONNECT_REQUEST,
936				     lu->login_id, NULL) < 0) {
937		/*
938		 * If reconnect was impossible even though we are in the
939		 * current generation, fall back and try to log in again.
940		 *
941		 * We could check for "Function rejected" status, but
942		 * looking at the bus generation as simpler and more general.
943		 */
944		smp_rmb(); /* get current card generation */
945		if (generation == device->card->generation ||
946		    lu->retries++ >= 5) {
947			dev_err(tgt_dev(tgt), "failed to reconnect\n");
948			lu->retries = 0;
949			lu->workfn = sbp2_login;
950		}
951		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
952
953		return;
954	}
955
956	tgt->node_id      = node_id;
957	tgt->address_high = local_node_id << 16;
958	smp_wmb();	  /* node IDs must not be older than generation */
959	lu->generation	  = generation;
960
961	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
962		   lu->lun, lu->retries);
963
964	sbp2_agent_reset(lu);
965	sbp2_cancel_orbs(lu);
966	sbp2_conditionally_unblock(lu);
967}
968
969static void sbp2_lu_workfn(struct work_struct *work)
970{
971	struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
972						struct sbp2_logical_unit, work);
973	lu->workfn(work);
974}
975
976static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
977{
978	struct sbp2_logical_unit *lu;
979
980	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
981	if (!lu)
982		return -ENOMEM;
983
984	lu->address_handler.length           = 0x100;
985	lu->address_handler.address_callback = sbp2_status_write;
986	lu->address_handler.callback_data    = lu;
987
988	if (fw_core_add_address_handler(&lu->address_handler,
989					&fw_high_memory_region) < 0) {
990		kfree(lu);
991		return -ENOMEM;
992	}
993
994	lu->tgt      = tgt;
995	lu->lun      = lun_entry & 0xffff;
996	lu->login_id = INVALID_LOGIN_ID;
997	lu->retries  = 0;
998	lu->has_sdev = false;
999	lu->blocked  = false;
1000	++tgt->dont_block;
1001	INIT_LIST_HEAD(&lu->orb_list);
1002	lu->workfn = sbp2_login;
1003	INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
1004
1005	list_add_tail(&lu->link, &tgt->lu_list);
1006	return 0;
1007}
1008
1009static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1010				    const u32 *leaf)
1011{
1012	if ((leaf[0] & 0xffff0000) == 0x00020000)
1013		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1014}
1015
1016static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1017				      const u32 *directory)
1018{
1019	struct fw_csr_iterator ci;
1020	int key, value;
1021
1022	fw_csr_iterator_init(&ci, directory);
1023	while (fw_csr_iterator_next(&ci, &key, &value))
1024		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1025		    sbp2_add_logical_unit(tgt, value) < 0)
1026			return -ENOMEM;
1027	return 0;
1028}
1029
1030static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1031			      u32 *model, u32 *firmware_revision)
1032{
1033	struct fw_csr_iterator ci;
1034	int key, value;
1035
1036	fw_csr_iterator_init(&ci, directory);
1037	while (fw_csr_iterator_next(&ci, &key, &value)) {
1038		switch (key) {
1039
1040		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1041			tgt->management_agent_address =
1042					CSR_REGISTER_BASE + 4 * value;
1043			break;
1044
1045		case CSR_DIRECTORY_ID:
1046			tgt->directory_id = value;
1047			break;
1048
1049		case CSR_MODEL:
1050			*model = value;
1051			break;
1052
1053		case SBP2_CSR_FIRMWARE_REVISION:
1054			*firmware_revision = value;
1055			break;
1056
1057		case SBP2_CSR_UNIT_CHARACTERISTICS:
1058			/* the timeout value is stored in 500ms units */
1059			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1060			break;
1061
1062		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063			if (sbp2_add_logical_unit(tgt, value) < 0)
1064				return -ENOMEM;
1065			break;
1066
1067		case SBP2_CSR_UNIT_UNIQUE_ID:
1068			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1069			break;
1070
1071		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1072			/* Adjust for the increment in the iterator */
1073			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1074				return -ENOMEM;
1075			break;
1076		}
1077	}
1078	return 0;
1079}
1080
1081/*
1082 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1083 * provided in the config rom. Most devices do provide a value, which
1084 * we'll use for login management orbs, but with some sane limits.
1085 */
1086static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1087{
1088	unsigned int timeout = tgt->mgt_orb_timeout;
1089
1090	if (timeout > 40000)
1091		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1092			   timeout / 1000);
1093
1094	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1095}
1096
1097static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1098				  u32 firmware_revision)
1099{
1100	int i;
1101	unsigned int w = sbp2_param_workarounds;
1102
1103	if (w)
1104		dev_notice(tgt_dev(tgt),
1105			   "Please notify linux1394-devel@lists.sf.net "
1106			   "if you need the workarounds parameter\n");
1107
1108	if (w & SBP2_WORKAROUND_OVERRIDE)
1109		goto out;
1110
1111	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1112
1113		if (sbp2_workarounds_table[i].firmware_revision !=
1114		    (firmware_revision & 0xffffff00))
1115			continue;
1116
1117		if (sbp2_workarounds_table[i].model != model &&
1118		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1119			continue;
1120
1121		w |= sbp2_workarounds_table[i].workarounds;
1122		break;
1123	}
1124 out:
1125	if (w)
1126		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1127			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1128			   w, firmware_revision, model);
1129	tgt->workarounds = w;
1130}
1131
1132static struct scsi_host_template scsi_driver_template;
1133static void sbp2_remove(struct fw_unit *unit);
1134
1135static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1136{
1137	struct fw_device *device = fw_parent_device(unit);
1138	struct sbp2_target *tgt;
1139	struct sbp2_logical_unit *lu;
1140	struct Scsi_Host *shost;
1141	u32 model, firmware_revision;
1142
1143	/* cannot (or should not) handle targets on the local node */
1144	if (device->is_local)
1145		return -ENODEV;
1146
1147	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1148		WARN_ON(dma_set_max_seg_size(device->card->device,
1149					     SBP2_MAX_SEG_SIZE));
1150
1151	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1152	if (shost == NULL)
1153		return -ENOMEM;
1154
1155	tgt = (struct sbp2_target *)shost->hostdata;
1156	dev_set_drvdata(&unit->device, tgt);
1157	tgt->unit = unit;
1158	INIT_LIST_HEAD(&tgt->lu_list);
1159	spin_lock_init(&tgt->lock);
1160	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1161
1162	if (fw_device_enable_phys_dma(device) < 0)
1163		goto fail_shost_put;
1164
1165	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1166
1167	if (scsi_add_host_with_dma(shost, &unit->device,
1168				   device->card->device) < 0)
1169		goto fail_shost_put;
1170
1171	/* implicit directory ID */
1172	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1173			     + CSR_CONFIG_ROM) & 0xffffff;
1174
1175	firmware_revision = SBP2_ROM_VALUE_MISSING;
1176	model		  = SBP2_ROM_VALUE_MISSING;
1177
1178	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1179			       &firmware_revision) < 0)
1180		goto fail_remove;
1181
1182	sbp2_clamp_management_orb_timeout(tgt);
1183	sbp2_init_workarounds(tgt, model, firmware_revision);
1184
1185	/*
1186	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1187	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1188	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1189	 * if we set this to max_speed + 7, we get the right value.
1190	 */
1191	tgt->max_payload = min3(device->max_speed + 7, 10U,
1192				device->card->max_receive - 1);
1193
1194	/* Do the login in a workqueue so we can easily reschedule retries. */
1195	list_for_each_entry(lu, &tgt->lu_list, link)
1196		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1197
1198	return 0;
1199
1200 fail_remove:
1201	sbp2_remove(unit);
1202	return -ENOMEM;
1203
1204 fail_shost_put:
1205	scsi_host_put(shost);
1206	return -ENOMEM;
1207}
1208
1209static void sbp2_update(struct fw_unit *unit)
1210{
1211	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1212	struct sbp2_logical_unit *lu;
1213
1214	fw_device_enable_phys_dma(fw_parent_device(unit));
1215
1216	/*
1217	 * Fw-core serializes sbp2_update() against sbp2_remove().
1218	 * Iteration over tgt->lu_list is therefore safe here.
1219	 */
1220	list_for_each_entry(lu, &tgt->lu_list, link) {
1221		sbp2_conditionally_block(lu);
1222		lu->retries = 0;
1223		sbp2_queue_work(lu, 0);
1224	}
1225}
1226
1227static void sbp2_remove(struct fw_unit *unit)
1228{
1229	struct fw_device *device = fw_parent_device(unit);
1230	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1231	struct sbp2_logical_unit *lu, *next;
1232	struct Scsi_Host *shost =
1233		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1234	struct scsi_device *sdev;
1235
1236	/* prevent deadlocks */
1237	sbp2_unblock(tgt);
1238
1239	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1240		cancel_delayed_work_sync(&lu->work);
1241		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1242		if (sdev) {
1243			scsi_remove_device(sdev);
1244			scsi_device_put(sdev);
1245		}
1246		if (lu->login_id != INVALID_LOGIN_ID) {
1247			int generation, node_id;
1248			/*
1249			 * tgt->node_id may be obsolete here if we failed
1250			 * during initial login or after a bus reset where
1251			 * the topology changed.
1252			 */
1253			generation = device->generation;
1254			smp_rmb(); /* node_id vs. generation */
1255			node_id    = device->node_id;
1256			sbp2_send_management_orb(lu, node_id, generation,
1257						 SBP2_LOGOUT_REQUEST,
1258						 lu->login_id, NULL);
1259		}
1260		fw_core_remove_address_handler(&lu->address_handler);
1261		list_del(&lu->link);
1262		kfree(lu);
1263	}
1264	scsi_remove_host(shost);
1265	dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1266
1267	scsi_host_put(shost);
1268}
1269
1270#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1271#define SBP2_SW_VERSION_ENTRY	0x00010483
1272
1273static const struct ieee1394_device_id sbp2_id_table[] = {
1274	{
1275		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1276				IEEE1394_MATCH_VERSION,
1277		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278		.version      = SBP2_SW_VERSION_ENTRY,
1279	},
1280	{ }
1281};
1282
1283static struct fw_driver sbp2_driver = {
1284	.driver   = {
1285		.owner  = THIS_MODULE,
1286		.name   = KBUILD_MODNAME,
1287		.bus    = &fw_bus_type,
1288	},
1289	.probe    = sbp2_probe,
1290	.update   = sbp2_update,
1291	.remove   = sbp2_remove,
1292	.id_table = sbp2_id_table,
1293};
1294
1295static void sbp2_unmap_scatterlist(struct device *card_device,
1296				   struct sbp2_command_orb *orb)
1297{
1298	scsi_dma_unmap(orb->cmd);
1299
1300	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1301		dma_unmap_single(card_device, orb->page_table_bus,
1302				 sizeof(orb->page_table), DMA_TO_DEVICE);
1303}
1304
1305static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306{
1307	int sam_status;
1308	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1309
1310	if (sfmt == 2 || sfmt == 3) {
1311		/*
1312		 * Reserved for future standardization (2) or
1313		 * Status block format vendor-dependent (3)
1314		 */
1315		return DID_ERROR << 16;
1316	}
1317
1318	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1319	sense_data[1] = 0x0;
1320	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1321	sense_data[3] = sbp2_status[4];
1322	sense_data[4] = sbp2_status[5];
1323	sense_data[5] = sbp2_status[6];
1324	sense_data[6] = sbp2_status[7];
1325	sense_data[7] = 10;
1326	sense_data[8] = sbp2_status[8];
1327	sense_data[9] = sbp2_status[9];
1328	sense_data[10] = sbp2_status[10];
1329	sense_data[11] = sbp2_status[11];
1330	sense_data[12] = sbp2_status[2];
1331	sense_data[13] = sbp2_status[3];
1332	sense_data[14] = sbp2_status[12];
1333	sense_data[15] = sbp2_status[13];
1334
1335	sam_status = sbp2_status[0] & 0x3f;
1336
1337	switch (sam_status) {
1338	case SAM_STAT_GOOD:
1339	case SAM_STAT_CHECK_CONDITION:
1340	case SAM_STAT_CONDITION_MET:
1341	case SAM_STAT_BUSY:
1342	case SAM_STAT_RESERVATION_CONFLICT:
1343	case SAM_STAT_COMMAND_TERMINATED:
1344		return DID_OK << 16 | sam_status;
1345
1346	default:
1347		return DID_ERROR << 16;
1348	}
1349}
1350
1351static void complete_command_orb(struct sbp2_orb *base_orb,
1352				 struct sbp2_status *status)
1353{
1354	struct sbp2_command_orb *orb =
1355		container_of(base_orb, struct sbp2_command_orb, base);
1356	struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1357	int result;
1358
1359	if (status != NULL) {
1360		if (STATUS_GET_DEAD(*status))
1361			sbp2_agent_reset_no_wait(base_orb->lu);
1362
1363		switch (STATUS_GET_RESPONSE(*status)) {
1364		case SBP2_STATUS_REQUEST_COMPLETE:
1365			result = DID_OK << 16;
1366			break;
1367		case SBP2_STATUS_TRANSPORT_FAILURE:
1368			result = DID_BUS_BUSY << 16;
1369			break;
1370		case SBP2_STATUS_ILLEGAL_REQUEST:
1371		case SBP2_STATUS_VENDOR_DEPENDENT:
1372		default:
1373			result = DID_ERROR << 16;
1374			break;
1375		}
1376
1377		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379							   orb->cmd->sense_buffer);
1380	} else {
1381		/*
1382		 * If the orb completes with status == NULL, something
1383		 * went wrong, typically a bus reset happened mid-orb
1384		 * or when sending the write (less likely).
1385		 */
1386		result = DID_BUS_BUSY << 16;
1387		sbp2_conditionally_block(base_orb->lu);
1388	}
1389
1390	dma_unmap_single(device->card->device, orb->base.request_bus,
1391			 sizeof(orb->request), DMA_TO_DEVICE);
1392	sbp2_unmap_scatterlist(device->card->device, orb);
1393
1394	orb->cmd->result = result;
1395	orb->cmd->scsi_done(orb->cmd);
1396}
1397
1398static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399		struct fw_device *device, struct sbp2_logical_unit *lu)
1400{
1401	struct scatterlist *sg = scsi_sglist(orb->cmd);
1402	int i, n;
1403
1404	n = scsi_dma_map(orb->cmd);
1405	if (n <= 0)
1406		goto fail;
1407
1408	/*
1409	 * Handle the special case where there is only one element in
1410	 * the scatter list by converting it to an immediate block
1411	 * request. This is also a workaround for broken devices such
1412	 * as the second generation iPod which doesn't support page
1413	 * tables.
1414	 */
1415	if (n == 1) {
1416		orb->request.data_descriptor.high =
1417			cpu_to_be32(lu->tgt->address_high);
1418		orb->request.data_descriptor.low  =
1419			cpu_to_be32(sg_dma_address(sg));
1420		orb->request.misc |=
1421			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1422		return 0;
1423	}
1424
1425	for_each_sg(sg, sg, n, i) {
1426		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1427		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1428	}
1429
1430	orb->page_table_bus =
1431		dma_map_single(device->card->device, orb->page_table,
1432			       sizeof(orb->page_table), DMA_TO_DEVICE);
1433	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1434		goto fail_page_table;
1435
1436	/*
1437	 * The data_descriptor pointer is the one case where we need
1438	 * to fill in the node ID part of the address.  All other
1439	 * pointers assume that the data referenced reside on the
1440	 * initiator (i.e. us), but data_descriptor can refer to data
1441	 * on other nodes so we need to put our ID in descriptor.high.
1442	 */
1443	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1444	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1445	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1446					 COMMAND_ORB_DATA_SIZE(n));
1447
1448	return 0;
1449
1450 fail_page_table:
1451	scsi_dma_unmap(orb->cmd);
1452 fail:
1453	return -ENOMEM;
1454}
1455
1456/* SCSI stack integration */
1457
1458static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1459				  struct scsi_cmnd *cmd)
1460{
1461	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1462	struct fw_device *device = target_parent_device(lu->tgt);
1463	struct sbp2_command_orb *orb;
1464	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1465
1466	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1467	if (orb == NULL)
1468		return SCSI_MLQUEUE_HOST_BUSY;
1469
1470	/* Initialize rcode to something not RCODE_COMPLETE. */
1471	orb->base.rcode = -1;
1472	kref_init(&orb->base.kref);
1473	orb->cmd = cmd;
1474	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1475	orb->request.misc = cpu_to_be32(
1476		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1477		COMMAND_ORB_SPEED(device->max_speed) |
1478		COMMAND_ORB_NOTIFY);
1479
1480	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1481		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1482
1483	generation = device->generation;
1484	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1485
1486	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1487		goto out;
1488
1489	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1490
1491	orb->base.callback = complete_command_orb;
1492	orb->base.request_bus =
1493		dma_map_single(device->card->device, &orb->request,
1494			       sizeof(orb->request), DMA_TO_DEVICE);
1495	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1496		sbp2_unmap_scatterlist(device->card->device, orb);
1497		goto out;
1498	}
1499
1500	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1501		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1502	retval = 0;
1503 out:
1504	kref_put(&orb->base.kref, free_orb);
1505	return retval;
1506}
1507
1508static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1509{
1510	struct sbp2_logical_unit *lu = sdev->hostdata;
1511
1512	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1513	if (!lu)
1514		return -ENOSYS;
1515
1516	sdev->allow_restart = 1;
1517
1518	/*
1519	 * SBP-2 does not require any alignment, but we set it anyway
1520	 * for compatibility with earlier versions of this driver.
1521	 */
1522	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1523
1524	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1525		sdev->inquiry_len = 36;
1526
1527	return 0;
1528}
1529
1530static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1531{
1532	struct sbp2_logical_unit *lu = sdev->hostdata;
1533
1534	sdev->use_10_for_rw = 1;
1535
1536	if (sbp2_param_exclusive_login)
1537		sdev->manage_start_stop = 1;
1538
1539	if (sdev->type == TYPE_ROM)
1540		sdev->use_10_for_ms = 1;
1541
1542	if (sdev->type == TYPE_DISK &&
1543	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1544		sdev->skip_ms_page_8 = 1;
1545
1546	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1547		sdev->fix_capacity = 1;
1548
1549	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1550		sdev->start_stop_pwr_cond = 1;
1551
1552	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1553		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1554
1555	return 0;
1556}
1557
1558/*
1559 * Called by scsi stack when something has really gone wrong.  Usually
1560 * called when a command has timed-out for some reason.
1561 */
1562static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1563{
1564	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1565
1566	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1567	sbp2_agent_reset(lu);
1568	sbp2_cancel_orbs(lu);
1569
1570	return SUCCESS;
1571}
1572
1573/*
1574 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1575 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1576 *
1577 * This is the concatenation of target port identifier and logical unit
1578 * identifier as per SAM-2...SAM-4 annex A.
1579 */
1580static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1581			struct device_attribute *attr, char *buf)
1582{
1583	struct scsi_device *sdev = to_scsi_device(dev);
1584	struct sbp2_logical_unit *lu;
1585
1586	if (!sdev)
1587		return 0;
1588
1589	lu = sdev->hostdata;
1590
1591	return sprintf(buf, "%016llx:%06x:%04x\n",
1592			(unsigned long long)lu->tgt->guid,
1593			lu->tgt->directory_id, lu->lun);
1594}
1595
1596static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1597
1598static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1599	&dev_attr_ieee1394_id,
1600	NULL
1601};
1602
1603static struct scsi_host_template scsi_driver_template = {
1604	.module			= THIS_MODULE,
1605	.name			= "SBP-2 IEEE-1394",
1606	.proc_name		= "sbp2",
1607	.queuecommand		= sbp2_scsi_queuecommand,
1608	.slave_alloc		= sbp2_scsi_slave_alloc,
1609	.slave_configure	= sbp2_scsi_slave_configure,
1610	.eh_abort_handler	= sbp2_scsi_abort,
1611	.this_id		= -1,
1612	.sg_tablesize		= SG_ALL,
1613	.use_clustering		= ENABLE_CLUSTERING,
1614	.cmd_per_lun		= 1,
1615	.can_queue		= 1,
1616	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1617};
1618
1619MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1620MODULE_DESCRIPTION("SCSI over IEEE1394");
1621MODULE_LICENSE("GPL");
1622MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1623
1624/* Provide a module alias so root-on-sbp2 initrds don't break. */
1625MODULE_ALIAS("sbp2");
1626
1627static int __init sbp2_init(void)
1628{
1629	return driver_register(&sbp2_driver.driver);
1630}
1631
1632static void __exit sbp2_cleanup(void)
1633{
1634	driver_unregister(&sbp2_driver.driver);
1635}
1636
1637module_init(sbp2_init);
1638module_exit(sbp2_cleanup);
1639