1/*
2 * FDT related Helper functions used by the EFI stub on multiple
3 * architectures. This should be #included by the EFI stub
4 * implementation files.
5 *
6 * Copyright 2013 Linaro Limited; author Roy Franz
7 *
8 * This file is part of the Linux kernel, and is made available
9 * under the terms of the GNU General Public License version 2.
10 *
11 */
12
13#include <linux/efi.h>
14#include <linux/libfdt.h>
15#include <asm/efi.h>
16
17#include "efistub.h"
18
19efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20			unsigned long orig_fdt_size,
21			void *fdt, int new_fdt_size, char *cmdline_ptr,
22			u64 initrd_addr, u64 initrd_size,
23			efi_memory_desc_t *memory_map,
24			unsigned long map_size, unsigned long desc_size,
25			u32 desc_ver)
26{
27	int node, prev, num_rsv;
28	int status;
29	u32 fdt_val32;
30	u64 fdt_val64;
31
32	/* Do some checks on provided FDT, if it exists*/
33	if (orig_fdt) {
34		if (fdt_check_header(orig_fdt)) {
35			pr_efi_err(sys_table, "Device Tree header not valid!\n");
36			return EFI_LOAD_ERROR;
37		}
38		/*
39		 * We don't get the size of the FDT if we get if from a
40		 * configuration table.
41		 */
42		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
43			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
44			return EFI_LOAD_ERROR;
45		}
46	}
47
48	if (orig_fdt)
49		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
50	else
51		status = fdt_create_empty_tree(fdt, new_fdt_size);
52
53	if (status != 0)
54		goto fdt_set_fail;
55
56	/*
57	 * Delete any memory nodes present. We must delete nodes which
58	 * early_init_dt_scan_memory may try to use.
59	 */
60	prev = 0;
61	for (;;) {
62		const char *type;
63		int len;
64
65		node = fdt_next_node(fdt, prev, NULL);
66		if (node < 0)
67			break;
68
69		type = fdt_getprop(fdt, node, "device_type", &len);
70		if (type && strncmp(type, "memory", len) == 0) {
71			fdt_del_node(fdt, node);
72			continue;
73		}
74
75		prev = node;
76	}
77
78	/*
79	 * Delete all memory reserve map entries. When booting via UEFI,
80	 * kernel will use the UEFI memory map to find reserved regions.
81	 */
82	num_rsv = fdt_num_mem_rsv(fdt);
83	while (num_rsv-- > 0)
84		fdt_del_mem_rsv(fdt, num_rsv);
85
86	node = fdt_subnode_offset(fdt, 0, "chosen");
87	if (node < 0) {
88		node = fdt_add_subnode(fdt, 0, "chosen");
89		if (node < 0) {
90			status = node; /* node is error code when negative */
91			goto fdt_set_fail;
92		}
93	}
94
95	if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
96		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
97				     strlen(cmdline_ptr) + 1);
98		if (status)
99			goto fdt_set_fail;
100	}
101
102	/* Set initrd address/end in device tree, if present */
103	if (initrd_size != 0) {
104		u64 initrd_image_end;
105		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
106
107		status = fdt_setprop(fdt, node, "linux,initrd-start",
108				     &initrd_image_start, sizeof(u64));
109		if (status)
110			goto fdt_set_fail;
111		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
112		status = fdt_setprop(fdt, node, "linux,initrd-end",
113				     &initrd_image_end, sizeof(u64));
114		if (status)
115			goto fdt_set_fail;
116	}
117
118	/* Add FDT entries for EFI runtime services in chosen node. */
119	node = fdt_subnode_offset(fdt, 0, "chosen");
120	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
121	status = fdt_setprop(fdt, node, "linux,uefi-system-table",
122			     &fdt_val64, sizeof(fdt_val64));
123	if (status)
124		goto fdt_set_fail;
125
126	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
127	status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
128			     &fdt_val64,  sizeof(fdt_val64));
129	if (status)
130		goto fdt_set_fail;
131
132	fdt_val32 = cpu_to_fdt32(map_size);
133	status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
134			     &fdt_val32,  sizeof(fdt_val32));
135	if (status)
136		goto fdt_set_fail;
137
138	fdt_val32 = cpu_to_fdt32(desc_size);
139	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
140			     &fdt_val32, sizeof(fdt_val32));
141	if (status)
142		goto fdt_set_fail;
143
144	fdt_val32 = cpu_to_fdt32(desc_ver);
145	status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
146			     &fdt_val32, sizeof(fdt_val32));
147	if (status)
148		goto fdt_set_fail;
149
150	/*
151	 * Add kernel version banner so stub/kernel match can be
152	 * verified.
153	 */
154	status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver",
155			     linux_banner);
156	if (status)
157		goto fdt_set_fail;
158
159	return EFI_SUCCESS;
160
161fdt_set_fail:
162	if (status == -FDT_ERR_NOSPACE)
163		return EFI_BUFFER_TOO_SMALL;
164
165	return EFI_LOAD_ERROR;
166}
167
168#ifndef EFI_FDT_ALIGN
169#define EFI_FDT_ALIGN EFI_PAGE_SIZE
170#endif
171
172/*
173 * Allocate memory for a new FDT, then add EFI, commandline, and
174 * initrd related fields to the FDT.  This routine increases the
175 * FDT allocation size until the allocated memory is large
176 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
177 * which are fixed at 4K bytes, so in most cases the first
178 * allocation should succeed.
179 * EFI boot services are exited at the end of this function.
180 * There must be no allocations between the get_memory_map()
181 * call and the exit_boot_services() call, so the exiting of
182 * boot services is very tightly tied to the creation of the FDT
183 * with the final memory map in it.
184 */
185
186efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
187					    void *handle,
188					    unsigned long *new_fdt_addr,
189					    unsigned long max_addr,
190					    u64 initrd_addr, u64 initrd_size,
191					    char *cmdline_ptr,
192					    unsigned long fdt_addr,
193					    unsigned long fdt_size)
194{
195	unsigned long map_size, desc_size;
196	u32 desc_ver;
197	unsigned long mmap_key;
198	efi_memory_desc_t *memory_map, *runtime_map;
199	unsigned long new_fdt_size;
200	efi_status_t status;
201	int runtime_entry_count = 0;
202
203	/*
204	 * Get a copy of the current memory map that we will use to prepare
205	 * the input for SetVirtualAddressMap(). We don't have to worry about
206	 * subsequent allocations adding entries, since they could not affect
207	 * the number of EFI_MEMORY_RUNTIME regions.
208	 */
209	status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
210				    &desc_size, &desc_ver, &mmap_key);
211	if (status != EFI_SUCCESS) {
212		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
213		return status;
214	}
215
216	pr_efi(sys_table,
217	       "Exiting boot services and installing virtual address map...\n");
218
219	/*
220	 * Estimate size of new FDT, and allocate memory for it. We
221	 * will allocate a bigger buffer if this ends up being too
222	 * small, so a rough guess is OK here.
223	 */
224	new_fdt_size = fdt_size + EFI_PAGE_SIZE;
225	while (1) {
226		status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
227					new_fdt_addr, max_addr);
228		if (status != EFI_SUCCESS) {
229			pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
230			goto fail;
231		}
232
233		/*
234		 * Now that we have done our final memory allocation (and free)
235		 * we can get the memory map key  needed for
236		 * exit_boot_services().
237		 */
238		status = efi_get_memory_map(sys_table, &memory_map, &map_size,
239					    &desc_size, &desc_ver, &mmap_key);
240		if (status != EFI_SUCCESS)
241			goto fail_free_new_fdt;
242
243		status = update_fdt(sys_table,
244				    (void *)fdt_addr, fdt_size,
245				    (void *)*new_fdt_addr, new_fdt_size,
246				    cmdline_ptr, initrd_addr, initrd_size,
247				    memory_map, map_size, desc_size, desc_ver);
248
249		/* Succeeding the first time is the expected case. */
250		if (status == EFI_SUCCESS)
251			break;
252
253		if (status == EFI_BUFFER_TOO_SMALL) {
254			/*
255			 * We need to allocate more space for the new
256			 * device tree, so free existing buffer that is
257			 * too small.  Also free memory map, as we will need
258			 * to get new one that reflects the free/alloc we do
259			 * on the device tree buffer.
260			 */
261			efi_free(sys_table, new_fdt_size, *new_fdt_addr);
262			sys_table->boottime->free_pool(memory_map);
263			new_fdt_size += EFI_PAGE_SIZE;
264		} else {
265			pr_efi_err(sys_table, "Unable to constuct new device tree.\n");
266			goto fail_free_mmap;
267		}
268	}
269
270	/*
271	 * Update the memory map with virtual addresses. The function will also
272	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
273	 * entries so that we can pass it straight into SetVirtualAddressMap()
274	 */
275	efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
276			&runtime_entry_count);
277
278	/* Now we are ready to exit_boot_services.*/
279	status = sys_table->boottime->exit_boot_services(handle, mmap_key);
280
281	if (status == EFI_SUCCESS) {
282		efi_set_virtual_address_map_t *svam;
283
284		/* Install the new virtual address map */
285		svam = sys_table->runtime->set_virtual_address_map;
286		status = svam(runtime_entry_count * desc_size, desc_size,
287			      desc_ver, runtime_map);
288
289		/*
290		 * We are beyond the point of no return here, so if the call to
291		 * SetVirtualAddressMap() failed, we need to signal that to the
292		 * incoming kernel but proceed normally otherwise.
293		 */
294		if (status != EFI_SUCCESS) {
295			int l;
296
297			/*
298			 * Set the virtual address field of all
299			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
300			 * the incoming kernel that no virtual translation has
301			 * been installed.
302			 */
303			for (l = 0; l < map_size; l += desc_size) {
304				efi_memory_desc_t *p = (void *)memory_map + l;
305
306				if (p->attribute & EFI_MEMORY_RUNTIME)
307					p->virt_addr = 0;
308			}
309		}
310		return EFI_SUCCESS;
311	}
312
313	pr_efi_err(sys_table, "Exit boot services failed.\n");
314
315fail_free_mmap:
316	sys_table->boottime->free_pool(memory_map);
317
318fail_free_new_fdt:
319	efi_free(sys_table, new_fdt_size, *new_fdt_addr);
320
321fail:
322	sys_table->boottime->free_pool(runtime_map);
323	return EFI_LOAD_ERROR;
324}
325
326void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
327{
328	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
329	efi_config_table_t *tables;
330	void *fdt;
331	int i;
332
333	tables = (efi_config_table_t *) sys_table->tables;
334	fdt = NULL;
335
336	for (i = 0; i < sys_table->nr_tables; i++)
337		if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
338			fdt = (void *) tables[i].table;
339			if (fdt_check_header(fdt) != 0) {
340				pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
341				return NULL;
342			}
343			*fdt_size = fdt_totalsize(fdt);
344			break;
345	 }
346
347	return fdt;
348}
349