1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *    Keith Packard <keithp@keithp.com>
26 *
27 */
28
29#include <linux/seq_file.h>
30#include <linux/circ_buf.h>
31#include <linux/ctype.h>
32#include <linux/debugfs.h>
33#include <linux/slab.h>
34#include <linux/export.h>
35#include <linux/list_sort.h>
36#include <asm/msr-index.h>
37#include <drm/drmP.h>
38#include "intel_drv.h"
39#include "intel_ringbuffer.h"
40#include <drm/i915_drm.h>
41#include "i915_drv.h"
42
43enum {
44	ACTIVE_LIST,
45	INACTIVE_LIST,
46	PINNED_LIST,
47};
48
49static const char *yesno(int v)
50{
51	return v ? "yes" : "no";
52}
53
54/* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56static int
57drm_add_fake_info_node(struct drm_minor *minor,
58		       struct dentry *ent,
59		       const void *key)
60{
61	struct drm_info_node *node;
62
63	node = kmalloc(sizeof(*node), GFP_KERNEL);
64	if (node == NULL) {
65		debugfs_remove(ent);
66		return -ENOMEM;
67	}
68
69	node->minor = minor;
70	node->dent = ent;
71	node->info_ent = (void *) key;
72
73	mutex_lock(&minor->debugfs_lock);
74	list_add(&node->list, &minor->debugfs_list);
75	mutex_unlock(&minor->debugfs_lock);
76
77	return 0;
78}
79
80static int i915_capabilities(struct seq_file *m, void *data)
81{
82	struct drm_info_node *node = m->private;
83	struct drm_device *dev = node->minor->dev;
84	const struct intel_device_info *info = INTEL_INFO(dev);
85
86	seq_printf(m, "gen: %d\n", info->gen);
87	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88#define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89#define SEP_SEMICOLON ;
90	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91#undef PRINT_FLAG
92#undef SEP_SEMICOLON
93
94	return 0;
95}
96
97static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98{
99	if (i915_gem_obj_is_pinned(obj))
100		return "p";
101	else
102		return " ";
103}
104
105static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106{
107	switch (obj->tiling_mode) {
108	default:
109	case I915_TILING_NONE: return " ";
110	case I915_TILING_X: return "X";
111	case I915_TILING_Y: return "Y";
112	}
113}
114
115static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116{
117	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118}
119
120static void
121describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122{
123	struct i915_vma *vma;
124	int pin_count = 0;
125
126	seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127		   &obj->base,
128		   get_pin_flag(obj),
129		   get_tiling_flag(obj),
130		   get_global_flag(obj),
131		   obj->base.size / 1024,
132		   obj->base.read_domains,
133		   obj->base.write_domain,
134		   i915_gem_request_get_seqno(obj->last_read_req),
135		   i915_gem_request_get_seqno(obj->last_write_req),
136		   i915_gem_request_get_seqno(obj->last_fenced_req),
137		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138		   obj->dirty ? " dirty" : "",
139		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140	if (obj->base.name)
141		seq_printf(m, " (name: %d)", obj->base.name);
142	list_for_each_entry(vma, &obj->vma_list, vma_link) {
143		if (vma->pin_count > 0)
144			pin_count++;
145	}
146	seq_printf(m, " (pinned x %d)", pin_count);
147	if (obj->pin_display)
148		seq_printf(m, " (display)");
149	if (obj->fence_reg != I915_FENCE_REG_NONE)
150		seq_printf(m, " (fence: %d)", obj->fence_reg);
151	list_for_each_entry(vma, &obj->vma_list, vma_link) {
152		if (!i915_is_ggtt(vma->vm))
153			seq_puts(m, " (pp");
154		else
155			seq_puts(m, " (g");
156		seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
157			   vma->node.start, vma->node.size,
158			   vma->ggtt_view.type);
159	}
160	if (obj->stolen)
161		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
162	if (obj->pin_mappable || obj->fault_mappable) {
163		char s[3], *t = s;
164		if (obj->pin_mappable)
165			*t++ = 'p';
166		if (obj->fault_mappable)
167			*t++ = 'f';
168		*t = '\0';
169		seq_printf(m, " (%s mappable)", s);
170	}
171	if (obj->last_read_req != NULL)
172		seq_printf(m, " (%s)",
173			   i915_gem_request_get_ring(obj->last_read_req)->name);
174	if (obj->frontbuffer_bits)
175		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
176}
177
178static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
179{
180	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
181	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
182	seq_putc(m, ' ');
183}
184
185static int i915_gem_object_list_info(struct seq_file *m, void *data)
186{
187	struct drm_info_node *node = m->private;
188	uintptr_t list = (uintptr_t) node->info_ent->data;
189	struct list_head *head;
190	struct drm_device *dev = node->minor->dev;
191	struct drm_i915_private *dev_priv = dev->dev_private;
192	struct i915_address_space *vm = &dev_priv->gtt.base;
193	struct i915_vma *vma;
194	size_t total_obj_size, total_gtt_size;
195	int count, ret;
196
197	ret = mutex_lock_interruptible(&dev->struct_mutex);
198	if (ret)
199		return ret;
200
201	/* FIXME: the user of this interface might want more than just GGTT */
202	switch (list) {
203	case ACTIVE_LIST:
204		seq_puts(m, "Active:\n");
205		head = &vm->active_list;
206		break;
207	case INACTIVE_LIST:
208		seq_puts(m, "Inactive:\n");
209		head = &vm->inactive_list;
210		break;
211	default:
212		mutex_unlock(&dev->struct_mutex);
213		return -EINVAL;
214	}
215
216	total_obj_size = total_gtt_size = count = 0;
217	list_for_each_entry(vma, head, mm_list) {
218		seq_printf(m, "   ");
219		describe_obj(m, vma->obj);
220		seq_printf(m, "\n");
221		total_obj_size += vma->obj->base.size;
222		total_gtt_size += vma->node.size;
223		count++;
224	}
225	mutex_unlock(&dev->struct_mutex);
226
227	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
228		   count, total_obj_size, total_gtt_size);
229	return 0;
230}
231
232static int obj_rank_by_stolen(void *priv,
233			      struct list_head *A, struct list_head *B)
234{
235	struct drm_i915_gem_object *a =
236		container_of(A, struct drm_i915_gem_object, obj_exec_link);
237	struct drm_i915_gem_object *b =
238		container_of(B, struct drm_i915_gem_object, obj_exec_link);
239
240	return a->stolen->start - b->stolen->start;
241}
242
243static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
244{
245	struct drm_info_node *node = m->private;
246	struct drm_device *dev = node->minor->dev;
247	struct drm_i915_private *dev_priv = dev->dev_private;
248	struct drm_i915_gem_object *obj;
249	size_t total_obj_size, total_gtt_size;
250	LIST_HEAD(stolen);
251	int count, ret;
252
253	ret = mutex_lock_interruptible(&dev->struct_mutex);
254	if (ret)
255		return ret;
256
257	total_obj_size = total_gtt_size = count = 0;
258	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
259		if (obj->stolen == NULL)
260			continue;
261
262		list_add(&obj->obj_exec_link, &stolen);
263
264		total_obj_size += obj->base.size;
265		total_gtt_size += i915_gem_obj_ggtt_size(obj);
266		count++;
267	}
268	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
269		if (obj->stolen == NULL)
270			continue;
271
272		list_add(&obj->obj_exec_link, &stolen);
273
274		total_obj_size += obj->base.size;
275		count++;
276	}
277	list_sort(NULL, &stolen, obj_rank_by_stolen);
278	seq_puts(m, "Stolen:\n");
279	while (!list_empty(&stolen)) {
280		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
281		seq_puts(m, "   ");
282		describe_obj(m, obj);
283		seq_putc(m, '\n');
284		list_del_init(&obj->obj_exec_link);
285	}
286	mutex_unlock(&dev->struct_mutex);
287
288	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
289		   count, total_obj_size, total_gtt_size);
290	return 0;
291}
292
293#define count_objects(list, member) do { \
294	list_for_each_entry(obj, list, member) { \
295		size += i915_gem_obj_ggtt_size(obj); \
296		++count; \
297		if (obj->map_and_fenceable) { \
298			mappable_size += i915_gem_obj_ggtt_size(obj); \
299			++mappable_count; \
300		} \
301	} \
302} while (0)
303
304struct file_stats {
305	struct drm_i915_file_private *file_priv;
306	int count;
307	size_t total, unbound;
308	size_t global, shared;
309	size_t active, inactive;
310};
311
312static int per_file_stats(int id, void *ptr, void *data)
313{
314	struct drm_i915_gem_object *obj = ptr;
315	struct file_stats *stats = data;
316	struct i915_vma *vma;
317
318	stats->count++;
319	stats->total += obj->base.size;
320
321	if (obj->base.name || obj->base.dma_buf)
322		stats->shared += obj->base.size;
323
324	if (USES_FULL_PPGTT(obj->base.dev)) {
325		list_for_each_entry(vma, &obj->vma_list, vma_link) {
326			struct i915_hw_ppgtt *ppgtt;
327
328			if (!drm_mm_node_allocated(&vma->node))
329				continue;
330
331			if (i915_is_ggtt(vma->vm)) {
332				stats->global += obj->base.size;
333				continue;
334			}
335
336			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
337			if (ppgtt->file_priv != stats->file_priv)
338				continue;
339
340			if (obj->active) /* XXX per-vma statistic */
341				stats->active += obj->base.size;
342			else
343				stats->inactive += obj->base.size;
344
345			return 0;
346		}
347	} else {
348		if (i915_gem_obj_ggtt_bound(obj)) {
349			stats->global += obj->base.size;
350			if (obj->active)
351				stats->active += obj->base.size;
352			else
353				stats->inactive += obj->base.size;
354			return 0;
355		}
356	}
357
358	if (!list_empty(&obj->global_list))
359		stats->unbound += obj->base.size;
360
361	return 0;
362}
363
364#define print_file_stats(m, name, stats) \
365	seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
366		   name, \
367		   stats.count, \
368		   stats.total, \
369		   stats.active, \
370		   stats.inactive, \
371		   stats.global, \
372		   stats.shared, \
373		   stats.unbound)
374
375static void print_batch_pool_stats(struct seq_file *m,
376				   struct drm_i915_private *dev_priv)
377{
378	struct drm_i915_gem_object *obj;
379	struct file_stats stats;
380
381	memset(&stats, 0, sizeof(stats));
382
383	list_for_each_entry(obj,
384			    &dev_priv->mm.batch_pool.cache_list,
385			    batch_pool_list)
386		per_file_stats(0, obj, &stats);
387
388	print_file_stats(m, "batch pool", stats);
389}
390
391#define count_vmas(list, member) do { \
392	list_for_each_entry(vma, list, member) { \
393		size += i915_gem_obj_ggtt_size(vma->obj); \
394		++count; \
395		if (vma->obj->map_and_fenceable) { \
396			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
397			++mappable_count; \
398		} \
399	} \
400} while (0)
401
402static int i915_gem_object_info(struct seq_file *m, void* data)
403{
404	struct drm_info_node *node = m->private;
405	struct drm_device *dev = node->minor->dev;
406	struct drm_i915_private *dev_priv = dev->dev_private;
407	u32 count, mappable_count, purgeable_count;
408	size_t size, mappable_size, purgeable_size;
409	struct drm_i915_gem_object *obj;
410	struct i915_address_space *vm = &dev_priv->gtt.base;
411	struct drm_file *file;
412	struct i915_vma *vma;
413	int ret;
414
415	ret = mutex_lock_interruptible(&dev->struct_mutex);
416	if (ret)
417		return ret;
418
419	seq_printf(m, "%u objects, %zu bytes\n",
420		   dev_priv->mm.object_count,
421		   dev_priv->mm.object_memory);
422
423	size = count = mappable_size = mappable_count = 0;
424	count_objects(&dev_priv->mm.bound_list, global_list);
425	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
426		   count, mappable_count, size, mappable_size);
427
428	size = count = mappable_size = mappable_count = 0;
429	count_vmas(&vm->active_list, mm_list);
430	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
431		   count, mappable_count, size, mappable_size);
432
433	size = count = mappable_size = mappable_count = 0;
434	count_vmas(&vm->inactive_list, mm_list);
435	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
436		   count, mappable_count, size, mappable_size);
437
438	size = count = purgeable_size = purgeable_count = 0;
439	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
440		size += obj->base.size, ++count;
441		if (obj->madv == I915_MADV_DONTNEED)
442			purgeable_size += obj->base.size, ++purgeable_count;
443	}
444	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
445
446	size = count = mappable_size = mappable_count = 0;
447	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
448		if (obj->fault_mappable) {
449			size += i915_gem_obj_ggtt_size(obj);
450			++count;
451		}
452		if (obj->pin_mappable) {
453			mappable_size += i915_gem_obj_ggtt_size(obj);
454			++mappable_count;
455		}
456		if (obj->madv == I915_MADV_DONTNEED) {
457			purgeable_size += obj->base.size;
458			++purgeable_count;
459		}
460	}
461	seq_printf(m, "%u purgeable objects, %zu bytes\n",
462		   purgeable_count, purgeable_size);
463	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
464		   mappable_count, mappable_size);
465	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
466		   count, size);
467
468	seq_printf(m, "%zu [%lu] gtt total\n",
469		   dev_priv->gtt.base.total,
470		   dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
471
472	seq_putc(m, '\n');
473	print_batch_pool_stats(m, dev_priv);
474
475	seq_putc(m, '\n');
476	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
477		struct file_stats stats;
478		struct task_struct *task;
479
480		memset(&stats, 0, sizeof(stats));
481		stats.file_priv = file->driver_priv;
482		spin_lock(&file->table_lock);
483		idr_for_each(&file->object_idr, per_file_stats, &stats);
484		spin_unlock(&file->table_lock);
485		/*
486		 * Although we have a valid reference on file->pid, that does
487		 * not guarantee that the task_struct who called get_pid() is
488		 * still alive (e.g. get_pid(current) => fork() => exit()).
489		 * Therefore, we need to protect this ->comm access using RCU.
490		 */
491		rcu_read_lock();
492		task = pid_task(file->pid, PIDTYPE_PID);
493		print_file_stats(m, task ? task->comm : "<unknown>", stats);
494		rcu_read_unlock();
495	}
496
497	mutex_unlock(&dev->struct_mutex);
498
499	return 0;
500}
501
502static int i915_gem_gtt_info(struct seq_file *m, void *data)
503{
504	struct drm_info_node *node = m->private;
505	struct drm_device *dev = node->minor->dev;
506	uintptr_t list = (uintptr_t) node->info_ent->data;
507	struct drm_i915_private *dev_priv = dev->dev_private;
508	struct drm_i915_gem_object *obj;
509	size_t total_obj_size, total_gtt_size;
510	int count, ret;
511
512	ret = mutex_lock_interruptible(&dev->struct_mutex);
513	if (ret)
514		return ret;
515
516	total_obj_size = total_gtt_size = count = 0;
517	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
518		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
519			continue;
520
521		seq_puts(m, "   ");
522		describe_obj(m, obj);
523		seq_putc(m, '\n');
524		total_obj_size += obj->base.size;
525		total_gtt_size += i915_gem_obj_ggtt_size(obj);
526		count++;
527	}
528
529	mutex_unlock(&dev->struct_mutex);
530
531	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
532		   count, total_obj_size, total_gtt_size);
533
534	return 0;
535}
536
537static int i915_gem_pageflip_info(struct seq_file *m, void *data)
538{
539	struct drm_info_node *node = m->private;
540	struct drm_device *dev = node->minor->dev;
541	struct drm_i915_private *dev_priv = dev->dev_private;
542	struct intel_crtc *crtc;
543	int ret;
544
545	ret = mutex_lock_interruptible(&dev->struct_mutex);
546	if (ret)
547		return ret;
548
549	for_each_intel_crtc(dev, crtc) {
550		const char pipe = pipe_name(crtc->pipe);
551		const char plane = plane_name(crtc->plane);
552		struct intel_unpin_work *work;
553
554		spin_lock_irq(&dev->event_lock);
555		work = crtc->unpin_work;
556		if (work == NULL) {
557			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
558				   pipe, plane);
559		} else {
560			u32 addr;
561
562			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
563				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
564					   pipe, plane);
565			} else {
566				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
567					   pipe, plane);
568			}
569			if (work->flip_queued_req) {
570				struct intel_engine_cs *ring =
571					i915_gem_request_get_ring(work->flip_queued_req);
572
573				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
574					   ring->name,
575					   i915_gem_request_get_seqno(work->flip_queued_req),
576					   dev_priv->next_seqno,
577					   ring->get_seqno(ring, true),
578					   i915_gem_request_completed(work->flip_queued_req, true));
579			} else
580				seq_printf(m, "Flip not associated with any ring\n");
581			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
582				   work->flip_queued_vblank,
583				   work->flip_ready_vblank,
584				   drm_crtc_vblank_count(&crtc->base));
585			if (work->enable_stall_check)
586				seq_puts(m, "Stall check enabled, ");
587			else
588				seq_puts(m, "Stall check waiting for page flip ioctl, ");
589			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
590
591			if (INTEL_INFO(dev)->gen >= 4)
592				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
593			else
594				addr = I915_READ(DSPADDR(crtc->plane));
595			seq_printf(m, "Current scanout address 0x%08x\n", addr);
596
597			if (work->pending_flip_obj) {
598				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
599				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
600			}
601		}
602		spin_unlock_irq(&dev->event_lock);
603	}
604
605	mutex_unlock(&dev->struct_mutex);
606
607	return 0;
608}
609
610static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
611{
612	struct drm_info_node *node = m->private;
613	struct drm_device *dev = node->minor->dev;
614	struct drm_i915_private *dev_priv = dev->dev_private;
615	struct drm_i915_gem_object *obj;
616	int count = 0;
617	int ret;
618
619	ret = mutex_lock_interruptible(&dev->struct_mutex);
620	if (ret)
621		return ret;
622
623	seq_puts(m, "cache:\n");
624	list_for_each_entry(obj,
625			    &dev_priv->mm.batch_pool.cache_list,
626			    batch_pool_list) {
627		seq_puts(m, "   ");
628		describe_obj(m, obj);
629		seq_putc(m, '\n');
630		count++;
631	}
632
633	seq_printf(m, "total: %d\n", count);
634
635	mutex_unlock(&dev->struct_mutex);
636
637	return 0;
638}
639
640static int i915_gem_request_info(struct seq_file *m, void *data)
641{
642	struct drm_info_node *node = m->private;
643	struct drm_device *dev = node->minor->dev;
644	struct drm_i915_private *dev_priv = dev->dev_private;
645	struct intel_engine_cs *ring;
646	struct drm_i915_gem_request *gem_request;
647	int ret, count, i;
648
649	ret = mutex_lock_interruptible(&dev->struct_mutex);
650	if (ret)
651		return ret;
652
653	count = 0;
654	for_each_ring(ring, dev_priv, i) {
655		if (list_empty(&ring->request_list))
656			continue;
657
658		seq_printf(m, "%s requests:\n", ring->name);
659		list_for_each_entry(gem_request,
660				    &ring->request_list,
661				    list) {
662			seq_printf(m, "    %x @ %d\n",
663				   gem_request->seqno,
664				   (int) (jiffies - gem_request->emitted_jiffies));
665		}
666		count++;
667	}
668	mutex_unlock(&dev->struct_mutex);
669
670	if (count == 0)
671		seq_puts(m, "No requests\n");
672
673	return 0;
674}
675
676static void i915_ring_seqno_info(struct seq_file *m,
677				 struct intel_engine_cs *ring)
678{
679	if (ring->get_seqno) {
680		seq_printf(m, "Current sequence (%s): %x\n",
681			   ring->name, ring->get_seqno(ring, false));
682	}
683}
684
685static int i915_gem_seqno_info(struct seq_file *m, void *data)
686{
687	struct drm_info_node *node = m->private;
688	struct drm_device *dev = node->minor->dev;
689	struct drm_i915_private *dev_priv = dev->dev_private;
690	struct intel_engine_cs *ring;
691	int ret, i;
692
693	ret = mutex_lock_interruptible(&dev->struct_mutex);
694	if (ret)
695		return ret;
696	intel_runtime_pm_get(dev_priv);
697
698	for_each_ring(ring, dev_priv, i)
699		i915_ring_seqno_info(m, ring);
700
701	intel_runtime_pm_put(dev_priv);
702	mutex_unlock(&dev->struct_mutex);
703
704	return 0;
705}
706
707
708static int i915_interrupt_info(struct seq_file *m, void *data)
709{
710	struct drm_info_node *node = m->private;
711	struct drm_device *dev = node->minor->dev;
712	struct drm_i915_private *dev_priv = dev->dev_private;
713	struct intel_engine_cs *ring;
714	int ret, i, pipe;
715
716	ret = mutex_lock_interruptible(&dev->struct_mutex);
717	if (ret)
718		return ret;
719	intel_runtime_pm_get(dev_priv);
720
721	if (IS_CHERRYVIEW(dev)) {
722		seq_printf(m, "Master Interrupt Control:\t%08x\n",
723			   I915_READ(GEN8_MASTER_IRQ));
724
725		seq_printf(m, "Display IER:\t%08x\n",
726			   I915_READ(VLV_IER));
727		seq_printf(m, "Display IIR:\t%08x\n",
728			   I915_READ(VLV_IIR));
729		seq_printf(m, "Display IIR_RW:\t%08x\n",
730			   I915_READ(VLV_IIR_RW));
731		seq_printf(m, "Display IMR:\t%08x\n",
732			   I915_READ(VLV_IMR));
733		for_each_pipe(dev_priv, pipe)
734			seq_printf(m, "Pipe %c stat:\t%08x\n",
735				   pipe_name(pipe),
736				   I915_READ(PIPESTAT(pipe)));
737
738		seq_printf(m, "Port hotplug:\t%08x\n",
739			   I915_READ(PORT_HOTPLUG_EN));
740		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
741			   I915_READ(VLV_DPFLIPSTAT));
742		seq_printf(m, "DPINVGTT:\t%08x\n",
743			   I915_READ(DPINVGTT));
744
745		for (i = 0; i < 4; i++) {
746			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
747				   i, I915_READ(GEN8_GT_IMR(i)));
748			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
749				   i, I915_READ(GEN8_GT_IIR(i)));
750			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
751				   i, I915_READ(GEN8_GT_IER(i)));
752		}
753
754		seq_printf(m, "PCU interrupt mask:\t%08x\n",
755			   I915_READ(GEN8_PCU_IMR));
756		seq_printf(m, "PCU interrupt identity:\t%08x\n",
757			   I915_READ(GEN8_PCU_IIR));
758		seq_printf(m, "PCU interrupt enable:\t%08x\n",
759			   I915_READ(GEN8_PCU_IER));
760	} else if (INTEL_INFO(dev)->gen >= 8) {
761		seq_printf(m, "Master Interrupt Control:\t%08x\n",
762			   I915_READ(GEN8_MASTER_IRQ));
763
764		for (i = 0; i < 4; i++) {
765			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
766				   i, I915_READ(GEN8_GT_IMR(i)));
767			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
768				   i, I915_READ(GEN8_GT_IIR(i)));
769			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
770				   i, I915_READ(GEN8_GT_IER(i)));
771		}
772
773		for_each_pipe(dev_priv, pipe) {
774			if (!intel_display_power_is_enabled(dev_priv,
775						POWER_DOMAIN_PIPE(pipe))) {
776				seq_printf(m, "Pipe %c power disabled\n",
777					   pipe_name(pipe));
778				continue;
779			}
780			seq_printf(m, "Pipe %c IMR:\t%08x\n",
781				   pipe_name(pipe),
782				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
783			seq_printf(m, "Pipe %c IIR:\t%08x\n",
784				   pipe_name(pipe),
785				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
786			seq_printf(m, "Pipe %c IER:\t%08x\n",
787				   pipe_name(pipe),
788				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
789		}
790
791		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
792			   I915_READ(GEN8_DE_PORT_IMR));
793		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
794			   I915_READ(GEN8_DE_PORT_IIR));
795		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
796			   I915_READ(GEN8_DE_PORT_IER));
797
798		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
799			   I915_READ(GEN8_DE_MISC_IMR));
800		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
801			   I915_READ(GEN8_DE_MISC_IIR));
802		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
803			   I915_READ(GEN8_DE_MISC_IER));
804
805		seq_printf(m, "PCU interrupt mask:\t%08x\n",
806			   I915_READ(GEN8_PCU_IMR));
807		seq_printf(m, "PCU interrupt identity:\t%08x\n",
808			   I915_READ(GEN8_PCU_IIR));
809		seq_printf(m, "PCU interrupt enable:\t%08x\n",
810			   I915_READ(GEN8_PCU_IER));
811	} else if (IS_VALLEYVIEW(dev)) {
812		seq_printf(m, "Display IER:\t%08x\n",
813			   I915_READ(VLV_IER));
814		seq_printf(m, "Display IIR:\t%08x\n",
815			   I915_READ(VLV_IIR));
816		seq_printf(m, "Display IIR_RW:\t%08x\n",
817			   I915_READ(VLV_IIR_RW));
818		seq_printf(m, "Display IMR:\t%08x\n",
819			   I915_READ(VLV_IMR));
820		for_each_pipe(dev_priv, pipe)
821			seq_printf(m, "Pipe %c stat:\t%08x\n",
822				   pipe_name(pipe),
823				   I915_READ(PIPESTAT(pipe)));
824
825		seq_printf(m, "Master IER:\t%08x\n",
826			   I915_READ(VLV_MASTER_IER));
827
828		seq_printf(m, "Render IER:\t%08x\n",
829			   I915_READ(GTIER));
830		seq_printf(m, "Render IIR:\t%08x\n",
831			   I915_READ(GTIIR));
832		seq_printf(m, "Render IMR:\t%08x\n",
833			   I915_READ(GTIMR));
834
835		seq_printf(m, "PM IER:\t\t%08x\n",
836			   I915_READ(GEN6_PMIER));
837		seq_printf(m, "PM IIR:\t\t%08x\n",
838			   I915_READ(GEN6_PMIIR));
839		seq_printf(m, "PM IMR:\t\t%08x\n",
840			   I915_READ(GEN6_PMIMR));
841
842		seq_printf(m, "Port hotplug:\t%08x\n",
843			   I915_READ(PORT_HOTPLUG_EN));
844		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
845			   I915_READ(VLV_DPFLIPSTAT));
846		seq_printf(m, "DPINVGTT:\t%08x\n",
847			   I915_READ(DPINVGTT));
848
849	} else if (!HAS_PCH_SPLIT(dev)) {
850		seq_printf(m, "Interrupt enable:    %08x\n",
851			   I915_READ(IER));
852		seq_printf(m, "Interrupt identity:  %08x\n",
853			   I915_READ(IIR));
854		seq_printf(m, "Interrupt mask:      %08x\n",
855			   I915_READ(IMR));
856		for_each_pipe(dev_priv, pipe)
857			seq_printf(m, "Pipe %c stat:         %08x\n",
858				   pipe_name(pipe),
859				   I915_READ(PIPESTAT(pipe)));
860	} else {
861		seq_printf(m, "North Display Interrupt enable:		%08x\n",
862			   I915_READ(DEIER));
863		seq_printf(m, "North Display Interrupt identity:	%08x\n",
864			   I915_READ(DEIIR));
865		seq_printf(m, "North Display Interrupt mask:		%08x\n",
866			   I915_READ(DEIMR));
867		seq_printf(m, "South Display Interrupt enable:		%08x\n",
868			   I915_READ(SDEIER));
869		seq_printf(m, "South Display Interrupt identity:	%08x\n",
870			   I915_READ(SDEIIR));
871		seq_printf(m, "South Display Interrupt mask:		%08x\n",
872			   I915_READ(SDEIMR));
873		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
874			   I915_READ(GTIER));
875		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
876			   I915_READ(GTIIR));
877		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
878			   I915_READ(GTIMR));
879	}
880	for_each_ring(ring, dev_priv, i) {
881		if (INTEL_INFO(dev)->gen >= 6) {
882			seq_printf(m,
883				   "Graphics Interrupt mask (%s):	%08x\n",
884				   ring->name, I915_READ_IMR(ring));
885		}
886		i915_ring_seqno_info(m, ring);
887	}
888	intel_runtime_pm_put(dev_priv);
889	mutex_unlock(&dev->struct_mutex);
890
891	return 0;
892}
893
894static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
895{
896	struct drm_info_node *node = m->private;
897	struct drm_device *dev = node->minor->dev;
898	struct drm_i915_private *dev_priv = dev->dev_private;
899	int i, ret;
900
901	ret = mutex_lock_interruptible(&dev->struct_mutex);
902	if (ret)
903		return ret;
904
905	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
906	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
907	for (i = 0; i < dev_priv->num_fence_regs; i++) {
908		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
909
910		seq_printf(m, "Fence %d, pin count = %d, object = ",
911			   i, dev_priv->fence_regs[i].pin_count);
912		if (obj == NULL)
913			seq_puts(m, "unused");
914		else
915			describe_obj(m, obj);
916		seq_putc(m, '\n');
917	}
918
919	mutex_unlock(&dev->struct_mutex);
920	return 0;
921}
922
923static int i915_hws_info(struct seq_file *m, void *data)
924{
925	struct drm_info_node *node = m->private;
926	struct drm_device *dev = node->minor->dev;
927	struct drm_i915_private *dev_priv = dev->dev_private;
928	struct intel_engine_cs *ring;
929	const u32 *hws;
930	int i;
931
932	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
933	hws = ring->status_page.page_addr;
934	if (hws == NULL)
935		return 0;
936
937	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
938		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
939			   i * 4,
940			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
941	}
942	return 0;
943}
944
945static ssize_t
946i915_error_state_write(struct file *filp,
947		       const char __user *ubuf,
948		       size_t cnt,
949		       loff_t *ppos)
950{
951	struct i915_error_state_file_priv *error_priv = filp->private_data;
952	struct drm_device *dev = error_priv->dev;
953	int ret;
954
955	DRM_DEBUG_DRIVER("Resetting error state\n");
956
957	ret = mutex_lock_interruptible(&dev->struct_mutex);
958	if (ret)
959		return ret;
960
961	i915_destroy_error_state(dev);
962	mutex_unlock(&dev->struct_mutex);
963
964	return cnt;
965}
966
967static int i915_error_state_open(struct inode *inode, struct file *file)
968{
969	struct drm_device *dev = inode->i_private;
970	struct i915_error_state_file_priv *error_priv;
971
972	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
973	if (!error_priv)
974		return -ENOMEM;
975
976	error_priv->dev = dev;
977
978	i915_error_state_get(dev, error_priv);
979
980	file->private_data = error_priv;
981
982	return 0;
983}
984
985static int i915_error_state_release(struct inode *inode, struct file *file)
986{
987	struct i915_error_state_file_priv *error_priv = file->private_data;
988
989	i915_error_state_put(error_priv);
990	kfree(error_priv);
991
992	return 0;
993}
994
995static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
996				     size_t count, loff_t *pos)
997{
998	struct i915_error_state_file_priv *error_priv = file->private_data;
999	struct drm_i915_error_state_buf error_str;
1000	loff_t tmp_pos = 0;
1001	ssize_t ret_count = 0;
1002	int ret;
1003
1004	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1005	if (ret)
1006		return ret;
1007
1008	ret = i915_error_state_to_str(&error_str, error_priv);
1009	if (ret)
1010		goto out;
1011
1012	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1013					    error_str.buf,
1014					    error_str.bytes);
1015
1016	if (ret_count < 0)
1017		ret = ret_count;
1018	else
1019		*pos = error_str.start + ret_count;
1020out:
1021	i915_error_state_buf_release(&error_str);
1022	return ret ?: ret_count;
1023}
1024
1025static const struct file_operations i915_error_state_fops = {
1026	.owner = THIS_MODULE,
1027	.open = i915_error_state_open,
1028	.read = i915_error_state_read,
1029	.write = i915_error_state_write,
1030	.llseek = default_llseek,
1031	.release = i915_error_state_release,
1032};
1033
1034static int
1035i915_next_seqno_get(void *data, u64 *val)
1036{
1037	struct drm_device *dev = data;
1038	struct drm_i915_private *dev_priv = dev->dev_private;
1039	int ret;
1040
1041	ret = mutex_lock_interruptible(&dev->struct_mutex);
1042	if (ret)
1043		return ret;
1044
1045	*val = dev_priv->next_seqno;
1046	mutex_unlock(&dev->struct_mutex);
1047
1048	return 0;
1049}
1050
1051static int
1052i915_next_seqno_set(void *data, u64 val)
1053{
1054	struct drm_device *dev = data;
1055	int ret;
1056
1057	ret = mutex_lock_interruptible(&dev->struct_mutex);
1058	if (ret)
1059		return ret;
1060
1061	ret = i915_gem_set_seqno(dev, val);
1062	mutex_unlock(&dev->struct_mutex);
1063
1064	return ret;
1065}
1066
1067DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1068			i915_next_seqno_get, i915_next_seqno_set,
1069			"0x%llx\n");
1070
1071static int i915_frequency_info(struct seq_file *m, void *unused)
1072{
1073	struct drm_info_node *node = m->private;
1074	struct drm_device *dev = node->minor->dev;
1075	struct drm_i915_private *dev_priv = dev->dev_private;
1076	int ret = 0;
1077
1078	intel_runtime_pm_get(dev_priv);
1079
1080	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1081
1082	if (IS_GEN5(dev)) {
1083		u16 rgvswctl = I915_READ16(MEMSWCTL);
1084		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089			   MEMSTAT_VID_SHIFT);
1090		seq_printf(m, "Current P-state: %d\n",
1091			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092	} else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1093		   IS_BROADWELL(dev) || IS_GEN9(dev)) {
1094		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1095		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1096		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1097		u32 rpmodectl, rpinclimit, rpdeclimit;
1098		u32 rpstat, cagf, reqf;
1099		u32 rpupei, rpcurup, rpprevup;
1100		u32 rpdownei, rpcurdown, rpprevdown;
1101		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1102		int max_freq;
1103
1104		/* RPSTAT1 is in the GT power well */
1105		ret = mutex_lock_interruptible(&dev->struct_mutex);
1106		if (ret)
1107			goto out;
1108
1109		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1110
1111		reqf = I915_READ(GEN6_RPNSWREQ);
1112		if (IS_GEN9(dev))
1113			reqf >>= 23;
1114		else {
1115			reqf &= ~GEN6_TURBO_DISABLE;
1116			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1117				reqf >>= 24;
1118			else
1119				reqf >>= 25;
1120		}
1121		reqf = intel_gpu_freq(dev_priv, reqf);
1122
1123		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1124		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1125		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1126
1127		rpstat = I915_READ(GEN6_RPSTAT1);
1128		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1129		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1130		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1131		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1132		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1133		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1134		if (IS_GEN9(dev))
1135			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1136		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1137			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1138		else
1139			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1140		cagf = intel_gpu_freq(dev_priv, cagf);
1141
1142		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1143		mutex_unlock(&dev->struct_mutex);
1144
1145		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1146			pm_ier = I915_READ(GEN6_PMIER);
1147			pm_imr = I915_READ(GEN6_PMIMR);
1148			pm_isr = I915_READ(GEN6_PMISR);
1149			pm_iir = I915_READ(GEN6_PMIIR);
1150			pm_mask = I915_READ(GEN6_PMINTRMSK);
1151		} else {
1152			pm_ier = I915_READ(GEN8_GT_IER(2));
1153			pm_imr = I915_READ(GEN8_GT_IMR(2));
1154			pm_isr = I915_READ(GEN8_GT_ISR(2));
1155			pm_iir = I915_READ(GEN8_GT_IIR(2));
1156			pm_mask = I915_READ(GEN6_PMINTRMSK);
1157		}
1158		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1159			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1160		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1161		seq_printf(m, "Render p-state ratio: %d\n",
1162			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1163		seq_printf(m, "Render p-state VID: %d\n",
1164			   gt_perf_status & 0xff);
1165		seq_printf(m, "Render p-state limit: %d\n",
1166			   rp_state_limits & 0xff);
1167		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1168		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1169		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1170		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1171		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1172		seq_printf(m, "CAGF: %dMHz\n", cagf);
1173		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1174			   GEN6_CURICONT_MASK);
1175		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1176			   GEN6_CURBSYTAVG_MASK);
1177		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1178			   GEN6_CURBSYTAVG_MASK);
1179		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1180			   GEN6_CURIAVG_MASK);
1181		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1182			   GEN6_CURBSYTAVG_MASK);
1183		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1184			   GEN6_CURBSYTAVG_MASK);
1185
1186		max_freq = (rp_state_cap & 0xff0000) >> 16;
1187		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1188		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1189			   intel_gpu_freq(dev_priv, max_freq));
1190
1191		max_freq = (rp_state_cap & 0xff00) >> 8;
1192		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1193		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1194			   intel_gpu_freq(dev_priv, max_freq));
1195
1196		max_freq = rp_state_cap & 0xff;
1197		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1198		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1199			   intel_gpu_freq(dev_priv, max_freq));
1200
1201		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1202			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203
1204		seq_printf(m, "Idle freq: %d MHz\n",
1205			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1206	} else if (IS_VALLEYVIEW(dev)) {
1207		u32 freq_sts;
1208
1209		mutex_lock(&dev_priv->rps.hw_lock);
1210		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1211		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1212		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1213
1214		seq_printf(m, "max GPU freq: %d MHz\n",
1215			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1216
1217		seq_printf(m, "min GPU freq: %d MHz\n",
1218			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1219
1220		seq_printf(m, "idle GPU freq: %d MHz\n",
1221			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1222
1223		seq_printf(m,
1224			   "efficient (RPe) frequency: %d MHz\n",
1225			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1226
1227		seq_printf(m, "current GPU freq: %d MHz\n",
1228			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1229		mutex_unlock(&dev_priv->rps.hw_lock);
1230	} else {
1231		seq_puts(m, "no P-state info available\n");
1232	}
1233
1234out:
1235	intel_runtime_pm_put(dev_priv);
1236	return ret;
1237}
1238
1239static int i915_hangcheck_info(struct seq_file *m, void *unused)
1240{
1241	struct drm_info_node *node = m->private;
1242	struct drm_device *dev = node->minor->dev;
1243	struct drm_i915_private *dev_priv = dev->dev_private;
1244	struct intel_engine_cs *ring;
1245	u64 acthd[I915_NUM_RINGS];
1246	u32 seqno[I915_NUM_RINGS];
1247	int i;
1248
1249	if (!i915.enable_hangcheck) {
1250		seq_printf(m, "Hangcheck disabled\n");
1251		return 0;
1252	}
1253
1254	intel_runtime_pm_get(dev_priv);
1255
1256	for_each_ring(ring, dev_priv, i) {
1257		seqno[i] = ring->get_seqno(ring, false);
1258		acthd[i] = intel_ring_get_active_head(ring);
1259	}
1260
1261	intel_runtime_pm_put(dev_priv);
1262
1263	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1264		seq_printf(m, "Hangcheck active, fires in %dms\n",
1265			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1266					    jiffies));
1267	} else
1268		seq_printf(m, "Hangcheck inactive\n");
1269
1270	for_each_ring(ring, dev_priv, i) {
1271		seq_printf(m, "%s:\n", ring->name);
1272		seq_printf(m, "\tseqno = %x [current %x]\n",
1273			   ring->hangcheck.seqno, seqno[i]);
1274		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1275			   (long long)ring->hangcheck.acthd,
1276			   (long long)acthd[i]);
1277		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1278			   (long long)ring->hangcheck.max_acthd);
1279		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1280		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1281	}
1282
1283	return 0;
1284}
1285
1286static int ironlake_drpc_info(struct seq_file *m)
1287{
1288	struct drm_info_node *node = m->private;
1289	struct drm_device *dev = node->minor->dev;
1290	struct drm_i915_private *dev_priv = dev->dev_private;
1291	u32 rgvmodectl, rstdbyctl;
1292	u16 crstandvid;
1293	int ret;
1294
1295	ret = mutex_lock_interruptible(&dev->struct_mutex);
1296	if (ret)
1297		return ret;
1298	intel_runtime_pm_get(dev_priv);
1299
1300	rgvmodectl = I915_READ(MEMMODECTL);
1301	rstdbyctl = I915_READ(RSTDBYCTL);
1302	crstandvid = I915_READ16(CRSTANDVID);
1303
1304	intel_runtime_pm_put(dev_priv);
1305	mutex_unlock(&dev->struct_mutex);
1306
1307	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1308		   "yes" : "no");
1309	seq_printf(m, "Boost freq: %d\n",
1310		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1311		   MEMMODE_BOOST_FREQ_SHIFT);
1312	seq_printf(m, "HW control enabled: %s\n",
1313		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1314	seq_printf(m, "SW control enabled: %s\n",
1315		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1316	seq_printf(m, "Gated voltage change: %s\n",
1317		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1318	seq_printf(m, "Starting frequency: P%d\n",
1319		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1320	seq_printf(m, "Max P-state: P%d\n",
1321		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1322	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1323	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1324	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1325	seq_printf(m, "Render standby enabled: %s\n",
1326		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1327	seq_puts(m, "Current RS state: ");
1328	switch (rstdbyctl & RSX_STATUS_MASK) {
1329	case RSX_STATUS_ON:
1330		seq_puts(m, "on\n");
1331		break;
1332	case RSX_STATUS_RC1:
1333		seq_puts(m, "RC1\n");
1334		break;
1335	case RSX_STATUS_RC1E:
1336		seq_puts(m, "RC1E\n");
1337		break;
1338	case RSX_STATUS_RS1:
1339		seq_puts(m, "RS1\n");
1340		break;
1341	case RSX_STATUS_RS2:
1342		seq_puts(m, "RS2 (RC6)\n");
1343		break;
1344	case RSX_STATUS_RS3:
1345		seq_puts(m, "RC3 (RC6+)\n");
1346		break;
1347	default:
1348		seq_puts(m, "unknown\n");
1349		break;
1350	}
1351
1352	return 0;
1353}
1354
1355static int i915_forcewake_domains(struct seq_file *m, void *data)
1356{
1357	struct drm_info_node *node = m->private;
1358	struct drm_device *dev = node->minor->dev;
1359	struct drm_i915_private *dev_priv = dev->dev_private;
1360	struct intel_uncore_forcewake_domain *fw_domain;
1361	int i;
1362
1363	spin_lock_irq(&dev_priv->uncore.lock);
1364	for_each_fw_domain(fw_domain, dev_priv, i) {
1365		seq_printf(m, "%s.wake_count = %u\n",
1366			   intel_uncore_forcewake_domain_to_str(i),
1367			   fw_domain->wake_count);
1368	}
1369	spin_unlock_irq(&dev_priv->uncore.lock);
1370
1371	return 0;
1372}
1373
1374static int vlv_drpc_info(struct seq_file *m)
1375{
1376	struct drm_info_node *node = m->private;
1377	struct drm_device *dev = node->minor->dev;
1378	struct drm_i915_private *dev_priv = dev->dev_private;
1379	u32 rpmodectl1, rcctl1, pw_status;
1380
1381	intel_runtime_pm_get(dev_priv);
1382
1383	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1384	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1385	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1386
1387	intel_runtime_pm_put(dev_priv);
1388
1389	seq_printf(m, "Video Turbo Mode: %s\n",
1390		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1391	seq_printf(m, "Turbo enabled: %s\n",
1392		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1393	seq_printf(m, "HW control enabled: %s\n",
1394		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1395	seq_printf(m, "SW control enabled: %s\n",
1396		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1397			  GEN6_RP_MEDIA_SW_MODE));
1398	seq_printf(m, "RC6 Enabled: %s\n",
1399		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1400					GEN6_RC_CTL_EI_MODE(1))));
1401	seq_printf(m, "Render Power Well: %s\n",
1402		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1403	seq_printf(m, "Media Power Well: %s\n",
1404		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1405
1406	seq_printf(m, "Render RC6 residency since boot: %u\n",
1407		   I915_READ(VLV_GT_RENDER_RC6));
1408	seq_printf(m, "Media RC6 residency since boot: %u\n",
1409		   I915_READ(VLV_GT_MEDIA_RC6));
1410
1411	return i915_forcewake_domains(m, NULL);
1412}
1413
1414static int gen6_drpc_info(struct seq_file *m)
1415{
1416	struct drm_info_node *node = m->private;
1417	struct drm_device *dev = node->minor->dev;
1418	struct drm_i915_private *dev_priv = dev->dev_private;
1419	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1420	unsigned forcewake_count;
1421	int count = 0, ret;
1422
1423	ret = mutex_lock_interruptible(&dev->struct_mutex);
1424	if (ret)
1425		return ret;
1426	intel_runtime_pm_get(dev_priv);
1427
1428	spin_lock_irq(&dev_priv->uncore.lock);
1429	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1430	spin_unlock_irq(&dev_priv->uncore.lock);
1431
1432	if (forcewake_count) {
1433		seq_puts(m, "RC information inaccurate because somebody "
1434			    "holds a forcewake reference \n");
1435	} else {
1436		/* NB: we cannot use forcewake, else we read the wrong values */
1437		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1438			udelay(10);
1439		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1440	}
1441
1442	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1443	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1444
1445	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1446	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1447	mutex_unlock(&dev->struct_mutex);
1448	mutex_lock(&dev_priv->rps.hw_lock);
1449	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1450	mutex_unlock(&dev_priv->rps.hw_lock);
1451
1452	intel_runtime_pm_put(dev_priv);
1453
1454	seq_printf(m, "Video Turbo Mode: %s\n",
1455		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1456	seq_printf(m, "HW control enabled: %s\n",
1457		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1458	seq_printf(m, "SW control enabled: %s\n",
1459		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1460			  GEN6_RP_MEDIA_SW_MODE));
1461	seq_printf(m, "RC1e Enabled: %s\n",
1462		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1463	seq_printf(m, "RC6 Enabled: %s\n",
1464		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1465	seq_printf(m, "Deep RC6 Enabled: %s\n",
1466		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1467	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1468		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1469	seq_puts(m, "Current RC state: ");
1470	switch (gt_core_status & GEN6_RCn_MASK) {
1471	case GEN6_RC0:
1472		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1473			seq_puts(m, "Core Power Down\n");
1474		else
1475			seq_puts(m, "on\n");
1476		break;
1477	case GEN6_RC3:
1478		seq_puts(m, "RC3\n");
1479		break;
1480	case GEN6_RC6:
1481		seq_puts(m, "RC6\n");
1482		break;
1483	case GEN6_RC7:
1484		seq_puts(m, "RC7\n");
1485		break;
1486	default:
1487		seq_puts(m, "Unknown\n");
1488		break;
1489	}
1490
1491	seq_printf(m, "Core Power Down: %s\n",
1492		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1493
1494	/* Not exactly sure what this is */
1495	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1496		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1497	seq_printf(m, "RC6 residency since boot: %u\n",
1498		   I915_READ(GEN6_GT_GFX_RC6));
1499	seq_printf(m, "RC6+ residency since boot: %u\n",
1500		   I915_READ(GEN6_GT_GFX_RC6p));
1501	seq_printf(m, "RC6++ residency since boot: %u\n",
1502		   I915_READ(GEN6_GT_GFX_RC6pp));
1503
1504	seq_printf(m, "RC6   voltage: %dmV\n",
1505		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1506	seq_printf(m, "RC6+  voltage: %dmV\n",
1507		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1508	seq_printf(m, "RC6++ voltage: %dmV\n",
1509		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1510	return 0;
1511}
1512
1513static int i915_drpc_info(struct seq_file *m, void *unused)
1514{
1515	struct drm_info_node *node = m->private;
1516	struct drm_device *dev = node->minor->dev;
1517
1518	if (IS_VALLEYVIEW(dev))
1519		return vlv_drpc_info(m);
1520	else if (INTEL_INFO(dev)->gen >= 6)
1521		return gen6_drpc_info(m);
1522	else
1523		return ironlake_drpc_info(m);
1524}
1525
1526static int i915_fbc_status(struct seq_file *m, void *unused)
1527{
1528	struct drm_info_node *node = m->private;
1529	struct drm_device *dev = node->minor->dev;
1530	struct drm_i915_private *dev_priv = dev->dev_private;
1531
1532	if (!HAS_FBC(dev)) {
1533		seq_puts(m, "FBC unsupported on this chipset\n");
1534		return 0;
1535	}
1536
1537	intel_runtime_pm_get(dev_priv);
1538
1539	if (intel_fbc_enabled(dev)) {
1540		seq_puts(m, "FBC enabled\n");
1541	} else {
1542		seq_puts(m, "FBC disabled: ");
1543		switch (dev_priv->fbc.no_fbc_reason) {
1544		case FBC_OK:
1545			seq_puts(m, "FBC actived, but currently disabled in hardware");
1546			break;
1547		case FBC_UNSUPPORTED:
1548			seq_puts(m, "unsupported by this chipset");
1549			break;
1550		case FBC_NO_OUTPUT:
1551			seq_puts(m, "no outputs");
1552			break;
1553		case FBC_STOLEN_TOO_SMALL:
1554			seq_puts(m, "not enough stolen memory");
1555			break;
1556		case FBC_UNSUPPORTED_MODE:
1557			seq_puts(m, "mode not supported");
1558			break;
1559		case FBC_MODE_TOO_LARGE:
1560			seq_puts(m, "mode too large");
1561			break;
1562		case FBC_BAD_PLANE:
1563			seq_puts(m, "FBC unsupported on plane");
1564			break;
1565		case FBC_NOT_TILED:
1566			seq_puts(m, "scanout buffer not tiled");
1567			break;
1568		case FBC_MULTIPLE_PIPES:
1569			seq_puts(m, "multiple pipes are enabled");
1570			break;
1571		case FBC_MODULE_PARAM:
1572			seq_puts(m, "disabled per module param (default off)");
1573			break;
1574		case FBC_CHIP_DEFAULT:
1575			seq_puts(m, "disabled per chip default");
1576			break;
1577		default:
1578			seq_puts(m, "unknown reason");
1579		}
1580		seq_putc(m, '\n');
1581	}
1582
1583	intel_runtime_pm_put(dev_priv);
1584
1585	return 0;
1586}
1587
1588static int i915_fbc_fc_get(void *data, u64 *val)
1589{
1590	struct drm_device *dev = data;
1591	struct drm_i915_private *dev_priv = dev->dev_private;
1592
1593	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1594		return -ENODEV;
1595
1596	drm_modeset_lock_all(dev);
1597	*val = dev_priv->fbc.false_color;
1598	drm_modeset_unlock_all(dev);
1599
1600	return 0;
1601}
1602
1603static int i915_fbc_fc_set(void *data, u64 val)
1604{
1605	struct drm_device *dev = data;
1606	struct drm_i915_private *dev_priv = dev->dev_private;
1607	u32 reg;
1608
1609	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1610		return -ENODEV;
1611
1612	drm_modeset_lock_all(dev);
1613
1614	reg = I915_READ(ILK_DPFC_CONTROL);
1615	dev_priv->fbc.false_color = val;
1616
1617	I915_WRITE(ILK_DPFC_CONTROL, val ?
1618		   (reg | FBC_CTL_FALSE_COLOR) :
1619		   (reg & ~FBC_CTL_FALSE_COLOR));
1620
1621	drm_modeset_unlock_all(dev);
1622	return 0;
1623}
1624
1625DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1626			i915_fbc_fc_get, i915_fbc_fc_set,
1627			"%llu\n");
1628
1629static int i915_ips_status(struct seq_file *m, void *unused)
1630{
1631	struct drm_info_node *node = m->private;
1632	struct drm_device *dev = node->minor->dev;
1633	struct drm_i915_private *dev_priv = dev->dev_private;
1634
1635	if (!HAS_IPS(dev)) {
1636		seq_puts(m, "not supported\n");
1637		return 0;
1638	}
1639
1640	intel_runtime_pm_get(dev_priv);
1641
1642	seq_printf(m, "Enabled by kernel parameter: %s\n",
1643		   yesno(i915.enable_ips));
1644
1645	if (INTEL_INFO(dev)->gen >= 8) {
1646		seq_puts(m, "Currently: unknown\n");
1647	} else {
1648		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1649			seq_puts(m, "Currently: enabled\n");
1650		else
1651			seq_puts(m, "Currently: disabled\n");
1652	}
1653
1654	intel_runtime_pm_put(dev_priv);
1655
1656	return 0;
1657}
1658
1659static int i915_sr_status(struct seq_file *m, void *unused)
1660{
1661	struct drm_info_node *node = m->private;
1662	struct drm_device *dev = node->minor->dev;
1663	struct drm_i915_private *dev_priv = dev->dev_private;
1664	bool sr_enabled = false;
1665
1666	intel_runtime_pm_get(dev_priv);
1667
1668	if (HAS_PCH_SPLIT(dev))
1669		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1670	else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1671		 IS_I945G(dev) || IS_I945GM(dev))
1672		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1673	else if (IS_I915GM(dev))
1674		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1675	else if (IS_PINEVIEW(dev))
1676		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1677	else if (IS_VALLEYVIEW(dev))
1678		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1679
1680	intel_runtime_pm_put(dev_priv);
1681
1682	seq_printf(m, "self-refresh: %s\n",
1683		   sr_enabled ? "enabled" : "disabled");
1684
1685	return 0;
1686}
1687
1688static int i915_emon_status(struct seq_file *m, void *unused)
1689{
1690	struct drm_info_node *node = m->private;
1691	struct drm_device *dev = node->minor->dev;
1692	struct drm_i915_private *dev_priv = dev->dev_private;
1693	unsigned long temp, chipset, gfx;
1694	int ret;
1695
1696	if (!IS_GEN5(dev))
1697		return -ENODEV;
1698
1699	ret = mutex_lock_interruptible(&dev->struct_mutex);
1700	if (ret)
1701		return ret;
1702
1703	temp = i915_mch_val(dev_priv);
1704	chipset = i915_chipset_val(dev_priv);
1705	gfx = i915_gfx_val(dev_priv);
1706	mutex_unlock(&dev->struct_mutex);
1707
1708	seq_printf(m, "GMCH temp: %ld\n", temp);
1709	seq_printf(m, "Chipset power: %ld\n", chipset);
1710	seq_printf(m, "GFX power: %ld\n", gfx);
1711	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1712
1713	return 0;
1714}
1715
1716static int i915_ring_freq_table(struct seq_file *m, void *unused)
1717{
1718	struct drm_info_node *node = m->private;
1719	struct drm_device *dev = node->minor->dev;
1720	struct drm_i915_private *dev_priv = dev->dev_private;
1721	int ret = 0;
1722	int gpu_freq, ia_freq;
1723
1724	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1725		seq_puts(m, "unsupported on this chipset\n");
1726		return 0;
1727	}
1728
1729	intel_runtime_pm_get(dev_priv);
1730
1731	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1732
1733	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1734	if (ret)
1735		goto out;
1736
1737	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1738
1739	for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1740	     gpu_freq <= dev_priv->rps.max_freq_softlimit;
1741	     gpu_freq++) {
1742		ia_freq = gpu_freq;
1743		sandybridge_pcode_read(dev_priv,
1744				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1745				       &ia_freq);
1746		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1747			   intel_gpu_freq(dev_priv, gpu_freq),
1748			   ((ia_freq >> 0) & 0xff) * 100,
1749			   ((ia_freq >> 8) & 0xff) * 100);
1750	}
1751
1752	mutex_unlock(&dev_priv->rps.hw_lock);
1753
1754out:
1755	intel_runtime_pm_put(dev_priv);
1756	return ret;
1757}
1758
1759static int i915_opregion(struct seq_file *m, void *unused)
1760{
1761	struct drm_info_node *node = m->private;
1762	struct drm_device *dev = node->minor->dev;
1763	struct drm_i915_private *dev_priv = dev->dev_private;
1764	struct intel_opregion *opregion = &dev_priv->opregion;
1765	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1766	int ret;
1767
1768	if (data == NULL)
1769		return -ENOMEM;
1770
1771	ret = mutex_lock_interruptible(&dev->struct_mutex);
1772	if (ret)
1773		goto out;
1774
1775	if (opregion->header) {
1776		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1777		seq_write(m, data, OPREGION_SIZE);
1778	}
1779
1780	mutex_unlock(&dev->struct_mutex);
1781
1782out:
1783	kfree(data);
1784	return 0;
1785}
1786
1787static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1788{
1789	struct drm_info_node *node = m->private;
1790	struct drm_device *dev = node->minor->dev;
1791	struct intel_fbdev *ifbdev = NULL;
1792	struct intel_framebuffer *fb;
1793
1794#ifdef CONFIG_DRM_I915_FBDEV
1795	struct drm_i915_private *dev_priv = dev->dev_private;
1796
1797	ifbdev = dev_priv->fbdev;
1798	fb = to_intel_framebuffer(ifbdev->helper.fb);
1799
1800	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1801		   fb->base.width,
1802		   fb->base.height,
1803		   fb->base.depth,
1804		   fb->base.bits_per_pixel,
1805		   fb->base.modifier[0],
1806		   atomic_read(&fb->base.refcount.refcount));
1807	describe_obj(m, fb->obj);
1808	seq_putc(m, '\n');
1809#endif
1810
1811	mutex_lock(&dev->mode_config.fb_lock);
1812	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1813		if (ifbdev && &fb->base == ifbdev->helper.fb)
1814			continue;
1815
1816		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1817			   fb->base.width,
1818			   fb->base.height,
1819			   fb->base.depth,
1820			   fb->base.bits_per_pixel,
1821			   fb->base.modifier[0],
1822			   atomic_read(&fb->base.refcount.refcount));
1823		describe_obj(m, fb->obj);
1824		seq_putc(m, '\n');
1825	}
1826	mutex_unlock(&dev->mode_config.fb_lock);
1827
1828	return 0;
1829}
1830
1831static void describe_ctx_ringbuf(struct seq_file *m,
1832				 struct intel_ringbuffer *ringbuf)
1833{
1834	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1835		   ringbuf->space, ringbuf->head, ringbuf->tail,
1836		   ringbuf->last_retired_head);
1837}
1838
1839static int i915_context_status(struct seq_file *m, void *unused)
1840{
1841	struct drm_info_node *node = m->private;
1842	struct drm_device *dev = node->minor->dev;
1843	struct drm_i915_private *dev_priv = dev->dev_private;
1844	struct intel_engine_cs *ring;
1845	struct intel_context *ctx;
1846	int ret, i;
1847
1848	ret = mutex_lock_interruptible(&dev->struct_mutex);
1849	if (ret)
1850		return ret;
1851
1852	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1853		if (!i915.enable_execlists &&
1854		    ctx->legacy_hw_ctx.rcs_state == NULL)
1855			continue;
1856
1857		seq_puts(m, "HW context ");
1858		describe_ctx(m, ctx);
1859		for_each_ring(ring, dev_priv, i) {
1860			if (ring->default_context == ctx)
1861				seq_printf(m, "(default context %s) ",
1862					   ring->name);
1863		}
1864
1865		if (i915.enable_execlists) {
1866			seq_putc(m, '\n');
1867			for_each_ring(ring, dev_priv, i) {
1868				struct drm_i915_gem_object *ctx_obj =
1869					ctx->engine[i].state;
1870				struct intel_ringbuffer *ringbuf =
1871					ctx->engine[i].ringbuf;
1872
1873				seq_printf(m, "%s: ", ring->name);
1874				if (ctx_obj)
1875					describe_obj(m, ctx_obj);
1876				if (ringbuf)
1877					describe_ctx_ringbuf(m, ringbuf);
1878				seq_putc(m, '\n');
1879			}
1880		} else {
1881			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1882		}
1883
1884		seq_putc(m, '\n');
1885	}
1886
1887	mutex_unlock(&dev->struct_mutex);
1888
1889	return 0;
1890}
1891
1892static void i915_dump_lrc_obj(struct seq_file *m,
1893			      struct intel_engine_cs *ring,
1894			      struct drm_i915_gem_object *ctx_obj)
1895{
1896	struct page *page;
1897	uint32_t *reg_state;
1898	int j;
1899	unsigned long ggtt_offset = 0;
1900
1901	if (ctx_obj == NULL) {
1902		seq_printf(m, "Context on %s with no gem object\n",
1903			   ring->name);
1904		return;
1905	}
1906
1907	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1908		   intel_execlists_ctx_id(ctx_obj));
1909
1910	if (!i915_gem_obj_ggtt_bound(ctx_obj))
1911		seq_puts(m, "\tNot bound in GGTT\n");
1912	else
1913		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1914
1915	if (i915_gem_object_get_pages(ctx_obj)) {
1916		seq_puts(m, "\tFailed to get pages for context object\n");
1917		return;
1918	}
1919
1920	page = i915_gem_object_get_page(ctx_obj, 1);
1921	if (!WARN_ON(page == NULL)) {
1922		reg_state = kmap_atomic(page);
1923
1924		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1925			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1926				   ggtt_offset + 4096 + (j * 4),
1927				   reg_state[j], reg_state[j + 1],
1928				   reg_state[j + 2], reg_state[j + 3]);
1929		}
1930		kunmap_atomic(reg_state);
1931	}
1932
1933	seq_putc(m, '\n');
1934}
1935
1936static int i915_dump_lrc(struct seq_file *m, void *unused)
1937{
1938	struct drm_info_node *node = (struct drm_info_node *) m->private;
1939	struct drm_device *dev = node->minor->dev;
1940	struct drm_i915_private *dev_priv = dev->dev_private;
1941	struct intel_engine_cs *ring;
1942	struct intel_context *ctx;
1943	int ret, i;
1944
1945	if (!i915.enable_execlists) {
1946		seq_printf(m, "Logical Ring Contexts are disabled\n");
1947		return 0;
1948	}
1949
1950	ret = mutex_lock_interruptible(&dev->struct_mutex);
1951	if (ret)
1952		return ret;
1953
1954	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1955		for_each_ring(ring, dev_priv, i) {
1956			if (ring->default_context != ctx)
1957				i915_dump_lrc_obj(m, ring,
1958						  ctx->engine[i].state);
1959		}
1960	}
1961
1962	mutex_unlock(&dev->struct_mutex);
1963
1964	return 0;
1965}
1966
1967static int i915_execlists(struct seq_file *m, void *data)
1968{
1969	struct drm_info_node *node = (struct drm_info_node *)m->private;
1970	struct drm_device *dev = node->minor->dev;
1971	struct drm_i915_private *dev_priv = dev->dev_private;
1972	struct intel_engine_cs *ring;
1973	u32 status_pointer;
1974	u8 read_pointer;
1975	u8 write_pointer;
1976	u32 status;
1977	u32 ctx_id;
1978	struct list_head *cursor;
1979	int ring_id, i;
1980	int ret;
1981
1982	if (!i915.enable_execlists) {
1983		seq_puts(m, "Logical Ring Contexts are disabled\n");
1984		return 0;
1985	}
1986
1987	ret = mutex_lock_interruptible(&dev->struct_mutex);
1988	if (ret)
1989		return ret;
1990
1991	intel_runtime_pm_get(dev_priv);
1992
1993	for_each_ring(ring, dev_priv, ring_id) {
1994		struct drm_i915_gem_request *head_req = NULL;
1995		int count = 0;
1996		unsigned long flags;
1997
1998		seq_printf(m, "%s\n", ring->name);
1999
2000		status = I915_READ(RING_EXECLIST_STATUS(ring));
2001		ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2002		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2003			   status, ctx_id);
2004
2005		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2006		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2007
2008		read_pointer = ring->next_context_status_buffer;
2009		write_pointer = status_pointer & 0x07;
2010		if (read_pointer > write_pointer)
2011			write_pointer += 6;
2012		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2013			   read_pointer, write_pointer);
2014
2015		for (i = 0; i < 6; i++) {
2016			status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2017			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2018
2019			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2020				   i, status, ctx_id);
2021		}
2022
2023		spin_lock_irqsave(&ring->execlist_lock, flags);
2024		list_for_each(cursor, &ring->execlist_queue)
2025			count++;
2026		head_req = list_first_entry_or_null(&ring->execlist_queue,
2027				struct drm_i915_gem_request, execlist_link);
2028		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2029
2030		seq_printf(m, "\t%d requests in queue\n", count);
2031		if (head_req) {
2032			struct drm_i915_gem_object *ctx_obj;
2033
2034			ctx_obj = head_req->ctx->engine[ring_id].state;
2035			seq_printf(m, "\tHead request id: %u\n",
2036				   intel_execlists_ctx_id(ctx_obj));
2037			seq_printf(m, "\tHead request tail: %u\n",
2038				   head_req->tail);
2039		}
2040
2041		seq_putc(m, '\n');
2042	}
2043
2044	intel_runtime_pm_put(dev_priv);
2045	mutex_unlock(&dev->struct_mutex);
2046
2047	return 0;
2048}
2049
2050static const char *swizzle_string(unsigned swizzle)
2051{
2052	switch (swizzle) {
2053	case I915_BIT_6_SWIZZLE_NONE:
2054		return "none";
2055	case I915_BIT_6_SWIZZLE_9:
2056		return "bit9";
2057	case I915_BIT_6_SWIZZLE_9_10:
2058		return "bit9/bit10";
2059	case I915_BIT_6_SWIZZLE_9_11:
2060		return "bit9/bit11";
2061	case I915_BIT_6_SWIZZLE_9_10_11:
2062		return "bit9/bit10/bit11";
2063	case I915_BIT_6_SWIZZLE_9_17:
2064		return "bit9/bit17";
2065	case I915_BIT_6_SWIZZLE_9_10_17:
2066		return "bit9/bit10/bit17";
2067	case I915_BIT_6_SWIZZLE_UNKNOWN:
2068		return "unknown";
2069	}
2070
2071	return "bug";
2072}
2073
2074static int i915_swizzle_info(struct seq_file *m, void *data)
2075{
2076	struct drm_info_node *node = m->private;
2077	struct drm_device *dev = node->minor->dev;
2078	struct drm_i915_private *dev_priv = dev->dev_private;
2079	int ret;
2080
2081	ret = mutex_lock_interruptible(&dev->struct_mutex);
2082	if (ret)
2083		return ret;
2084	intel_runtime_pm_get(dev_priv);
2085
2086	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2087		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2088	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2089		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2090
2091	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2092		seq_printf(m, "DDC = 0x%08x\n",
2093			   I915_READ(DCC));
2094		seq_printf(m, "DDC2 = 0x%08x\n",
2095			   I915_READ(DCC2));
2096		seq_printf(m, "C0DRB3 = 0x%04x\n",
2097			   I915_READ16(C0DRB3));
2098		seq_printf(m, "C1DRB3 = 0x%04x\n",
2099			   I915_READ16(C1DRB3));
2100	} else if (INTEL_INFO(dev)->gen >= 6) {
2101		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2102			   I915_READ(MAD_DIMM_C0));
2103		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2104			   I915_READ(MAD_DIMM_C1));
2105		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2106			   I915_READ(MAD_DIMM_C2));
2107		seq_printf(m, "TILECTL = 0x%08x\n",
2108			   I915_READ(TILECTL));
2109		if (INTEL_INFO(dev)->gen >= 8)
2110			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2111				   I915_READ(GAMTARBMODE));
2112		else
2113			seq_printf(m, "ARB_MODE = 0x%08x\n",
2114				   I915_READ(ARB_MODE));
2115		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2116			   I915_READ(DISP_ARB_CTL));
2117	}
2118
2119	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2120		seq_puts(m, "L-shaped memory detected\n");
2121
2122	intel_runtime_pm_put(dev_priv);
2123	mutex_unlock(&dev->struct_mutex);
2124
2125	return 0;
2126}
2127
2128static int per_file_ctx(int id, void *ptr, void *data)
2129{
2130	struct intel_context *ctx = ptr;
2131	struct seq_file *m = data;
2132	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2133
2134	if (!ppgtt) {
2135		seq_printf(m, "  no ppgtt for context %d\n",
2136			   ctx->user_handle);
2137		return 0;
2138	}
2139
2140	if (i915_gem_context_is_default(ctx))
2141		seq_puts(m, "  default context:\n");
2142	else
2143		seq_printf(m, "  context %d:\n", ctx->user_handle);
2144	ppgtt->debug_dump(ppgtt, m);
2145
2146	return 0;
2147}
2148
2149static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2150{
2151	struct drm_i915_private *dev_priv = dev->dev_private;
2152	struct intel_engine_cs *ring;
2153	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2154	int unused, i;
2155
2156	if (!ppgtt)
2157		return;
2158
2159	seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2160	seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2161	for_each_ring(ring, dev_priv, unused) {
2162		seq_printf(m, "%s\n", ring->name);
2163		for (i = 0; i < 4; i++) {
2164			u32 offset = 0x270 + i * 8;
2165			u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2166			pdp <<= 32;
2167			pdp |= I915_READ(ring->mmio_base + offset);
2168			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2169		}
2170	}
2171}
2172
2173static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2174{
2175	struct drm_i915_private *dev_priv = dev->dev_private;
2176	struct intel_engine_cs *ring;
2177	struct drm_file *file;
2178	int i;
2179
2180	if (INTEL_INFO(dev)->gen == 6)
2181		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2182
2183	for_each_ring(ring, dev_priv, i) {
2184		seq_printf(m, "%s\n", ring->name);
2185		if (INTEL_INFO(dev)->gen == 7)
2186			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2187		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2188		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2189		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2190	}
2191	if (dev_priv->mm.aliasing_ppgtt) {
2192		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2193
2194		seq_puts(m, "aliasing PPGTT:\n");
2195		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2196
2197		ppgtt->debug_dump(ppgtt, m);
2198	}
2199
2200	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2201		struct drm_i915_file_private *file_priv = file->driver_priv;
2202
2203		seq_printf(m, "proc: %s\n",
2204			   get_pid_task(file->pid, PIDTYPE_PID)->comm);
2205		idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2206	}
2207	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2208}
2209
2210static int i915_ppgtt_info(struct seq_file *m, void *data)
2211{
2212	struct drm_info_node *node = m->private;
2213	struct drm_device *dev = node->minor->dev;
2214	struct drm_i915_private *dev_priv = dev->dev_private;
2215
2216	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2217	if (ret)
2218		return ret;
2219	intel_runtime_pm_get(dev_priv);
2220
2221	if (INTEL_INFO(dev)->gen >= 8)
2222		gen8_ppgtt_info(m, dev);
2223	else if (INTEL_INFO(dev)->gen >= 6)
2224		gen6_ppgtt_info(m, dev);
2225
2226	intel_runtime_pm_put(dev_priv);
2227	mutex_unlock(&dev->struct_mutex);
2228
2229	return 0;
2230}
2231
2232static int i915_llc(struct seq_file *m, void *data)
2233{
2234	struct drm_info_node *node = m->private;
2235	struct drm_device *dev = node->minor->dev;
2236	struct drm_i915_private *dev_priv = dev->dev_private;
2237
2238	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2239	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2240	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2241
2242	return 0;
2243}
2244
2245static int i915_edp_psr_status(struct seq_file *m, void *data)
2246{
2247	struct drm_info_node *node = m->private;
2248	struct drm_device *dev = node->minor->dev;
2249	struct drm_i915_private *dev_priv = dev->dev_private;
2250	u32 psrperf = 0;
2251	u32 stat[3];
2252	enum pipe pipe;
2253	bool enabled = false;
2254
2255	if (!HAS_PSR(dev)) {
2256		seq_puts(m, "PSR not supported\n");
2257		return 0;
2258	}
2259
2260	intel_runtime_pm_get(dev_priv);
2261
2262	mutex_lock(&dev_priv->psr.lock);
2263	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2264	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2265	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2266	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2267	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2268		   dev_priv->psr.busy_frontbuffer_bits);
2269	seq_printf(m, "Re-enable work scheduled: %s\n",
2270		   yesno(work_busy(&dev_priv->psr.work.work)));
2271
2272	if (HAS_DDI(dev))
2273		enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2274	else {
2275		for_each_pipe(dev_priv, pipe) {
2276			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2277				VLV_EDP_PSR_CURR_STATE_MASK;
2278			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2279			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2280				enabled = true;
2281		}
2282	}
2283	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2284
2285	if (!HAS_DDI(dev))
2286		for_each_pipe(dev_priv, pipe) {
2287			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2288			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2289				seq_printf(m, " pipe %c", pipe_name(pipe));
2290		}
2291	seq_puts(m, "\n");
2292
2293	seq_printf(m, "Link standby: %s\n",
2294		   yesno((bool)dev_priv->psr.link_standby));
2295
2296	/* CHV PSR has no kind of performance counter */
2297	if (HAS_DDI(dev)) {
2298		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2299			EDP_PSR_PERF_CNT_MASK;
2300
2301		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2302	}
2303	mutex_unlock(&dev_priv->psr.lock);
2304
2305	intel_runtime_pm_put(dev_priv);
2306	return 0;
2307}
2308
2309static int i915_sink_crc(struct seq_file *m, void *data)
2310{
2311	struct drm_info_node *node = m->private;
2312	struct drm_device *dev = node->minor->dev;
2313	struct intel_encoder *encoder;
2314	struct intel_connector *connector;
2315	struct intel_dp *intel_dp = NULL;
2316	int ret;
2317	u8 crc[6];
2318
2319	drm_modeset_lock_all(dev);
2320	for_each_intel_connector(dev, connector) {
2321
2322		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2323			continue;
2324
2325		if (!connector->base.encoder)
2326			continue;
2327
2328		encoder = to_intel_encoder(connector->base.encoder);
2329		if (encoder->type != INTEL_OUTPUT_EDP)
2330			continue;
2331
2332		intel_dp = enc_to_intel_dp(&encoder->base);
2333
2334		ret = intel_dp_sink_crc(intel_dp, crc);
2335		if (ret)
2336			goto out;
2337
2338		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2339			   crc[0], crc[1], crc[2],
2340			   crc[3], crc[4], crc[5]);
2341		goto out;
2342	}
2343	ret = -ENODEV;
2344out:
2345	drm_modeset_unlock_all(dev);
2346	return ret;
2347}
2348
2349static int i915_energy_uJ(struct seq_file *m, void *data)
2350{
2351	struct drm_info_node *node = m->private;
2352	struct drm_device *dev = node->minor->dev;
2353	struct drm_i915_private *dev_priv = dev->dev_private;
2354	u64 power;
2355	u32 units;
2356
2357	if (INTEL_INFO(dev)->gen < 6)
2358		return -ENODEV;
2359
2360	intel_runtime_pm_get(dev_priv);
2361
2362	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2363	power = (power & 0x1f00) >> 8;
2364	units = 1000000 / (1 << power); /* convert to uJ */
2365	power = I915_READ(MCH_SECP_NRG_STTS);
2366	power *= units;
2367
2368	intel_runtime_pm_put(dev_priv);
2369
2370	seq_printf(m, "%llu", (long long unsigned)power);
2371
2372	return 0;
2373}
2374
2375static int i915_pc8_status(struct seq_file *m, void *unused)
2376{
2377	struct drm_info_node *node = m->private;
2378	struct drm_device *dev = node->minor->dev;
2379	struct drm_i915_private *dev_priv = dev->dev_private;
2380
2381	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2382		seq_puts(m, "not supported\n");
2383		return 0;
2384	}
2385
2386	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2387	seq_printf(m, "IRQs disabled: %s\n",
2388		   yesno(!intel_irqs_enabled(dev_priv)));
2389
2390	return 0;
2391}
2392
2393static const char *power_domain_str(enum intel_display_power_domain domain)
2394{
2395	switch (domain) {
2396	case POWER_DOMAIN_PIPE_A:
2397		return "PIPE_A";
2398	case POWER_DOMAIN_PIPE_B:
2399		return "PIPE_B";
2400	case POWER_DOMAIN_PIPE_C:
2401		return "PIPE_C";
2402	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2403		return "PIPE_A_PANEL_FITTER";
2404	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2405		return "PIPE_B_PANEL_FITTER";
2406	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2407		return "PIPE_C_PANEL_FITTER";
2408	case POWER_DOMAIN_TRANSCODER_A:
2409		return "TRANSCODER_A";
2410	case POWER_DOMAIN_TRANSCODER_B:
2411		return "TRANSCODER_B";
2412	case POWER_DOMAIN_TRANSCODER_C:
2413		return "TRANSCODER_C";
2414	case POWER_DOMAIN_TRANSCODER_EDP:
2415		return "TRANSCODER_EDP";
2416	case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2417		return "PORT_DDI_A_2_LANES";
2418	case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2419		return "PORT_DDI_A_4_LANES";
2420	case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2421		return "PORT_DDI_B_2_LANES";
2422	case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2423		return "PORT_DDI_B_4_LANES";
2424	case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2425		return "PORT_DDI_C_2_LANES";
2426	case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2427		return "PORT_DDI_C_4_LANES";
2428	case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2429		return "PORT_DDI_D_2_LANES";
2430	case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2431		return "PORT_DDI_D_4_LANES";
2432	case POWER_DOMAIN_PORT_DSI:
2433		return "PORT_DSI";
2434	case POWER_DOMAIN_PORT_CRT:
2435		return "PORT_CRT";
2436	case POWER_DOMAIN_PORT_OTHER:
2437		return "PORT_OTHER";
2438	case POWER_DOMAIN_VGA:
2439		return "VGA";
2440	case POWER_DOMAIN_AUDIO:
2441		return "AUDIO";
2442	case POWER_DOMAIN_PLLS:
2443		return "PLLS";
2444	case POWER_DOMAIN_AUX_A:
2445		return "AUX_A";
2446	case POWER_DOMAIN_AUX_B:
2447		return "AUX_B";
2448	case POWER_DOMAIN_AUX_C:
2449		return "AUX_C";
2450	case POWER_DOMAIN_AUX_D:
2451		return "AUX_D";
2452	case POWER_DOMAIN_INIT:
2453		return "INIT";
2454	default:
2455		MISSING_CASE(domain);
2456		return "?";
2457	}
2458}
2459
2460static int i915_power_domain_info(struct seq_file *m, void *unused)
2461{
2462	struct drm_info_node *node = m->private;
2463	struct drm_device *dev = node->minor->dev;
2464	struct drm_i915_private *dev_priv = dev->dev_private;
2465	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2466	int i;
2467
2468	mutex_lock(&power_domains->lock);
2469
2470	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2471	for (i = 0; i < power_domains->power_well_count; i++) {
2472		struct i915_power_well *power_well;
2473		enum intel_display_power_domain power_domain;
2474
2475		power_well = &power_domains->power_wells[i];
2476		seq_printf(m, "%-25s %d\n", power_well->name,
2477			   power_well->count);
2478
2479		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2480		     power_domain++) {
2481			if (!(BIT(power_domain) & power_well->domains))
2482				continue;
2483
2484			seq_printf(m, "  %-23s %d\n",
2485				 power_domain_str(power_domain),
2486				 power_domains->domain_use_count[power_domain]);
2487		}
2488	}
2489
2490	mutex_unlock(&power_domains->lock);
2491
2492	return 0;
2493}
2494
2495static void intel_seq_print_mode(struct seq_file *m, int tabs,
2496				 struct drm_display_mode *mode)
2497{
2498	int i;
2499
2500	for (i = 0; i < tabs; i++)
2501		seq_putc(m, '\t');
2502
2503	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2504		   mode->base.id, mode->name,
2505		   mode->vrefresh, mode->clock,
2506		   mode->hdisplay, mode->hsync_start,
2507		   mode->hsync_end, mode->htotal,
2508		   mode->vdisplay, mode->vsync_start,
2509		   mode->vsync_end, mode->vtotal,
2510		   mode->type, mode->flags);
2511}
2512
2513static void intel_encoder_info(struct seq_file *m,
2514			       struct intel_crtc *intel_crtc,
2515			       struct intel_encoder *intel_encoder)
2516{
2517	struct drm_info_node *node = m->private;
2518	struct drm_device *dev = node->minor->dev;
2519	struct drm_crtc *crtc = &intel_crtc->base;
2520	struct intel_connector *intel_connector;
2521	struct drm_encoder *encoder;
2522
2523	encoder = &intel_encoder->base;
2524	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2525		   encoder->base.id, encoder->name);
2526	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2527		struct drm_connector *connector = &intel_connector->base;
2528		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2529			   connector->base.id,
2530			   connector->name,
2531			   drm_get_connector_status_name(connector->status));
2532		if (connector->status == connector_status_connected) {
2533			struct drm_display_mode *mode = &crtc->mode;
2534			seq_printf(m, ", mode:\n");
2535			intel_seq_print_mode(m, 2, mode);
2536		} else {
2537			seq_putc(m, '\n');
2538		}
2539	}
2540}
2541
2542static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2543{
2544	struct drm_info_node *node = m->private;
2545	struct drm_device *dev = node->minor->dev;
2546	struct drm_crtc *crtc = &intel_crtc->base;
2547	struct intel_encoder *intel_encoder;
2548
2549	if (crtc->primary->fb)
2550		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2551			   crtc->primary->fb->base.id, crtc->x, crtc->y,
2552			   crtc->primary->fb->width, crtc->primary->fb->height);
2553	else
2554		seq_puts(m, "\tprimary plane disabled\n");
2555	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2556		intel_encoder_info(m, intel_crtc, intel_encoder);
2557}
2558
2559static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2560{
2561	struct drm_display_mode *mode = panel->fixed_mode;
2562
2563	seq_printf(m, "\tfixed mode:\n");
2564	intel_seq_print_mode(m, 2, mode);
2565}
2566
2567static void intel_dp_info(struct seq_file *m,
2568			  struct intel_connector *intel_connector)
2569{
2570	struct intel_encoder *intel_encoder = intel_connector->encoder;
2571	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2572
2573	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2574	seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2575		   "no");
2576	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2577		intel_panel_info(m, &intel_connector->panel);
2578}
2579
2580static void intel_hdmi_info(struct seq_file *m,
2581			    struct intel_connector *intel_connector)
2582{
2583	struct intel_encoder *intel_encoder = intel_connector->encoder;
2584	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2585
2586	seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2587		   "no");
2588}
2589
2590static void intel_lvds_info(struct seq_file *m,
2591			    struct intel_connector *intel_connector)
2592{
2593	intel_panel_info(m, &intel_connector->panel);
2594}
2595
2596static void intel_connector_info(struct seq_file *m,
2597				 struct drm_connector *connector)
2598{
2599	struct intel_connector *intel_connector = to_intel_connector(connector);
2600	struct intel_encoder *intel_encoder = intel_connector->encoder;
2601	struct drm_display_mode *mode;
2602
2603	seq_printf(m, "connector %d: type %s, status: %s\n",
2604		   connector->base.id, connector->name,
2605		   drm_get_connector_status_name(connector->status));
2606	if (connector->status == connector_status_connected) {
2607		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2608		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2609			   connector->display_info.width_mm,
2610			   connector->display_info.height_mm);
2611		seq_printf(m, "\tsubpixel order: %s\n",
2612			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2613		seq_printf(m, "\tCEA rev: %d\n",
2614			   connector->display_info.cea_rev);
2615	}
2616	if (intel_encoder) {
2617		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2618		    intel_encoder->type == INTEL_OUTPUT_EDP)
2619			intel_dp_info(m, intel_connector);
2620		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2621			intel_hdmi_info(m, intel_connector);
2622		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2623			intel_lvds_info(m, intel_connector);
2624	}
2625
2626	seq_printf(m, "\tmodes:\n");
2627	list_for_each_entry(mode, &connector->modes, head)
2628		intel_seq_print_mode(m, 2, mode);
2629}
2630
2631static bool cursor_active(struct drm_device *dev, int pipe)
2632{
2633	struct drm_i915_private *dev_priv = dev->dev_private;
2634	u32 state;
2635
2636	if (IS_845G(dev) || IS_I865G(dev))
2637		state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2638	else
2639		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2640
2641	return state;
2642}
2643
2644static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2645{
2646	struct drm_i915_private *dev_priv = dev->dev_private;
2647	u32 pos;
2648
2649	pos = I915_READ(CURPOS(pipe));
2650
2651	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2652	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2653		*x = -*x;
2654
2655	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2656	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2657		*y = -*y;
2658
2659	return cursor_active(dev, pipe);
2660}
2661
2662static int i915_display_info(struct seq_file *m, void *unused)
2663{
2664	struct drm_info_node *node = m->private;
2665	struct drm_device *dev = node->minor->dev;
2666	struct drm_i915_private *dev_priv = dev->dev_private;
2667	struct intel_crtc *crtc;
2668	struct drm_connector *connector;
2669
2670	intel_runtime_pm_get(dev_priv);
2671	drm_modeset_lock_all(dev);
2672	seq_printf(m, "CRTC info\n");
2673	seq_printf(m, "---------\n");
2674	for_each_intel_crtc(dev, crtc) {
2675		bool active;
2676		int x, y;
2677
2678		seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2679			   crtc->base.base.id, pipe_name(crtc->pipe),
2680			   yesno(crtc->active), crtc->config->pipe_src_w,
2681			   crtc->config->pipe_src_h);
2682		if (crtc->active) {
2683			intel_crtc_info(m, crtc);
2684
2685			active = cursor_position(dev, crtc->pipe, &x, &y);
2686			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2687				   yesno(crtc->cursor_base),
2688				   x, y, crtc->base.cursor->state->crtc_w,
2689				   crtc->base.cursor->state->crtc_h,
2690				   crtc->cursor_addr, yesno(active));
2691		}
2692
2693		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2694			   yesno(!crtc->cpu_fifo_underrun_disabled),
2695			   yesno(!crtc->pch_fifo_underrun_disabled));
2696	}
2697
2698	seq_printf(m, "\n");
2699	seq_printf(m, "Connector info\n");
2700	seq_printf(m, "--------------\n");
2701	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2702		intel_connector_info(m, connector);
2703	}
2704	drm_modeset_unlock_all(dev);
2705	intel_runtime_pm_put(dev_priv);
2706
2707	return 0;
2708}
2709
2710static int i915_semaphore_status(struct seq_file *m, void *unused)
2711{
2712	struct drm_info_node *node = (struct drm_info_node *) m->private;
2713	struct drm_device *dev = node->minor->dev;
2714	struct drm_i915_private *dev_priv = dev->dev_private;
2715	struct intel_engine_cs *ring;
2716	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2717	int i, j, ret;
2718
2719	if (!i915_semaphore_is_enabled(dev)) {
2720		seq_puts(m, "Semaphores are disabled\n");
2721		return 0;
2722	}
2723
2724	ret = mutex_lock_interruptible(&dev->struct_mutex);
2725	if (ret)
2726		return ret;
2727	intel_runtime_pm_get(dev_priv);
2728
2729	if (IS_BROADWELL(dev)) {
2730		struct page *page;
2731		uint64_t *seqno;
2732
2733		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2734
2735		seqno = (uint64_t *)kmap_atomic(page);
2736		for_each_ring(ring, dev_priv, i) {
2737			uint64_t offset;
2738
2739			seq_printf(m, "%s\n", ring->name);
2740
2741			seq_puts(m, "  Last signal:");
2742			for (j = 0; j < num_rings; j++) {
2743				offset = i * I915_NUM_RINGS + j;
2744				seq_printf(m, "0x%08llx (0x%02llx) ",
2745					   seqno[offset], offset * 8);
2746			}
2747			seq_putc(m, '\n');
2748
2749			seq_puts(m, "  Last wait:  ");
2750			for (j = 0; j < num_rings; j++) {
2751				offset = i + (j * I915_NUM_RINGS);
2752				seq_printf(m, "0x%08llx (0x%02llx) ",
2753					   seqno[offset], offset * 8);
2754			}
2755			seq_putc(m, '\n');
2756
2757		}
2758		kunmap_atomic(seqno);
2759	} else {
2760		seq_puts(m, "  Last signal:");
2761		for_each_ring(ring, dev_priv, i)
2762			for (j = 0; j < num_rings; j++)
2763				seq_printf(m, "0x%08x\n",
2764					   I915_READ(ring->semaphore.mbox.signal[j]));
2765		seq_putc(m, '\n');
2766	}
2767
2768	seq_puts(m, "\nSync seqno:\n");
2769	for_each_ring(ring, dev_priv, i) {
2770		for (j = 0; j < num_rings; j++) {
2771			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2772		}
2773		seq_putc(m, '\n');
2774	}
2775	seq_putc(m, '\n');
2776
2777	intel_runtime_pm_put(dev_priv);
2778	mutex_unlock(&dev->struct_mutex);
2779	return 0;
2780}
2781
2782static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2783{
2784	struct drm_info_node *node = (struct drm_info_node *) m->private;
2785	struct drm_device *dev = node->minor->dev;
2786	struct drm_i915_private *dev_priv = dev->dev_private;
2787	int i;
2788
2789	drm_modeset_lock_all(dev);
2790	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2791		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2792
2793		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2794		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2795			   pll->config.crtc_mask, pll->active, yesno(pll->on));
2796		seq_printf(m, " tracked hardware state:\n");
2797		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2798		seq_printf(m, " dpll_md: 0x%08x\n",
2799			   pll->config.hw_state.dpll_md);
2800		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2801		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2802		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2803	}
2804	drm_modeset_unlock_all(dev);
2805
2806	return 0;
2807}
2808
2809static int i915_wa_registers(struct seq_file *m, void *unused)
2810{
2811	int i;
2812	int ret;
2813	struct drm_info_node *node = (struct drm_info_node *) m->private;
2814	struct drm_device *dev = node->minor->dev;
2815	struct drm_i915_private *dev_priv = dev->dev_private;
2816
2817	ret = mutex_lock_interruptible(&dev->struct_mutex);
2818	if (ret)
2819		return ret;
2820
2821	intel_runtime_pm_get(dev_priv);
2822
2823	seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2824	for (i = 0; i < dev_priv->workarounds.count; ++i) {
2825		u32 addr, mask, value, read;
2826		bool ok;
2827
2828		addr = dev_priv->workarounds.reg[i].addr;
2829		mask = dev_priv->workarounds.reg[i].mask;
2830		value = dev_priv->workarounds.reg[i].value;
2831		read = I915_READ(addr);
2832		ok = (value & mask) == (read & mask);
2833		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2834			   addr, value, mask, read, ok ? "OK" : "FAIL");
2835	}
2836
2837	intel_runtime_pm_put(dev_priv);
2838	mutex_unlock(&dev->struct_mutex);
2839
2840	return 0;
2841}
2842
2843static int i915_ddb_info(struct seq_file *m, void *unused)
2844{
2845	struct drm_info_node *node = m->private;
2846	struct drm_device *dev = node->minor->dev;
2847	struct drm_i915_private *dev_priv = dev->dev_private;
2848	struct skl_ddb_allocation *ddb;
2849	struct skl_ddb_entry *entry;
2850	enum pipe pipe;
2851	int plane;
2852
2853	if (INTEL_INFO(dev)->gen < 9)
2854		return 0;
2855
2856	drm_modeset_lock_all(dev);
2857
2858	ddb = &dev_priv->wm.skl_hw.ddb;
2859
2860	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2861
2862	for_each_pipe(dev_priv, pipe) {
2863		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2864
2865		for_each_plane(dev_priv, pipe, plane) {
2866			entry = &ddb->plane[pipe][plane];
2867			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2868				   entry->start, entry->end,
2869				   skl_ddb_entry_size(entry));
2870		}
2871
2872		entry = &ddb->cursor[pipe];
2873		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2874			   entry->end, skl_ddb_entry_size(entry));
2875	}
2876
2877	drm_modeset_unlock_all(dev);
2878
2879	return 0;
2880}
2881
2882static void drrs_status_per_crtc(struct seq_file *m,
2883		struct drm_device *dev, struct intel_crtc *intel_crtc)
2884{
2885	struct intel_encoder *intel_encoder;
2886	struct drm_i915_private *dev_priv = dev->dev_private;
2887	struct i915_drrs *drrs = &dev_priv->drrs;
2888	int vrefresh = 0;
2889
2890	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2891		/* Encoder connected on this CRTC */
2892		switch (intel_encoder->type) {
2893		case INTEL_OUTPUT_EDP:
2894			seq_puts(m, "eDP:\n");
2895			break;
2896		case INTEL_OUTPUT_DSI:
2897			seq_puts(m, "DSI:\n");
2898			break;
2899		case INTEL_OUTPUT_HDMI:
2900			seq_puts(m, "HDMI:\n");
2901			break;
2902		case INTEL_OUTPUT_DISPLAYPORT:
2903			seq_puts(m, "DP:\n");
2904			break;
2905		default:
2906			seq_printf(m, "Other encoder (id=%d).\n",
2907						intel_encoder->type);
2908			return;
2909		}
2910	}
2911
2912	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
2913		seq_puts(m, "\tVBT: DRRS_type: Static");
2914	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
2915		seq_puts(m, "\tVBT: DRRS_type: Seamless");
2916	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
2917		seq_puts(m, "\tVBT: DRRS_type: None");
2918	else
2919		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
2920
2921	seq_puts(m, "\n\n");
2922
2923	if (intel_crtc->config->has_drrs) {
2924		struct intel_panel *panel;
2925
2926		mutex_lock(&drrs->mutex);
2927		/* DRRS Supported */
2928		seq_puts(m, "\tDRRS Supported: Yes\n");
2929
2930		/* disable_drrs() will make drrs->dp NULL */
2931		if (!drrs->dp) {
2932			seq_puts(m, "Idleness DRRS: Disabled");
2933			mutex_unlock(&drrs->mutex);
2934			return;
2935		}
2936
2937		panel = &drrs->dp->attached_connector->panel;
2938		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
2939					drrs->busy_frontbuffer_bits);
2940
2941		seq_puts(m, "\n\t\t");
2942		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
2943			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
2944			vrefresh = panel->fixed_mode->vrefresh;
2945		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
2946			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
2947			vrefresh = panel->downclock_mode->vrefresh;
2948		} else {
2949			seq_printf(m, "DRRS_State: Unknown(%d)\n",
2950						drrs->refresh_rate_type);
2951			mutex_unlock(&drrs->mutex);
2952			return;
2953		}
2954		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
2955
2956		seq_puts(m, "\n\t\t");
2957		mutex_unlock(&drrs->mutex);
2958	} else {
2959		/* DRRS not supported. Print the VBT parameter*/
2960		seq_puts(m, "\tDRRS Supported : No");
2961	}
2962	seq_puts(m, "\n");
2963}
2964
2965static int i915_drrs_status(struct seq_file *m, void *unused)
2966{
2967	struct drm_info_node *node = m->private;
2968	struct drm_device *dev = node->minor->dev;
2969	struct intel_crtc *intel_crtc;
2970	int active_crtc_cnt = 0;
2971
2972	for_each_intel_crtc(dev, intel_crtc) {
2973		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
2974
2975		if (intel_crtc->active) {
2976			active_crtc_cnt++;
2977			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
2978
2979			drrs_status_per_crtc(m, dev, intel_crtc);
2980		}
2981
2982		drm_modeset_unlock(&intel_crtc->base.mutex);
2983	}
2984
2985	if (!active_crtc_cnt)
2986		seq_puts(m, "No active crtc found\n");
2987
2988	return 0;
2989}
2990
2991struct pipe_crc_info {
2992	const char *name;
2993	struct drm_device *dev;
2994	enum pipe pipe;
2995};
2996
2997static int i915_dp_mst_info(struct seq_file *m, void *unused)
2998{
2999	struct drm_info_node *node = (struct drm_info_node *) m->private;
3000	struct drm_device *dev = node->minor->dev;
3001	struct drm_encoder *encoder;
3002	struct intel_encoder *intel_encoder;
3003	struct intel_digital_port *intel_dig_port;
3004	drm_modeset_lock_all(dev);
3005	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3006		intel_encoder = to_intel_encoder(encoder);
3007		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3008			continue;
3009		intel_dig_port = enc_to_dig_port(encoder);
3010		if (!intel_dig_port->dp.can_mst)
3011			continue;
3012
3013		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3014	}
3015	drm_modeset_unlock_all(dev);
3016	return 0;
3017}
3018
3019static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3020{
3021	struct pipe_crc_info *info = inode->i_private;
3022	struct drm_i915_private *dev_priv = info->dev->dev_private;
3023	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3024
3025	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3026		return -ENODEV;
3027
3028	spin_lock_irq(&pipe_crc->lock);
3029
3030	if (pipe_crc->opened) {
3031		spin_unlock_irq(&pipe_crc->lock);
3032		return -EBUSY; /* already open */
3033	}
3034
3035	pipe_crc->opened = true;
3036	filep->private_data = inode->i_private;
3037
3038	spin_unlock_irq(&pipe_crc->lock);
3039
3040	return 0;
3041}
3042
3043static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3044{
3045	struct pipe_crc_info *info = inode->i_private;
3046	struct drm_i915_private *dev_priv = info->dev->dev_private;
3047	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3048
3049	spin_lock_irq(&pipe_crc->lock);
3050	pipe_crc->opened = false;
3051	spin_unlock_irq(&pipe_crc->lock);
3052
3053	return 0;
3054}
3055
3056/* (6 fields, 8 chars each, space separated (5) + '\n') */
3057#define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3058/* account for \'0' */
3059#define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3060
3061static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3062{
3063	assert_spin_locked(&pipe_crc->lock);
3064	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3065			INTEL_PIPE_CRC_ENTRIES_NR);
3066}
3067
3068static ssize_t
3069i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3070		   loff_t *pos)
3071{
3072	struct pipe_crc_info *info = filep->private_data;
3073	struct drm_device *dev = info->dev;
3074	struct drm_i915_private *dev_priv = dev->dev_private;
3075	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3076	char buf[PIPE_CRC_BUFFER_LEN];
3077	int n_entries;
3078	ssize_t bytes_read;
3079
3080	/*
3081	 * Don't allow user space to provide buffers not big enough to hold
3082	 * a line of data.
3083	 */
3084	if (count < PIPE_CRC_LINE_LEN)
3085		return -EINVAL;
3086
3087	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3088		return 0;
3089
3090	/* nothing to read */
3091	spin_lock_irq(&pipe_crc->lock);
3092	while (pipe_crc_data_count(pipe_crc) == 0) {
3093		int ret;
3094
3095		if (filep->f_flags & O_NONBLOCK) {
3096			spin_unlock_irq(&pipe_crc->lock);
3097			return -EAGAIN;
3098		}
3099
3100		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3101				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3102		if (ret) {
3103			spin_unlock_irq(&pipe_crc->lock);
3104			return ret;
3105		}
3106	}
3107
3108	/* We now have one or more entries to read */
3109	n_entries = count / PIPE_CRC_LINE_LEN;
3110
3111	bytes_read = 0;
3112	while (n_entries > 0) {
3113		struct intel_pipe_crc_entry *entry =
3114			&pipe_crc->entries[pipe_crc->tail];
3115		int ret;
3116
3117		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3118			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3119			break;
3120
3121		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3122		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3123
3124		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3125				       "%8u %8x %8x %8x %8x %8x\n",
3126				       entry->frame, entry->crc[0],
3127				       entry->crc[1], entry->crc[2],
3128				       entry->crc[3], entry->crc[4]);
3129
3130		spin_unlock_irq(&pipe_crc->lock);
3131
3132		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3133		if (ret == PIPE_CRC_LINE_LEN)
3134			return -EFAULT;
3135
3136		user_buf += PIPE_CRC_LINE_LEN;
3137		n_entries--;
3138
3139		spin_lock_irq(&pipe_crc->lock);
3140	}
3141
3142	spin_unlock_irq(&pipe_crc->lock);
3143
3144	return bytes_read;
3145}
3146
3147static const struct file_operations i915_pipe_crc_fops = {
3148	.owner = THIS_MODULE,
3149	.open = i915_pipe_crc_open,
3150	.read = i915_pipe_crc_read,
3151	.release = i915_pipe_crc_release,
3152};
3153
3154static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3155	{
3156		.name = "i915_pipe_A_crc",
3157		.pipe = PIPE_A,
3158	},
3159	{
3160		.name = "i915_pipe_B_crc",
3161		.pipe = PIPE_B,
3162	},
3163	{
3164		.name = "i915_pipe_C_crc",
3165		.pipe = PIPE_C,
3166	},
3167};
3168
3169static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3170				enum pipe pipe)
3171{
3172	struct drm_device *dev = minor->dev;
3173	struct dentry *ent;
3174	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3175
3176	info->dev = dev;
3177	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3178				  &i915_pipe_crc_fops);
3179	if (!ent)
3180		return -ENOMEM;
3181
3182	return drm_add_fake_info_node(minor, ent, info);
3183}
3184
3185static const char * const pipe_crc_sources[] = {
3186	"none",
3187	"plane1",
3188	"plane2",
3189	"pf",
3190	"pipe",
3191	"TV",
3192	"DP-B",
3193	"DP-C",
3194	"DP-D",
3195	"auto",
3196};
3197
3198static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3199{
3200	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3201	return pipe_crc_sources[source];
3202}
3203
3204static int display_crc_ctl_show(struct seq_file *m, void *data)
3205{
3206	struct drm_device *dev = m->private;
3207	struct drm_i915_private *dev_priv = dev->dev_private;
3208	int i;
3209
3210	for (i = 0; i < I915_MAX_PIPES; i++)
3211		seq_printf(m, "%c %s\n", pipe_name(i),
3212			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3213
3214	return 0;
3215}
3216
3217static int display_crc_ctl_open(struct inode *inode, struct file *file)
3218{
3219	struct drm_device *dev = inode->i_private;
3220
3221	return single_open(file, display_crc_ctl_show, dev);
3222}
3223
3224static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3225				 uint32_t *val)
3226{
3227	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3228		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3229
3230	switch (*source) {
3231	case INTEL_PIPE_CRC_SOURCE_PIPE:
3232		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3233		break;
3234	case INTEL_PIPE_CRC_SOURCE_NONE:
3235		*val = 0;
3236		break;
3237	default:
3238		return -EINVAL;
3239	}
3240
3241	return 0;
3242}
3243
3244static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3245				     enum intel_pipe_crc_source *source)
3246{
3247	struct intel_encoder *encoder;
3248	struct intel_crtc *crtc;
3249	struct intel_digital_port *dig_port;
3250	int ret = 0;
3251
3252	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3253
3254	drm_modeset_lock_all(dev);
3255	for_each_intel_encoder(dev, encoder) {
3256		if (!encoder->base.crtc)
3257			continue;
3258
3259		crtc = to_intel_crtc(encoder->base.crtc);
3260
3261		if (crtc->pipe != pipe)
3262			continue;
3263
3264		switch (encoder->type) {
3265		case INTEL_OUTPUT_TVOUT:
3266			*source = INTEL_PIPE_CRC_SOURCE_TV;
3267			break;
3268		case INTEL_OUTPUT_DISPLAYPORT:
3269		case INTEL_OUTPUT_EDP:
3270			dig_port = enc_to_dig_port(&encoder->base);
3271			switch (dig_port->port) {
3272			case PORT_B:
3273				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3274				break;
3275			case PORT_C:
3276				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3277				break;
3278			case PORT_D:
3279				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3280				break;
3281			default:
3282				WARN(1, "nonexisting DP port %c\n",
3283				     port_name(dig_port->port));
3284				break;
3285			}
3286			break;
3287		default:
3288			break;
3289		}
3290	}
3291	drm_modeset_unlock_all(dev);
3292
3293	return ret;
3294}
3295
3296static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3297				enum pipe pipe,
3298				enum intel_pipe_crc_source *source,
3299				uint32_t *val)
3300{
3301	struct drm_i915_private *dev_priv = dev->dev_private;
3302	bool need_stable_symbols = false;
3303
3304	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3305		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3306		if (ret)
3307			return ret;
3308	}
3309
3310	switch (*source) {
3311	case INTEL_PIPE_CRC_SOURCE_PIPE:
3312		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3313		break;
3314	case INTEL_PIPE_CRC_SOURCE_DP_B:
3315		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3316		need_stable_symbols = true;
3317		break;
3318	case INTEL_PIPE_CRC_SOURCE_DP_C:
3319		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3320		need_stable_symbols = true;
3321		break;
3322	case INTEL_PIPE_CRC_SOURCE_DP_D:
3323		if (!IS_CHERRYVIEW(dev))
3324			return -EINVAL;
3325		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3326		need_stable_symbols = true;
3327		break;
3328	case INTEL_PIPE_CRC_SOURCE_NONE:
3329		*val = 0;
3330		break;
3331	default:
3332		return -EINVAL;
3333	}
3334
3335	/*
3336	 * When the pipe CRC tap point is after the transcoders we need
3337	 * to tweak symbol-level features to produce a deterministic series of
3338	 * symbols for a given frame. We need to reset those features only once
3339	 * a frame (instead of every nth symbol):
3340	 *   - DC-balance: used to ensure a better clock recovery from the data
3341	 *     link (SDVO)
3342	 *   - DisplayPort scrambling: used for EMI reduction
3343	 */
3344	if (need_stable_symbols) {
3345		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3346
3347		tmp |= DC_BALANCE_RESET_VLV;
3348		switch (pipe) {
3349		case PIPE_A:
3350			tmp |= PIPE_A_SCRAMBLE_RESET;
3351			break;
3352		case PIPE_B:
3353			tmp |= PIPE_B_SCRAMBLE_RESET;
3354			break;
3355		case PIPE_C:
3356			tmp |= PIPE_C_SCRAMBLE_RESET;
3357			break;
3358		default:
3359			return -EINVAL;
3360		}
3361		I915_WRITE(PORT_DFT2_G4X, tmp);
3362	}
3363
3364	return 0;
3365}
3366
3367static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3368				 enum pipe pipe,
3369				 enum intel_pipe_crc_source *source,
3370				 uint32_t *val)
3371{
3372	struct drm_i915_private *dev_priv = dev->dev_private;
3373	bool need_stable_symbols = false;
3374
3375	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3376		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3377		if (ret)
3378			return ret;
3379	}
3380
3381	switch (*source) {
3382	case INTEL_PIPE_CRC_SOURCE_PIPE:
3383		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3384		break;
3385	case INTEL_PIPE_CRC_SOURCE_TV:
3386		if (!SUPPORTS_TV(dev))
3387			return -EINVAL;
3388		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3389		break;
3390	case INTEL_PIPE_CRC_SOURCE_DP_B:
3391		if (!IS_G4X(dev))
3392			return -EINVAL;
3393		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3394		need_stable_symbols = true;
3395		break;
3396	case INTEL_PIPE_CRC_SOURCE_DP_C:
3397		if (!IS_G4X(dev))
3398			return -EINVAL;
3399		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3400		need_stable_symbols = true;
3401		break;
3402	case INTEL_PIPE_CRC_SOURCE_DP_D:
3403		if (!IS_G4X(dev))
3404			return -EINVAL;
3405		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3406		need_stable_symbols = true;
3407		break;
3408	case INTEL_PIPE_CRC_SOURCE_NONE:
3409		*val = 0;
3410		break;
3411	default:
3412		return -EINVAL;
3413	}
3414
3415	/*
3416	 * When the pipe CRC tap point is after the transcoders we need
3417	 * to tweak symbol-level features to produce a deterministic series of
3418	 * symbols for a given frame. We need to reset those features only once
3419	 * a frame (instead of every nth symbol):
3420	 *   - DC-balance: used to ensure a better clock recovery from the data
3421	 *     link (SDVO)
3422	 *   - DisplayPort scrambling: used for EMI reduction
3423	 */
3424	if (need_stable_symbols) {
3425		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3426
3427		WARN_ON(!IS_G4X(dev));
3428
3429		I915_WRITE(PORT_DFT_I9XX,
3430			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3431
3432		if (pipe == PIPE_A)
3433			tmp |= PIPE_A_SCRAMBLE_RESET;
3434		else
3435			tmp |= PIPE_B_SCRAMBLE_RESET;
3436
3437		I915_WRITE(PORT_DFT2_G4X, tmp);
3438	}
3439
3440	return 0;
3441}
3442
3443static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3444					 enum pipe pipe)
3445{
3446	struct drm_i915_private *dev_priv = dev->dev_private;
3447	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3448
3449	switch (pipe) {
3450	case PIPE_A:
3451		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3452		break;
3453	case PIPE_B:
3454		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3455		break;
3456	case PIPE_C:
3457		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3458		break;
3459	default:
3460		return;
3461	}
3462	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3463		tmp &= ~DC_BALANCE_RESET_VLV;
3464	I915_WRITE(PORT_DFT2_G4X, tmp);
3465
3466}
3467
3468static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3469					 enum pipe pipe)
3470{
3471	struct drm_i915_private *dev_priv = dev->dev_private;
3472	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3473
3474	if (pipe == PIPE_A)
3475		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3476	else
3477		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3478	I915_WRITE(PORT_DFT2_G4X, tmp);
3479
3480	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3481		I915_WRITE(PORT_DFT_I9XX,
3482			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3483	}
3484}
3485
3486static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3487				uint32_t *val)
3488{
3489	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3490		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3491
3492	switch (*source) {
3493	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3494		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3495		break;
3496	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3497		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3498		break;
3499	case INTEL_PIPE_CRC_SOURCE_PIPE:
3500		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3501		break;
3502	case INTEL_PIPE_CRC_SOURCE_NONE:
3503		*val = 0;
3504		break;
3505	default:
3506		return -EINVAL;
3507	}
3508
3509	return 0;
3510}
3511
3512static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3513{
3514	struct drm_i915_private *dev_priv = dev->dev_private;
3515	struct intel_crtc *crtc =
3516		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3517
3518	drm_modeset_lock_all(dev);
3519	/*
3520	 * If we use the eDP transcoder we need to make sure that we don't
3521	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3522	 * relevant on hsw with pipe A when using the always-on power well
3523	 * routing.
3524	 */
3525	if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3526	    !crtc->config->pch_pfit.enabled) {
3527		crtc->config->pch_pfit.force_thru = true;
3528
3529		intel_display_power_get(dev_priv,
3530					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3531
3532		dev_priv->display.crtc_disable(&crtc->base);
3533		dev_priv->display.crtc_enable(&crtc->base);
3534	}
3535	drm_modeset_unlock_all(dev);
3536}
3537
3538static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3539{
3540	struct drm_i915_private *dev_priv = dev->dev_private;
3541	struct intel_crtc *crtc =
3542		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3543
3544	drm_modeset_lock_all(dev);
3545	/*
3546	 * If we use the eDP transcoder we need to make sure that we don't
3547	 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3548	 * relevant on hsw with pipe A when using the always-on power well
3549	 * routing.
3550	 */
3551	if (crtc->config->pch_pfit.force_thru) {
3552		crtc->config->pch_pfit.force_thru = false;
3553
3554		dev_priv->display.crtc_disable(&crtc->base);
3555		dev_priv->display.crtc_enable(&crtc->base);
3556
3557		intel_display_power_put(dev_priv,
3558					POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3559	}
3560	drm_modeset_unlock_all(dev);
3561}
3562
3563static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3564				enum pipe pipe,
3565				enum intel_pipe_crc_source *source,
3566				uint32_t *val)
3567{
3568	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3569		*source = INTEL_PIPE_CRC_SOURCE_PF;
3570
3571	switch (*source) {
3572	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3573		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3574		break;
3575	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3576		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3577		break;
3578	case INTEL_PIPE_CRC_SOURCE_PF:
3579		if (IS_HASWELL(dev) && pipe == PIPE_A)
3580			hsw_trans_edp_pipe_A_crc_wa(dev);
3581
3582		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3583		break;
3584	case INTEL_PIPE_CRC_SOURCE_NONE:
3585		*val = 0;
3586		break;
3587	default:
3588		return -EINVAL;
3589	}
3590
3591	return 0;
3592}
3593
3594static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3595			       enum intel_pipe_crc_source source)
3596{
3597	struct drm_i915_private *dev_priv = dev->dev_private;
3598	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3599	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3600									pipe));
3601	u32 val = 0; /* shut up gcc */
3602	int ret;
3603
3604	if (pipe_crc->source == source)
3605		return 0;
3606
3607	/* forbid changing the source without going back to 'none' */
3608	if (pipe_crc->source && source)
3609		return -EINVAL;
3610
3611	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3612		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3613		return -EIO;
3614	}
3615
3616	if (IS_GEN2(dev))
3617		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3618	else if (INTEL_INFO(dev)->gen < 5)
3619		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3620	else if (IS_VALLEYVIEW(dev))
3621		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3622	else if (IS_GEN5(dev) || IS_GEN6(dev))
3623		ret = ilk_pipe_crc_ctl_reg(&source, &val);
3624	else
3625		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3626
3627	if (ret != 0)
3628		return ret;
3629
3630	/* none -> real source transition */
3631	if (source) {
3632		struct intel_pipe_crc_entry *entries;
3633
3634		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3635				 pipe_name(pipe), pipe_crc_source_name(source));
3636
3637		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3638				  sizeof(pipe_crc->entries[0]),
3639				  GFP_KERNEL);
3640		if (!entries)
3641			return -ENOMEM;
3642
3643		/*
3644		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3645		 * enabled and disabled dynamically based on package C states,
3646		 * user space can't make reliable use of the CRCs, so let's just
3647		 * completely disable it.
3648		 */
3649		hsw_disable_ips(crtc);
3650
3651		spin_lock_irq(&pipe_crc->lock);
3652		kfree(pipe_crc->entries);
3653		pipe_crc->entries = entries;
3654		pipe_crc->head = 0;
3655		pipe_crc->tail = 0;
3656		spin_unlock_irq(&pipe_crc->lock);
3657	}
3658
3659	pipe_crc->source = source;
3660
3661	I915_WRITE(PIPE_CRC_CTL(pipe), val);
3662	POSTING_READ(PIPE_CRC_CTL(pipe));
3663
3664	/* real source -> none transition */
3665	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3666		struct intel_pipe_crc_entry *entries;
3667		struct intel_crtc *crtc =
3668			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3669
3670		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3671				 pipe_name(pipe));
3672
3673		drm_modeset_lock(&crtc->base.mutex, NULL);
3674		if (crtc->active)
3675			intel_wait_for_vblank(dev, pipe);
3676		drm_modeset_unlock(&crtc->base.mutex);
3677
3678		spin_lock_irq(&pipe_crc->lock);
3679		entries = pipe_crc->entries;
3680		pipe_crc->entries = NULL;
3681		pipe_crc->head = 0;
3682		pipe_crc->tail = 0;
3683		spin_unlock_irq(&pipe_crc->lock);
3684
3685		kfree(entries);
3686
3687		if (IS_G4X(dev))
3688			g4x_undo_pipe_scramble_reset(dev, pipe);
3689		else if (IS_VALLEYVIEW(dev))
3690			vlv_undo_pipe_scramble_reset(dev, pipe);
3691		else if (IS_HASWELL(dev) && pipe == PIPE_A)
3692			hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3693
3694		hsw_enable_ips(crtc);
3695	}
3696
3697	return 0;
3698}
3699
3700/*
3701 * Parse pipe CRC command strings:
3702 *   command: wsp* object wsp+ name wsp+ source wsp*
3703 *   object: 'pipe'
3704 *   name: (A | B | C)
3705 *   source: (none | plane1 | plane2 | pf)
3706 *   wsp: (#0x20 | #0x9 | #0xA)+
3707 *
3708 * eg.:
3709 *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3710 *  "pipe A none"    ->  Stop CRC
3711 */
3712static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3713{
3714	int n_words = 0;
3715
3716	while (*buf) {
3717		char *end;
3718
3719		/* skip leading white space */
3720		buf = skip_spaces(buf);
3721		if (!*buf)
3722			break;	/* end of buffer */
3723
3724		/* find end of word */
3725		for (end = buf; *end && !isspace(*end); end++)
3726			;
3727
3728		if (n_words == max_words) {
3729			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3730					 max_words);
3731			return -EINVAL;	/* ran out of words[] before bytes */
3732		}
3733
3734		if (*end)
3735			*end++ = '\0';
3736		words[n_words++] = buf;
3737		buf = end;
3738	}
3739
3740	return n_words;
3741}
3742
3743enum intel_pipe_crc_object {
3744	PIPE_CRC_OBJECT_PIPE,
3745};
3746
3747static const char * const pipe_crc_objects[] = {
3748	"pipe",
3749};
3750
3751static int
3752display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3753{
3754	int i;
3755
3756	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3757		if (!strcmp(buf, pipe_crc_objects[i])) {
3758			*o = i;
3759			return 0;
3760		    }
3761
3762	return -EINVAL;
3763}
3764
3765static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3766{
3767	const char name = buf[0];
3768
3769	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3770		return -EINVAL;
3771
3772	*pipe = name - 'A';
3773
3774	return 0;
3775}
3776
3777static int
3778display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3779{
3780	int i;
3781
3782	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3783		if (!strcmp(buf, pipe_crc_sources[i])) {
3784			*s = i;
3785			return 0;
3786		    }
3787
3788	return -EINVAL;
3789}
3790
3791static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3792{
3793#define N_WORDS 3
3794	int n_words;
3795	char *words[N_WORDS];
3796	enum pipe pipe;
3797	enum intel_pipe_crc_object object;
3798	enum intel_pipe_crc_source source;
3799
3800	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3801	if (n_words != N_WORDS) {
3802		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3803				 N_WORDS);
3804		return -EINVAL;
3805	}
3806
3807	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3808		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3809		return -EINVAL;
3810	}
3811
3812	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3813		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3814		return -EINVAL;
3815	}
3816
3817	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3818		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3819		return -EINVAL;
3820	}
3821
3822	return pipe_crc_set_source(dev, pipe, source);
3823}
3824
3825static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3826				     size_t len, loff_t *offp)
3827{
3828	struct seq_file *m = file->private_data;
3829	struct drm_device *dev = m->private;
3830	char *tmpbuf;
3831	int ret;
3832
3833	if (len == 0)
3834		return 0;
3835
3836	if (len > PAGE_SIZE - 1) {
3837		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3838				 PAGE_SIZE);
3839		return -E2BIG;
3840	}
3841
3842	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3843	if (!tmpbuf)
3844		return -ENOMEM;
3845
3846	if (copy_from_user(tmpbuf, ubuf, len)) {
3847		ret = -EFAULT;
3848		goto out;
3849	}
3850	tmpbuf[len] = '\0';
3851
3852	ret = display_crc_ctl_parse(dev, tmpbuf, len);
3853
3854out:
3855	kfree(tmpbuf);
3856	if (ret < 0)
3857		return ret;
3858
3859	*offp += len;
3860	return len;
3861}
3862
3863static const struct file_operations i915_display_crc_ctl_fops = {
3864	.owner = THIS_MODULE,
3865	.open = display_crc_ctl_open,
3866	.read = seq_read,
3867	.llseek = seq_lseek,
3868	.release = single_release,
3869	.write = display_crc_ctl_write
3870};
3871
3872static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3873{
3874	struct drm_device *dev = m->private;
3875	int num_levels = ilk_wm_max_level(dev) + 1;
3876	int level;
3877
3878	drm_modeset_lock_all(dev);
3879
3880	for (level = 0; level < num_levels; level++) {
3881		unsigned int latency = wm[level];
3882
3883		/*
3884		 * - WM1+ latency values in 0.5us units
3885		 * - latencies are in us on gen9
3886		 */
3887		if (INTEL_INFO(dev)->gen >= 9)
3888			latency *= 10;
3889		else if (level > 0)
3890			latency *= 5;
3891
3892		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3893			   level, wm[level], latency / 10, latency % 10);
3894	}
3895
3896	drm_modeset_unlock_all(dev);
3897}
3898
3899static int pri_wm_latency_show(struct seq_file *m, void *data)
3900{
3901	struct drm_device *dev = m->private;
3902	struct drm_i915_private *dev_priv = dev->dev_private;
3903	const uint16_t *latencies;
3904
3905	if (INTEL_INFO(dev)->gen >= 9)
3906		latencies = dev_priv->wm.skl_latency;
3907	else
3908		latencies = to_i915(dev)->wm.pri_latency;
3909
3910	wm_latency_show(m, latencies);
3911
3912	return 0;
3913}
3914
3915static int spr_wm_latency_show(struct seq_file *m, void *data)
3916{
3917	struct drm_device *dev = m->private;
3918	struct drm_i915_private *dev_priv = dev->dev_private;
3919	const uint16_t *latencies;
3920
3921	if (INTEL_INFO(dev)->gen >= 9)
3922		latencies = dev_priv->wm.skl_latency;
3923	else
3924		latencies = to_i915(dev)->wm.spr_latency;
3925
3926	wm_latency_show(m, latencies);
3927
3928	return 0;
3929}
3930
3931static int cur_wm_latency_show(struct seq_file *m, void *data)
3932{
3933	struct drm_device *dev = m->private;
3934	struct drm_i915_private *dev_priv = dev->dev_private;
3935	const uint16_t *latencies;
3936
3937	if (INTEL_INFO(dev)->gen >= 9)
3938		latencies = dev_priv->wm.skl_latency;
3939	else
3940		latencies = to_i915(dev)->wm.cur_latency;
3941
3942	wm_latency_show(m, latencies);
3943
3944	return 0;
3945}
3946
3947static int pri_wm_latency_open(struct inode *inode, struct file *file)
3948{
3949	struct drm_device *dev = inode->i_private;
3950
3951	if (HAS_GMCH_DISPLAY(dev))
3952		return -ENODEV;
3953
3954	return single_open(file, pri_wm_latency_show, dev);
3955}
3956
3957static int spr_wm_latency_open(struct inode *inode, struct file *file)
3958{
3959	struct drm_device *dev = inode->i_private;
3960
3961	if (HAS_GMCH_DISPLAY(dev))
3962		return -ENODEV;
3963
3964	return single_open(file, spr_wm_latency_show, dev);
3965}
3966
3967static int cur_wm_latency_open(struct inode *inode, struct file *file)
3968{
3969	struct drm_device *dev = inode->i_private;
3970
3971	if (HAS_GMCH_DISPLAY(dev))
3972		return -ENODEV;
3973
3974	return single_open(file, cur_wm_latency_show, dev);
3975}
3976
3977static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3978				size_t len, loff_t *offp, uint16_t wm[8])
3979{
3980	struct seq_file *m = file->private_data;
3981	struct drm_device *dev = m->private;
3982	uint16_t new[8] = { 0 };
3983	int num_levels = ilk_wm_max_level(dev) + 1;
3984	int level;
3985	int ret;
3986	char tmp[32];
3987
3988	if (len >= sizeof(tmp))
3989		return -EINVAL;
3990
3991	if (copy_from_user(tmp, ubuf, len))
3992		return -EFAULT;
3993
3994	tmp[len] = '\0';
3995
3996	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3997		     &new[0], &new[1], &new[2], &new[3],
3998		     &new[4], &new[5], &new[6], &new[7]);
3999	if (ret != num_levels)
4000		return -EINVAL;
4001
4002	drm_modeset_lock_all(dev);
4003
4004	for (level = 0; level < num_levels; level++)
4005		wm[level] = new[level];
4006
4007	drm_modeset_unlock_all(dev);
4008
4009	return len;
4010}
4011
4012
4013static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4014				    size_t len, loff_t *offp)
4015{
4016	struct seq_file *m = file->private_data;
4017	struct drm_device *dev = m->private;
4018	struct drm_i915_private *dev_priv = dev->dev_private;
4019	uint16_t *latencies;
4020
4021	if (INTEL_INFO(dev)->gen >= 9)
4022		latencies = dev_priv->wm.skl_latency;
4023	else
4024		latencies = to_i915(dev)->wm.pri_latency;
4025
4026	return wm_latency_write(file, ubuf, len, offp, latencies);
4027}
4028
4029static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4030				    size_t len, loff_t *offp)
4031{
4032	struct seq_file *m = file->private_data;
4033	struct drm_device *dev = m->private;
4034	struct drm_i915_private *dev_priv = dev->dev_private;
4035	uint16_t *latencies;
4036
4037	if (INTEL_INFO(dev)->gen >= 9)
4038		latencies = dev_priv->wm.skl_latency;
4039	else
4040		latencies = to_i915(dev)->wm.spr_latency;
4041
4042	return wm_latency_write(file, ubuf, len, offp, latencies);
4043}
4044
4045static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4046				    size_t len, loff_t *offp)
4047{
4048	struct seq_file *m = file->private_data;
4049	struct drm_device *dev = m->private;
4050	struct drm_i915_private *dev_priv = dev->dev_private;
4051	uint16_t *latencies;
4052
4053	if (INTEL_INFO(dev)->gen >= 9)
4054		latencies = dev_priv->wm.skl_latency;
4055	else
4056		latencies = to_i915(dev)->wm.cur_latency;
4057
4058	return wm_latency_write(file, ubuf, len, offp, latencies);
4059}
4060
4061static const struct file_operations i915_pri_wm_latency_fops = {
4062	.owner = THIS_MODULE,
4063	.open = pri_wm_latency_open,
4064	.read = seq_read,
4065	.llseek = seq_lseek,
4066	.release = single_release,
4067	.write = pri_wm_latency_write
4068};
4069
4070static const struct file_operations i915_spr_wm_latency_fops = {
4071	.owner = THIS_MODULE,
4072	.open = spr_wm_latency_open,
4073	.read = seq_read,
4074	.llseek = seq_lseek,
4075	.release = single_release,
4076	.write = spr_wm_latency_write
4077};
4078
4079static const struct file_operations i915_cur_wm_latency_fops = {
4080	.owner = THIS_MODULE,
4081	.open = cur_wm_latency_open,
4082	.read = seq_read,
4083	.llseek = seq_lseek,
4084	.release = single_release,
4085	.write = cur_wm_latency_write
4086};
4087
4088static int
4089i915_wedged_get(void *data, u64 *val)
4090{
4091	struct drm_device *dev = data;
4092	struct drm_i915_private *dev_priv = dev->dev_private;
4093
4094	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4095
4096	return 0;
4097}
4098
4099static int
4100i915_wedged_set(void *data, u64 val)
4101{
4102	struct drm_device *dev = data;
4103	struct drm_i915_private *dev_priv = dev->dev_private;
4104
4105	/*
4106	 * There is no safeguard against this debugfs entry colliding
4107	 * with the hangcheck calling same i915_handle_error() in
4108	 * parallel, causing an explosion. For now we assume that the
4109	 * test harness is responsible enough not to inject gpu hangs
4110	 * while it is writing to 'i915_wedged'
4111	 */
4112
4113	if (i915_reset_in_progress(&dev_priv->gpu_error))
4114		return -EAGAIN;
4115
4116	intel_runtime_pm_get(dev_priv);
4117
4118	i915_handle_error(dev, val,
4119			  "Manually setting wedged to %llu", val);
4120
4121	intel_runtime_pm_put(dev_priv);
4122
4123	return 0;
4124}
4125
4126DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4127			i915_wedged_get, i915_wedged_set,
4128			"%llu\n");
4129
4130static int
4131i915_ring_stop_get(void *data, u64 *val)
4132{
4133	struct drm_device *dev = data;
4134	struct drm_i915_private *dev_priv = dev->dev_private;
4135
4136	*val = dev_priv->gpu_error.stop_rings;
4137
4138	return 0;
4139}
4140
4141static int
4142i915_ring_stop_set(void *data, u64 val)
4143{
4144	struct drm_device *dev = data;
4145	struct drm_i915_private *dev_priv = dev->dev_private;
4146	int ret;
4147
4148	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4149
4150	ret = mutex_lock_interruptible(&dev->struct_mutex);
4151	if (ret)
4152		return ret;
4153
4154	dev_priv->gpu_error.stop_rings = val;
4155	mutex_unlock(&dev->struct_mutex);
4156
4157	return 0;
4158}
4159
4160DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4161			i915_ring_stop_get, i915_ring_stop_set,
4162			"0x%08llx\n");
4163
4164static int
4165i915_ring_missed_irq_get(void *data, u64 *val)
4166{
4167	struct drm_device *dev = data;
4168	struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170	*val = dev_priv->gpu_error.missed_irq_rings;
4171	return 0;
4172}
4173
4174static int
4175i915_ring_missed_irq_set(void *data, u64 val)
4176{
4177	struct drm_device *dev = data;
4178	struct drm_i915_private *dev_priv = dev->dev_private;
4179	int ret;
4180
4181	/* Lock against concurrent debugfs callers */
4182	ret = mutex_lock_interruptible(&dev->struct_mutex);
4183	if (ret)
4184		return ret;
4185	dev_priv->gpu_error.missed_irq_rings = val;
4186	mutex_unlock(&dev->struct_mutex);
4187
4188	return 0;
4189}
4190
4191DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4192			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4193			"0x%08llx\n");
4194
4195static int
4196i915_ring_test_irq_get(void *data, u64 *val)
4197{
4198	struct drm_device *dev = data;
4199	struct drm_i915_private *dev_priv = dev->dev_private;
4200
4201	*val = dev_priv->gpu_error.test_irq_rings;
4202
4203	return 0;
4204}
4205
4206static int
4207i915_ring_test_irq_set(void *data, u64 val)
4208{
4209	struct drm_device *dev = data;
4210	struct drm_i915_private *dev_priv = dev->dev_private;
4211	int ret;
4212
4213	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4214
4215	/* Lock against concurrent debugfs callers */
4216	ret = mutex_lock_interruptible(&dev->struct_mutex);
4217	if (ret)
4218		return ret;
4219
4220	dev_priv->gpu_error.test_irq_rings = val;
4221	mutex_unlock(&dev->struct_mutex);
4222
4223	return 0;
4224}
4225
4226DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4227			i915_ring_test_irq_get, i915_ring_test_irq_set,
4228			"0x%08llx\n");
4229
4230#define DROP_UNBOUND 0x1
4231#define DROP_BOUND 0x2
4232#define DROP_RETIRE 0x4
4233#define DROP_ACTIVE 0x8
4234#define DROP_ALL (DROP_UNBOUND | \
4235		  DROP_BOUND | \
4236		  DROP_RETIRE | \
4237		  DROP_ACTIVE)
4238static int
4239i915_drop_caches_get(void *data, u64 *val)
4240{
4241	*val = DROP_ALL;
4242
4243	return 0;
4244}
4245
4246static int
4247i915_drop_caches_set(void *data, u64 val)
4248{
4249	struct drm_device *dev = data;
4250	struct drm_i915_private *dev_priv = dev->dev_private;
4251	int ret;
4252
4253	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4254
4255	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4256	 * on ioctls on -EAGAIN. */
4257	ret = mutex_lock_interruptible(&dev->struct_mutex);
4258	if (ret)
4259		return ret;
4260
4261	if (val & DROP_ACTIVE) {
4262		ret = i915_gpu_idle(dev);
4263		if (ret)
4264			goto unlock;
4265	}
4266
4267	if (val & (DROP_RETIRE | DROP_ACTIVE))
4268		i915_gem_retire_requests(dev);
4269
4270	if (val & DROP_BOUND)
4271		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4272
4273	if (val & DROP_UNBOUND)
4274		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4275
4276unlock:
4277	mutex_unlock(&dev->struct_mutex);
4278
4279	return ret;
4280}
4281
4282DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4283			i915_drop_caches_get, i915_drop_caches_set,
4284			"0x%08llx\n");
4285
4286static int
4287i915_max_freq_get(void *data, u64 *val)
4288{
4289	struct drm_device *dev = data;
4290	struct drm_i915_private *dev_priv = dev->dev_private;
4291	int ret;
4292
4293	if (INTEL_INFO(dev)->gen < 6)
4294		return -ENODEV;
4295
4296	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4297
4298	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4299	if (ret)
4300		return ret;
4301
4302	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4303	mutex_unlock(&dev_priv->rps.hw_lock);
4304
4305	return 0;
4306}
4307
4308static int
4309i915_max_freq_set(void *data, u64 val)
4310{
4311	struct drm_device *dev = data;
4312	struct drm_i915_private *dev_priv = dev->dev_private;
4313	u32 hw_max, hw_min;
4314	int ret;
4315
4316	if (INTEL_INFO(dev)->gen < 6)
4317		return -ENODEV;
4318
4319	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4320
4321	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4322
4323	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4324	if (ret)
4325		return ret;
4326
4327	/*
4328	 * Turbo will still be enabled, but won't go above the set value.
4329	 */
4330	val = intel_freq_opcode(dev_priv, val);
4331
4332	hw_max = dev_priv->rps.max_freq;
4333	hw_min = dev_priv->rps.min_freq;
4334
4335	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4336		mutex_unlock(&dev_priv->rps.hw_lock);
4337		return -EINVAL;
4338	}
4339
4340	dev_priv->rps.max_freq_softlimit = val;
4341
4342	intel_set_rps(dev, val);
4343
4344	mutex_unlock(&dev_priv->rps.hw_lock);
4345
4346	return 0;
4347}
4348
4349DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4350			i915_max_freq_get, i915_max_freq_set,
4351			"%llu\n");
4352
4353static int
4354i915_min_freq_get(void *data, u64 *val)
4355{
4356	struct drm_device *dev = data;
4357	struct drm_i915_private *dev_priv = dev->dev_private;
4358	int ret;
4359
4360	if (INTEL_INFO(dev)->gen < 6)
4361		return -ENODEV;
4362
4363	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4364
4365	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4366	if (ret)
4367		return ret;
4368
4369	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4370	mutex_unlock(&dev_priv->rps.hw_lock);
4371
4372	return 0;
4373}
4374
4375static int
4376i915_min_freq_set(void *data, u64 val)
4377{
4378	struct drm_device *dev = data;
4379	struct drm_i915_private *dev_priv = dev->dev_private;
4380	u32 hw_max, hw_min;
4381	int ret;
4382
4383	if (INTEL_INFO(dev)->gen < 6)
4384		return -ENODEV;
4385
4386	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4387
4388	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4389
4390	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4391	if (ret)
4392		return ret;
4393
4394	/*
4395	 * Turbo will still be enabled, but won't go below the set value.
4396	 */
4397	val = intel_freq_opcode(dev_priv, val);
4398
4399	hw_max = dev_priv->rps.max_freq;
4400	hw_min = dev_priv->rps.min_freq;
4401
4402	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4403		mutex_unlock(&dev_priv->rps.hw_lock);
4404		return -EINVAL;
4405	}
4406
4407	dev_priv->rps.min_freq_softlimit = val;
4408
4409	intel_set_rps(dev, val);
4410
4411	mutex_unlock(&dev_priv->rps.hw_lock);
4412
4413	return 0;
4414}
4415
4416DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4417			i915_min_freq_get, i915_min_freq_set,
4418			"%llu\n");
4419
4420static int
4421i915_cache_sharing_get(void *data, u64 *val)
4422{
4423	struct drm_device *dev = data;
4424	struct drm_i915_private *dev_priv = dev->dev_private;
4425	u32 snpcr;
4426	int ret;
4427
4428	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4429		return -ENODEV;
4430
4431	ret = mutex_lock_interruptible(&dev->struct_mutex);
4432	if (ret)
4433		return ret;
4434	intel_runtime_pm_get(dev_priv);
4435
4436	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4437
4438	intel_runtime_pm_put(dev_priv);
4439	mutex_unlock(&dev_priv->dev->struct_mutex);
4440
4441	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4442
4443	return 0;
4444}
4445
4446static int
4447i915_cache_sharing_set(void *data, u64 val)
4448{
4449	struct drm_device *dev = data;
4450	struct drm_i915_private *dev_priv = dev->dev_private;
4451	u32 snpcr;
4452
4453	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4454		return -ENODEV;
4455
4456	if (val > 3)
4457		return -EINVAL;
4458
4459	intel_runtime_pm_get(dev_priv);
4460	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4461
4462	/* Update the cache sharing policy here as well */
4463	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4464	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4465	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4466	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4467
4468	intel_runtime_pm_put(dev_priv);
4469	return 0;
4470}
4471
4472DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4473			i915_cache_sharing_get, i915_cache_sharing_set,
4474			"%llu\n");
4475
4476static int i915_sseu_status(struct seq_file *m, void *unused)
4477{
4478	struct drm_info_node *node = (struct drm_info_node *) m->private;
4479	struct drm_device *dev = node->minor->dev;
4480	struct drm_i915_private *dev_priv = dev->dev_private;
4481	unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0;
4482
4483	if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4484		return -ENODEV;
4485
4486	seq_puts(m, "SSEU Device Info\n");
4487	seq_printf(m, "  Available Slice Total: %u\n",
4488		   INTEL_INFO(dev)->slice_total);
4489	seq_printf(m, "  Available Subslice Total: %u\n",
4490		   INTEL_INFO(dev)->subslice_total);
4491	seq_printf(m, "  Available Subslice Per Slice: %u\n",
4492		   INTEL_INFO(dev)->subslice_per_slice);
4493	seq_printf(m, "  Available EU Total: %u\n",
4494		   INTEL_INFO(dev)->eu_total);
4495	seq_printf(m, "  Available EU Per Subslice: %u\n",
4496		   INTEL_INFO(dev)->eu_per_subslice);
4497	seq_printf(m, "  Has Slice Power Gating: %s\n",
4498		   yesno(INTEL_INFO(dev)->has_slice_pg));
4499	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4500		   yesno(INTEL_INFO(dev)->has_subslice_pg));
4501	seq_printf(m, "  Has EU Power Gating: %s\n",
4502		   yesno(INTEL_INFO(dev)->has_eu_pg));
4503
4504	seq_puts(m, "SSEU Device Status\n");
4505	if (IS_CHERRYVIEW(dev)) {
4506		const int ss_max = 2;
4507		int ss;
4508		u32 sig1[ss_max], sig2[ss_max];
4509
4510		sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4511		sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4512		sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4513		sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4514
4515		for (ss = 0; ss < ss_max; ss++) {
4516			unsigned int eu_cnt;
4517
4518			if (sig1[ss] & CHV_SS_PG_ENABLE)
4519				/* skip disabled subslice */
4520				continue;
4521
4522			s_tot = 1;
4523			ss_per++;
4524			eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4525				 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4526				 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4527				 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4528			eu_tot += eu_cnt;
4529			eu_per = max(eu_per, eu_cnt);
4530		}
4531		ss_tot = ss_per;
4532	} else if (IS_SKYLAKE(dev)) {
4533		const int s_max = 3, ss_max = 4;
4534		int s, ss;
4535		u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4536
4537		s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK);
4538		s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK);
4539		s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK);
4540		eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK);
4541		eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK);
4542		eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK);
4543		eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK);
4544		eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK);
4545		eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK);
4546		eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4547			     GEN9_PGCTL_SSA_EU19_ACK |
4548			     GEN9_PGCTL_SSA_EU210_ACK |
4549			     GEN9_PGCTL_SSA_EU311_ACK;
4550		eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4551			     GEN9_PGCTL_SSB_EU19_ACK |
4552			     GEN9_PGCTL_SSB_EU210_ACK |
4553			     GEN9_PGCTL_SSB_EU311_ACK;
4554
4555		for (s = 0; s < s_max; s++) {
4556			if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4557				/* skip disabled slice */
4558				continue;
4559
4560			s_tot++;
4561			ss_per = INTEL_INFO(dev)->subslice_per_slice;
4562			ss_tot += ss_per;
4563			for (ss = 0; ss < ss_max; ss++) {
4564				unsigned int eu_cnt;
4565
4566				eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4567						       eu_mask[ss%2]);
4568				eu_tot += eu_cnt;
4569				eu_per = max(eu_per, eu_cnt);
4570			}
4571		}
4572	}
4573	seq_printf(m, "  Enabled Slice Total: %u\n", s_tot);
4574	seq_printf(m, "  Enabled Subslice Total: %u\n", ss_tot);
4575	seq_printf(m, "  Enabled Subslice Per Slice: %u\n", ss_per);
4576	seq_printf(m, "  Enabled EU Total: %u\n", eu_tot);
4577	seq_printf(m, "  Enabled EU Per Subslice: %u\n", eu_per);
4578
4579	return 0;
4580}
4581
4582static int i915_forcewake_open(struct inode *inode, struct file *file)
4583{
4584	struct drm_device *dev = inode->i_private;
4585	struct drm_i915_private *dev_priv = dev->dev_private;
4586
4587	if (INTEL_INFO(dev)->gen < 6)
4588		return 0;
4589
4590	intel_runtime_pm_get(dev_priv);
4591	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4592
4593	return 0;
4594}
4595
4596static int i915_forcewake_release(struct inode *inode, struct file *file)
4597{
4598	struct drm_device *dev = inode->i_private;
4599	struct drm_i915_private *dev_priv = dev->dev_private;
4600
4601	if (INTEL_INFO(dev)->gen < 6)
4602		return 0;
4603
4604	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4605	intel_runtime_pm_put(dev_priv);
4606
4607	return 0;
4608}
4609
4610static const struct file_operations i915_forcewake_fops = {
4611	.owner = THIS_MODULE,
4612	.open = i915_forcewake_open,
4613	.release = i915_forcewake_release,
4614};
4615
4616static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4617{
4618	struct drm_device *dev = minor->dev;
4619	struct dentry *ent;
4620
4621	ent = debugfs_create_file("i915_forcewake_user",
4622				  S_IRUSR,
4623				  root, dev,
4624				  &i915_forcewake_fops);
4625	if (!ent)
4626		return -ENOMEM;
4627
4628	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4629}
4630
4631static int i915_debugfs_create(struct dentry *root,
4632			       struct drm_minor *minor,
4633			       const char *name,
4634			       const struct file_operations *fops)
4635{
4636	struct drm_device *dev = minor->dev;
4637	struct dentry *ent;
4638
4639	ent = debugfs_create_file(name,
4640				  S_IRUGO | S_IWUSR,
4641				  root, dev,
4642				  fops);
4643	if (!ent)
4644		return -ENOMEM;
4645
4646	return drm_add_fake_info_node(minor, ent, fops);
4647}
4648
4649static const struct drm_info_list i915_debugfs_list[] = {
4650	{"i915_capabilities", i915_capabilities, 0},
4651	{"i915_gem_objects", i915_gem_object_info, 0},
4652	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4653	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4654	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4655	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4656	{"i915_gem_stolen", i915_gem_stolen_list_info },
4657	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4658	{"i915_gem_request", i915_gem_request_info, 0},
4659	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4660	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4661	{"i915_gem_interrupt", i915_interrupt_info, 0},
4662	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4663	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4664	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4665	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4666	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4667	{"i915_frequency_info", i915_frequency_info, 0},
4668	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4669	{"i915_drpc_info", i915_drpc_info, 0},
4670	{"i915_emon_status", i915_emon_status, 0},
4671	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4672	{"i915_fbc_status", i915_fbc_status, 0},
4673	{"i915_ips_status", i915_ips_status, 0},
4674	{"i915_sr_status", i915_sr_status, 0},
4675	{"i915_opregion", i915_opregion, 0},
4676	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4677	{"i915_context_status", i915_context_status, 0},
4678	{"i915_dump_lrc", i915_dump_lrc, 0},
4679	{"i915_execlists", i915_execlists, 0},
4680	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4681	{"i915_swizzle_info", i915_swizzle_info, 0},
4682	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4683	{"i915_llc", i915_llc, 0},
4684	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4685	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4686	{"i915_energy_uJ", i915_energy_uJ, 0},
4687	{"i915_pc8_status", i915_pc8_status, 0},
4688	{"i915_power_domain_info", i915_power_domain_info, 0},
4689	{"i915_display_info", i915_display_info, 0},
4690	{"i915_semaphore_status", i915_semaphore_status, 0},
4691	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4692	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4693	{"i915_wa_registers", i915_wa_registers, 0},
4694	{"i915_ddb_info", i915_ddb_info, 0},
4695	{"i915_sseu_status", i915_sseu_status, 0},
4696	{"i915_drrs_status", i915_drrs_status, 0},
4697};
4698#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4699
4700static const struct i915_debugfs_files {
4701	const char *name;
4702	const struct file_operations *fops;
4703} i915_debugfs_files[] = {
4704	{"i915_wedged", &i915_wedged_fops},
4705	{"i915_max_freq", &i915_max_freq_fops},
4706	{"i915_min_freq", &i915_min_freq_fops},
4707	{"i915_cache_sharing", &i915_cache_sharing_fops},
4708	{"i915_ring_stop", &i915_ring_stop_fops},
4709	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4710	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4711	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4712	{"i915_error_state", &i915_error_state_fops},
4713	{"i915_next_seqno", &i915_next_seqno_fops},
4714	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4715	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4716	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4717	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4718	{"i915_fbc_false_color", &i915_fbc_fc_fops},
4719};
4720
4721void intel_display_crc_init(struct drm_device *dev)
4722{
4723	struct drm_i915_private *dev_priv = dev->dev_private;
4724	enum pipe pipe;
4725
4726	for_each_pipe(dev_priv, pipe) {
4727		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4728
4729		pipe_crc->opened = false;
4730		spin_lock_init(&pipe_crc->lock);
4731		init_waitqueue_head(&pipe_crc->wq);
4732	}
4733}
4734
4735int i915_debugfs_init(struct drm_minor *minor)
4736{
4737	int ret, i;
4738
4739	ret = i915_forcewake_create(minor->debugfs_root, minor);
4740	if (ret)
4741		return ret;
4742
4743	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4744		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4745		if (ret)
4746			return ret;
4747	}
4748
4749	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4750		ret = i915_debugfs_create(minor->debugfs_root, minor,
4751					  i915_debugfs_files[i].name,
4752					  i915_debugfs_files[i].fops);
4753		if (ret)
4754			return ret;
4755	}
4756
4757	return drm_debugfs_create_files(i915_debugfs_list,
4758					I915_DEBUGFS_ENTRIES,
4759					minor->debugfs_root, minor);
4760}
4761
4762void i915_debugfs_cleanup(struct drm_minor *minor)
4763{
4764	int i;
4765
4766	drm_debugfs_remove_files(i915_debugfs_list,
4767				 I915_DEBUGFS_ENTRIES, minor);
4768
4769	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4770				 1, minor);
4771
4772	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4773		struct drm_info_list *info_list =
4774			(struct drm_info_list *)&i915_pipe_crc_data[i];
4775
4776		drm_debugfs_remove_files(info_list, 1, minor);
4777	}
4778
4779	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4780		struct drm_info_list *info_list =
4781			(struct drm_info_list *) i915_debugfs_files[i].fops;
4782
4783		drm_debugfs_remove_files(info_list, 1, minor);
4784	}
4785}
4786