1/*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 *	Eric Anholt <eric@anholt.net>
19 */
20
21#include <linux/i2c.h>
22
23#include <drm/drmP.h>
24#include <drm/drm_plane_helper.h>
25#include "framebuffer.h"
26#include "psb_drv.h"
27#include "psb_intel_drv.h"
28#include "psb_intel_reg.h"
29#include "gma_display.h"
30#include "power.h"
31
32#define INTEL_LIMIT_I9XX_SDVO_DAC   0
33#define INTEL_LIMIT_I9XX_LVDS	    1
34
35static const struct gma_limit_t psb_intel_limits[] = {
36	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
37	 .dot = {.min = 20000, .max = 400000},
38	 .vco = {.min = 1400000, .max = 2800000},
39	 .n = {.min = 1, .max = 6},
40	 .m = {.min = 70, .max = 120},
41	 .m1 = {.min = 8, .max = 18},
42	 .m2 = {.min = 3, .max = 7},
43	 .p = {.min = 5, .max = 80},
44	 .p1 = {.min = 1, .max = 8},
45	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
46	 .find_pll = gma_find_best_pll,
47	 },
48	{			/* INTEL_LIMIT_I9XX_LVDS */
49	 .dot = {.min = 20000, .max = 400000},
50	 .vco = {.min = 1400000, .max = 2800000},
51	 .n = {.min = 1, .max = 6},
52	 .m = {.min = 70, .max = 120},
53	 .m1 = {.min = 8, .max = 18},
54	 .m2 = {.min = 3, .max = 7},
55	 .p = {.min = 7, .max = 98},
56	 .p1 = {.min = 1, .max = 8},
57	 /* The single-channel range is 25-112Mhz, and dual-channel
58	  * is 80-224Mhz.  Prefer single channel as much as possible.
59	  */
60	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
61	 .find_pll = gma_find_best_pll,
62	 },
63};
64
65static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
66						 int refclk)
67{
68	const struct gma_limit_t *limit;
69
70	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
71		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
72	else
73		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
74	return limit;
75}
76
77static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
78{
79	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
80	clock->p = clock->p1 * clock->p2;
81	clock->vco = refclk * clock->m / (clock->n + 2);
82	clock->dot = clock->vco / clock->p;
83}
84
85/**
86 * Return the pipe currently connected to the panel fitter,
87 * or -1 if the panel fitter is not present or not in use
88 */
89static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
90{
91	u32 pfit_control;
92
93	pfit_control = REG_READ(PFIT_CONTROL);
94
95	/* See if the panel fitter is in use */
96	if ((pfit_control & PFIT_ENABLE) == 0)
97		return -1;
98	/* Must be on PIPE 1 for PSB */
99	return 1;
100}
101
102static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
103			       struct drm_display_mode *mode,
104			       struct drm_display_mode *adjusted_mode,
105			       int x, int y,
106			       struct drm_framebuffer *old_fb)
107{
108	struct drm_device *dev = crtc->dev;
109	struct drm_psb_private *dev_priv = dev->dev_private;
110	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
111	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
112	int pipe = gma_crtc->pipe;
113	const struct psb_offset *map = &dev_priv->regmap[pipe];
114	int refclk;
115	struct gma_clock_t clock;
116	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
117	bool ok, is_sdvo = false;
118	bool is_lvds = false, is_tv = false;
119	struct drm_mode_config *mode_config = &dev->mode_config;
120	struct drm_connector *connector;
121	const struct gma_limit_t *limit;
122
123	/* No scan out no play */
124	if (crtc->primary->fb == NULL) {
125		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
126		return 0;
127	}
128
129	list_for_each_entry(connector, &mode_config->connector_list, head) {
130		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
131
132		if (!connector->encoder
133		    || connector->encoder->crtc != crtc)
134			continue;
135
136		switch (gma_encoder->type) {
137		case INTEL_OUTPUT_LVDS:
138			is_lvds = true;
139			break;
140		case INTEL_OUTPUT_SDVO:
141			is_sdvo = true;
142			break;
143		case INTEL_OUTPUT_TVOUT:
144			is_tv = true;
145			break;
146		}
147	}
148
149	refclk = 96000;
150
151	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
152
153	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
154				 &clock);
155	if (!ok) {
156		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
157			  adjusted_mode->clock, clock.dot);
158		return 0;
159	}
160
161	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
162
163	dpll = DPLL_VGA_MODE_DIS;
164	if (is_lvds) {
165		dpll |= DPLLB_MODE_LVDS;
166		dpll |= DPLL_DVO_HIGH_SPEED;
167	} else
168		dpll |= DPLLB_MODE_DAC_SERIAL;
169	if (is_sdvo) {
170		int sdvo_pixel_multiply =
171			    adjusted_mode->clock / mode->clock;
172		dpll |= DPLL_DVO_HIGH_SPEED;
173		dpll |=
174		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
175	}
176
177	/* compute bitmask from p1 value */
178	dpll |= (1 << (clock.p1 - 1)) << 16;
179	switch (clock.p2) {
180	case 5:
181		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
182		break;
183	case 7:
184		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
185		break;
186	case 10:
187		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
188		break;
189	case 14:
190		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
191		break;
192	}
193
194	if (is_tv) {
195		/* XXX: just matching BIOS for now */
196/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
197		dpll |= 3;
198	}
199	dpll |= PLL_REF_INPUT_DREFCLK;
200
201	/* setup pipeconf */
202	pipeconf = REG_READ(map->conf);
203
204	/* Set up the display plane register */
205	dspcntr = DISPPLANE_GAMMA_ENABLE;
206
207	if (pipe == 0)
208		dspcntr |= DISPPLANE_SEL_PIPE_A;
209	else
210		dspcntr |= DISPPLANE_SEL_PIPE_B;
211
212	dspcntr |= DISPLAY_PLANE_ENABLE;
213	pipeconf |= PIPEACONF_ENABLE;
214	dpll |= DPLL_VCO_ENABLE;
215
216
217	/* Disable the panel fitter if it was on our pipe */
218	if (psb_intel_panel_fitter_pipe(dev) == pipe)
219		REG_WRITE(PFIT_CONTROL, 0);
220
221	drm_mode_debug_printmodeline(mode);
222
223	if (dpll & DPLL_VCO_ENABLE) {
224		REG_WRITE(map->fp0, fp);
225		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
226		REG_READ(map->dpll);
227		udelay(150);
228	}
229
230	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
231	 * This is an exception to the general rule that mode_set doesn't turn
232	 * things on.
233	 */
234	if (is_lvds) {
235		u32 lvds = REG_READ(LVDS);
236
237		lvds &= ~LVDS_PIPEB_SELECT;
238		if (pipe == 1)
239			lvds |= LVDS_PIPEB_SELECT;
240
241		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
242		/* Set the B0-B3 data pairs corresponding to
243		 * whether we're going to
244		 * set the DPLLs for dual-channel mode or not.
245		 */
246		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
247		if (clock.p2 == 7)
248			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
249
250		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
251		 * appropriately here, but we need to look more
252		 * thoroughly into how panels behave in the two modes.
253		 */
254
255		REG_WRITE(LVDS, lvds);
256		REG_READ(LVDS);
257	}
258
259	REG_WRITE(map->fp0, fp);
260	REG_WRITE(map->dpll, dpll);
261	REG_READ(map->dpll);
262	/* Wait for the clocks to stabilize. */
263	udelay(150);
264
265	/* write it again -- the BIOS does, after all */
266	REG_WRITE(map->dpll, dpll);
267
268	REG_READ(map->dpll);
269	/* Wait for the clocks to stabilize. */
270	udelay(150);
271
272	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
273		  ((adjusted_mode->crtc_htotal - 1) << 16));
274	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
275		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
276	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
277		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
278	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
279		  ((adjusted_mode->crtc_vtotal - 1) << 16));
280	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
281		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
282	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
283		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
284	/* pipesrc and dspsize control the size that is scaled from,
285	 * which should always be the user's requested size.
286	 */
287	REG_WRITE(map->size,
288		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
289	REG_WRITE(map->pos, 0);
290	REG_WRITE(map->src,
291		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
292	REG_WRITE(map->conf, pipeconf);
293	REG_READ(map->conf);
294
295	gma_wait_for_vblank(dev);
296
297	REG_WRITE(map->cntr, dspcntr);
298
299	/* Flush the plane changes */
300	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
301
302	gma_wait_for_vblank(dev);
303
304	return 0;
305}
306
307/* Returns the clock of the currently programmed mode of the given pipe. */
308static int psb_intel_crtc_clock_get(struct drm_device *dev,
309				struct drm_crtc *crtc)
310{
311	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
312	struct drm_psb_private *dev_priv = dev->dev_private;
313	int pipe = gma_crtc->pipe;
314	const struct psb_offset *map = &dev_priv->regmap[pipe];
315	u32 dpll;
316	u32 fp;
317	struct gma_clock_t clock;
318	bool is_lvds;
319	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
320
321	if (gma_power_begin(dev, false)) {
322		dpll = REG_READ(map->dpll);
323		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
324			fp = REG_READ(map->fp0);
325		else
326			fp = REG_READ(map->fp1);
327		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
328		gma_power_end(dev);
329	} else {
330		dpll = p->dpll;
331
332		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
333			fp = p->fp0;
334		else
335		        fp = p->fp1;
336
337		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
338								LVDS_PORT_EN);
339	}
340
341	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
342	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
343	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
344
345	if (is_lvds) {
346		clock.p1 =
347		    ffs((dpll &
348			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
349			DPLL_FPA01_P1_POST_DIV_SHIFT);
350		clock.p2 = 14;
351
352		if ((dpll & PLL_REF_INPUT_MASK) ==
353		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
354			/* XXX: might not be 66MHz */
355			psb_intel_clock(66000, &clock);
356		} else
357			psb_intel_clock(48000, &clock);
358	} else {
359		if (dpll & PLL_P1_DIVIDE_BY_TWO)
360			clock.p1 = 2;
361		else {
362			clock.p1 =
363			    ((dpll &
364			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
365			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
366		}
367		if (dpll & PLL_P2_DIVIDE_BY_4)
368			clock.p2 = 4;
369		else
370			clock.p2 = 2;
371
372		psb_intel_clock(48000, &clock);
373	}
374
375	/* XXX: It would be nice to validate the clocks, but we can't reuse
376	 * i830PllIsValid() because it relies on the xf86_config connector
377	 * configuration being accurate, which it isn't necessarily.
378	 */
379
380	return clock.dot;
381}
382
383/** Returns the currently programmed mode of the given pipe. */
384struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
385					     struct drm_crtc *crtc)
386{
387	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
388	int pipe = gma_crtc->pipe;
389	struct drm_display_mode *mode;
390	int htot;
391	int hsync;
392	int vtot;
393	int vsync;
394	struct drm_psb_private *dev_priv = dev->dev_private;
395	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
396	const struct psb_offset *map = &dev_priv->regmap[pipe];
397
398	if (gma_power_begin(dev, false)) {
399		htot = REG_READ(map->htotal);
400		hsync = REG_READ(map->hsync);
401		vtot = REG_READ(map->vtotal);
402		vsync = REG_READ(map->vsync);
403		gma_power_end(dev);
404	} else {
405		htot = p->htotal;
406		hsync = p->hsync;
407		vtot = p->vtotal;
408		vsync = p->vsync;
409	}
410
411	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
412	if (!mode)
413		return NULL;
414
415	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
416	mode->hdisplay = (htot & 0xffff) + 1;
417	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
418	mode->hsync_start = (hsync & 0xffff) + 1;
419	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
420	mode->vdisplay = (vtot & 0xffff) + 1;
421	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
422	mode->vsync_start = (vsync & 0xffff) + 1;
423	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
424
425	drm_mode_set_name(mode);
426	drm_mode_set_crtcinfo(mode, 0);
427
428	return mode;
429}
430
431const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
432	.dpms = gma_crtc_dpms,
433	.mode_fixup = gma_crtc_mode_fixup,
434	.mode_set = psb_intel_crtc_mode_set,
435	.mode_set_base = gma_pipe_set_base,
436	.prepare = gma_crtc_prepare,
437	.commit = gma_crtc_commit,
438	.disable = gma_crtc_disable,
439};
440
441const struct drm_crtc_funcs psb_intel_crtc_funcs = {
442	.save = gma_crtc_save,
443	.restore = gma_crtc_restore,
444	.cursor_set = gma_crtc_cursor_set,
445	.cursor_move = gma_crtc_cursor_move,
446	.gamma_set = gma_crtc_gamma_set,
447	.set_config = gma_crtc_set_config,
448	.destroy = gma_crtc_destroy,
449};
450
451const struct gma_clock_funcs psb_clock_funcs = {
452	.clock = psb_intel_clock,
453	.limit = psb_intel_limit,
454	.pll_is_valid = gma_pll_is_valid,
455};
456
457/*
458 * Set the default value of cursor control and base register
459 * to zero. This is a workaround for h/w defect on Oaktrail
460 */
461static void psb_intel_cursor_init(struct drm_device *dev,
462				  struct gma_crtc *gma_crtc)
463{
464	struct drm_psb_private *dev_priv = dev->dev_private;
465	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
466	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
467	struct gtt_range *cursor_gt;
468
469	if (dev_priv->ops->cursor_needs_phys) {
470		/* Allocate 4 pages of stolen mem for a hardware cursor. That
471		 * is enough for the 64 x 64 ARGB cursors we support.
472		 */
473		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
474						PAGE_SIZE);
475		if (!cursor_gt) {
476			gma_crtc->cursor_gt = NULL;
477			goto out;
478		}
479		gma_crtc->cursor_gt = cursor_gt;
480		gma_crtc->cursor_addr = dev_priv->stolen_base +
481							cursor_gt->offset;
482	} else {
483		gma_crtc->cursor_gt = NULL;
484	}
485
486out:
487	REG_WRITE(control[gma_crtc->pipe], 0);
488	REG_WRITE(base[gma_crtc->pipe], 0);
489}
490
491void psb_intel_crtc_init(struct drm_device *dev, int pipe,
492		     struct psb_intel_mode_device *mode_dev)
493{
494	struct drm_psb_private *dev_priv = dev->dev_private;
495	struct gma_crtc *gma_crtc;
496	int i;
497	uint16_t *r_base, *g_base, *b_base;
498
499	/* We allocate a extra array of drm_connector pointers
500	 * for fbdev after the crtc */
501	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
502			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
503			GFP_KERNEL);
504	if (gma_crtc == NULL)
505		return;
506
507	gma_crtc->crtc_state =
508		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
509	if (!gma_crtc->crtc_state) {
510		dev_err(dev->dev, "Crtc state error: No memory\n");
511		kfree(gma_crtc);
512		return;
513	}
514
515	/* Set the CRTC operations from the chip specific data */
516	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
517
518	/* Set the CRTC clock functions from chip specific data */
519	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
520
521	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
522	gma_crtc->pipe = pipe;
523	gma_crtc->plane = pipe;
524
525	r_base = gma_crtc->base.gamma_store;
526	g_base = r_base + 256;
527	b_base = g_base + 256;
528	for (i = 0; i < 256; i++) {
529		gma_crtc->lut_r[i] = i;
530		gma_crtc->lut_g[i] = i;
531		gma_crtc->lut_b[i] = i;
532		r_base[i] = i << 8;
533		g_base[i] = i << 8;
534		b_base[i] = i << 8;
535
536		gma_crtc->lut_adj[i] = 0;
537	}
538
539	gma_crtc->mode_dev = mode_dev;
540	gma_crtc->cursor_addr = 0;
541
542	drm_crtc_helper_add(&gma_crtc->base,
543						dev_priv->ops->crtc_helper);
544
545	/* Setup the array of drm_connector pointer array */
546	gma_crtc->mode_set.crtc = &gma_crtc->base;
547	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
548	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
549	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
550	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
551	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
552	gma_crtc->mode_set.num_connectors = 0;
553	psb_intel_cursor_init(dev, gma_crtc);
554
555	/* Set to true so that the pipe is forced off on initial config. */
556	gma_crtc->active = true;
557}
558
559struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
560{
561	struct drm_crtc *crtc = NULL;
562
563	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
564		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
565		if (gma_crtc->pipe == pipe)
566			break;
567	}
568	return crtc;
569}
570
571int gma_connector_clones(struct drm_device *dev, int type_mask)
572{
573	int index_mask = 0;
574	struct drm_connector *connector;
575	int entry = 0;
576
577	list_for_each_entry(connector, &dev->mode_config.connector_list,
578			    head) {
579		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
580		if (type_mask & (1 << gma_encoder->type))
581			index_mask |= (1 << entry);
582		entry++;
583	}
584	return index_mask;
585}
586