1/*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "drmP.h"
26#include "i915_drm.h"
27#include "i915_drv.h"
28#include "i915_trace.h"
29#include "intel_drv.h"
30#include <linux/mmu_context.h>
31#include <linux/mmu_notifier.h>
32#include <linux/mempolicy.h>
33#include <linux/swap.h>
34
35struct i915_mm_struct {
36	struct mm_struct *mm;
37	struct drm_device *dev;
38	struct i915_mmu_notifier *mn;
39	struct hlist_node node;
40	struct kref kref;
41	struct work_struct work;
42};
43
44#if defined(CONFIG_MMU_NOTIFIER)
45#include <linux/interval_tree.h>
46
47struct i915_mmu_notifier {
48	spinlock_t lock;
49	struct hlist_node node;
50	struct mmu_notifier mn;
51	struct rb_root objects;
52	struct list_head linear;
53	unsigned long serial;
54	bool has_linear;
55};
56
57struct i915_mmu_object {
58	struct i915_mmu_notifier *mn;
59	struct interval_tree_node it;
60	struct list_head link;
61	struct drm_i915_gem_object *obj;
62	bool is_linear;
63};
64
65static unsigned long cancel_userptr(struct drm_i915_gem_object *obj)
66{
67	struct drm_device *dev = obj->base.dev;
68	unsigned long end;
69
70	mutex_lock(&dev->struct_mutex);
71	/* Cancel any active worker and force us to re-evaluate gup */
72	obj->userptr.work = NULL;
73
74	if (obj->pages != NULL) {
75		struct drm_i915_private *dev_priv = to_i915(dev);
76		struct i915_vma *vma, *tmp;
77		bool was_interruptible;
78
79		was_interruptible = dev_priv->mm.interruptible;
80		dev_priv->mm.interruptible = false;
81
82		list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
83			int ret = i915_vma_unbind(vma);
84			WARN_ON(ret && ret != -EIO);
85		}
86		WARN_ON(i915_gem_object_put_pages(obj));
87
88		dev_priv->mm.interruptible = was_interruptible;
89	}
90
91	end = obj->userptr.ptr + obj->base.size;
92
93	drm_gem_object_unreference(&obj->base);
94	mutex_unlock(&dev->struct_mutex);
95
96	return end;
97}
98
99static void *invalidate_range__linear(struct i915_mmu_notifier *mn,
100				      struct mm_struct *mm,
101				      unsigned long start,
102				      unsigned long end)
103{
104	struct i915_mmu_object *mo;
105	unsigned long serial;
106
107restart:
108	serial = mn->serial;
109	list_for_each_entry(mo, &mn->linear, link) {
110		struct drm_i915_gem_object *obj;
111
112		if (mo->it.last < start || mo->it.start > end)
113			continue;
114
115		obj = mo->obj;
116
117		if (!kref_get_unless_zero(&obj->base.refcount))
118			continue;
119
120		spin_unlock(&mn->lock);
121
122		cancel_userptr(obj);
123
124		spin_lock(&mn->lock);
125		if (serial != mn->serial)
126			goto restart;
127	}
128
129	return NULL;
130}
131
132static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
133						       struct mm_struct *mm,
134						       unsigned long start,
135						       unsigned long end)
136{
137	struct i915_mmu_notifier *mn = container_of(_mn, struct i915_mmu_notifier, mn);
138	struct interval_tree_node *it = NULL;
139	unsigned long next = start;
140	unsigned long serial = 0;
141
142	end--; /* interval ranges are inclusive, but invalidate range is exclusive */
143	while (next < end) {
144		struct drm_i915_gem_object *obj = NULL;
145
146		spin_lock(&mn->lock);
147		if (mn->has_linear)
148			it = invalidate_range__linear(mn, mm, start, end);
149		else if (serial == mn->serial)
150			it = interval_tree_iter_next(it, next, end);
151		else
152			it = interval_tree_iter_first(&mn->objects, start, end);
153		if (it != NULL) {
154			obj = container_of(it, struct i915_mmu_object, it)->obj;
155
156			/* The mmu_object is released late when destroying the
157			 * GEM object so it is entirely possible to gain a
158			 * reference on an object in the process of being freed
159			 * since our serialisation is via the spinlock and not
160			 * the struct_mutex - and consequently use it after it
161			 * is freed and then double free it.
162			 */
163			if (!kref_get_unless_zero(&obj->base.refcount)) {
164				spin_unlock(&mn->lock);
165				serial = 0;
166				continue;
167			}
168
169			serial = mn->serial;
170		}
171		spin_unlock(&mn->lock);
172		if (obj == NULL)
173			return;
174
175		next = cancel_userptr(obj);
176	}
177}
178
179static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
180	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
181};
182
183static struct i915_mmu_notifier *
184i915_mmu_notifier_create(struct mm_struct *mm)
185{
186	struct i915_mmu_notifier *mn;
187	int ret;
188
189	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
190	if (mn == NULL)
191		return ERR_PTR(-ENOMEM);
192
193	spin_lock_init(&mn->lock);
194	mn->mn.ops = &i915_gem_userptr_notifier;
195	mn->objects = RB_ROOT;
196	mn->serial = 1;
197	INIT_LIST_HEAD(&mn->linear);
198	mn->has_linear = false;
199
200	 /* Protected by mmap_sem (write-lock) */
201	ret = __mmu_notifier_register(&mn->mn, mm);
202	if (ret) {
203		kfree(mn);
204		return ERR_PTR(ret);
205	}
206
207	return mn;
208}
209
210static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier *mn)
211{
212	if (++mn->serial == 0)
213		mn->serial = 1;
214}
215
216static int
217i915_mmu_notifier_add(struct drm_device *dev,
218		      struct i915_mmu_notifier *mn,
219		      struct i915_mmu_object *mo)
220{
221	struct interval_tree_node *it;
222	int ret;
223
224	ret = i915_mutex_lock_interruptible(dev);
225	if (ret)
226		return ret;
227
228	/* Make sure we drop the final active reference (and thereby
229	 * remove the objects from the interval tree) before we do
230	 * the check for overlapping objects.
231	 */
232	i915_gem_retire_requests(dev);
233
234	spin_lock(&mn->lock);
235	it = interval_tree_iter_first(&mn->objects,
236				      mo->it.start, mo->it.last);
237	if (it) {
238		struct drm_i915_gem_object *obj;
239
240		/* We only need to check the first object in the range as it
241		 * either has cancelled gup work queued and we need to
242		 * return back to the user to give time for the gup-workers
243		 * to flush their object references upon which the object will
244		 * be removed from the interval-tree, or the the range is
245		 * still in use by another client and the overlap is invalid.
246		 *
247		 * If we do have an overlap, we cannot use the interval tree
248		 * for fast range invalidation.
249		 */
250
251		obj = container_of(it, struct i915_mmu_object, it)->obj;
252		if (!obj->userptr.workers)
253			mn->has_linear = mo->is_linear = true;
254		else
255			ret = -EAGAIN;
256	} else
257		interval_tree_insert(&mo->it, &mn->objects);
258
259	if (ret == 0) {
260		list_add(&mo->link, &mn->linear);
261		__i915_mmu_notifier_update_serial(mn);
262	}
263	spin_unlock(&mn->lock);
264	mutex_unlock(&dev->struct_mutex);
265
266	return ret;
267}
268
269static bool i915_mmu_notifier_has_linear(struct i915_mmu_notifier *mn)
270{
271	struct i915_mmu_object *mo;
272
273	list_for_each_entry(mo, &mn->linear, link)
274		if (mo->is_linear)
275			return true;
276
277	return false;
278}
279
280static void
281i915_mmu_notifier_del(struct i915_mmu_notifier *mn,
282		      struct i915_mmu_object *mo)
283{
284	spin_lock(&mn->lock);
285	list_del(&mo->link);
286	if (mo->is_linear)
287		mn->has_linear = i915_mmu_notifier_has_linear(mn);
288	else
289		interval_tree_remove(&mo->it, &mn->objects);
290	__i915_mmu_notifier_update_serial(mn);
291	spin_unlock(&mn->lock);
292}
293
294static void
295i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
296{
297	struct i915_mmu_object *mo;
298
299	mo = obj->userptr.mmu_object;
300	if (mo == NULL)
301		return;
302
303	i915_mmu_notifier_del(mo->mn, mo);
304	kfree(mo);
305
306	obj->userptr.mmu_object = NULL;
307}
308
309static struct i915_mmu_notifier *
310i915_mmu_notifier_find(struct i915_mm_struct *mm)
311{
312	struct i915_mmu_notifier *mn = mm->mn;
313
314	mn = mm->mn;
315	if (mn)
316		return mn;
317
318	down_write(&mm->mm->mmap_sem);
319	mutex_lock(&to_i915(mm->dev)->mm_lock);
320	if ((mn = mm->mn) == NULL) {
321		mn = i915_mmu_notifier_create(mm->mm);
322		if (!IS_ERR(mn))
323			mm->mn = mn;
324	}
325	mutex_unlock(&to_i915(mm->dev)->mm_lock);
326	up_write(&mm->mm->mmap_sem);
327
328	return mn;
329}
330
331static int
332i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
333				    unsigned flags)
334{
335	struct i915_mmu_notifier *mn;
336	struct i915_mmu_object *mo;
337	int ret;
338
339	if (flags & I915_USERPTR_UNSYNCHRONIZED)
340		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
341
342	if (WARN_ON(obj->userptr.mm == NULL))
343		return -EINVAL;
344
345	mn = i915_mmu_notifier_find(obj->userptr.mm);
346	if (IS_ERR(mn))
347		return PTR_ERR(mn);
348
349	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
350	if (mo == NULL)
351		return -ENOMEM;
352
353	mo->mn = mn;
354	mo->it.start = obj->userptr.ptr;
355	mo->it.last = mo->it.start + obj->base.size - 1;
356	mo->obj = obj;
357
358	ret = i915_mmu_notifier_add(obj->base.dev, mn, mo);
359	if (ret) {
360		kfree(mo);
361		return ret;
362	}
363
364	obj->userptr.mmu_object = mo;
365	return 0;
366}
367
368static void
369i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
370		       struct mm_struct *mm)
371{
372	if (mn == NULL)
373		return;
374
375	mmu_notifier_unregister(&mn->mn, mm);
376	kfree(mn);
377}
378
379#else
380
381static void
382i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
383{
384}
385
386static int
387i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
388				    unsigned flags)
389{
390	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
391		return -ENODEV;
392
393	if (!capable(CAP_SYS_ADMIN))
394		return -EPERM;
395
396	return 0;
397}
398
399static void
400i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
401		       struct mm_struct *mm)
402{
403}
404
405#endif
406
407static struct i915_mm_struct *
408__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
409{
410	struct i915_mm_struct *mm;
411
412	/* Protected by dev_priv->mm_lock */
413	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
414		if (mm->mm == real)
415			return mm;
416
417	return NULL;
418}
419
420static int
421i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
422{
423	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
424	struct i915_mm_struct *mm;
425	int ret = 0;
426
427	/* During release of the GEM object we hold the struct_mutex. This
428	 * precludes us from calling mmput() at that time as that may be
429	 * the last reference and so call exit_mmap(). exit_mmap() will
430	 * attempt to reap the vma, and if we were holding a GTT mmap
431	 * would then call drm_gem_vm_close() and attempt to reacquire
432	 * the struct mutex. So in order to avoid that recursion, we have
433	 * to defer releasing the mm reference until after we drop the
434	 * struct_mutex, i.e. we need to schedule a worker to do the clean
435	 * up.
436	 */
437	mutex_lock(&dev_priv->mm_lock);
438	mm = __i915_mm_struct_find(dev_priv, current->mm);
439	if (mm == NULL) {
440		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
441		if (mm == NULL) {
442			ret = -ENOMEM;
443			goto out;
444		}
445
446		kref_init(&mm->kref);
447		mm->dev = obj->base.dev;
448
449		mm->mm = current->mm;
450		atomic_inc(&current->mm->mm_count);
451
452		mm->mn = NULL;
453
454		/* Protected by dev_priv->mm_lock */
455		hash_add(dev_priv->mm_structs,
456			 &mm->node, (unsigned long)mm->mm);
457	} else
458		kref_get(&mm->kref);
459
460	obj->userptr.mm = mm;
461out:
462	mutex_unlock(&dev_priv->mm_lock);
463	return ret;
464}
465
466static void
467__i915_mm_struct_free__worker(struct work_struct *work)
468{
469	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
470	i915_mmu_notifier_free(mm->mn, mm->mm);
471	mmdrop(mm->mm);
472	kfree(mm);
473}
474
475static void
476__i915_mm_struct_free(struct kref *kref)
477{
478	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
479
480	/* Protected by dev_priv->mm_lock */
481	hash_del(&mm->node);
482	mutex_unlock(&to_i915(mm->dev)->mm_lock);
483
484	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
485	schedule_work(&mm->work);
486}
487
488static void
489i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
490{
491	if (obj->userptr.mm == NULL)
492		return;
493
494	kref_put_mutex(&obj->userptr.mm->kref,
495		       __i915_mm_struct_free,
496		       &to_i915(obj->base.dev)->mm_lock);
497	obj->userptr.mm = NULL;
498}
499
500struct get_pages_work {
501	struct work_struct work;
502	struct drm_i915_gem_object *obj;
503	struct task_struct *task;
504};
505
506#if IS_ENABLED(CONFIG_SWIOTLB)
507#define swiotlb_active() swiotlb_nr_tbl()
508#else
509#define swiotlb_active() 0
510#endif
511
512static int
513st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
514{
515	struct scatterlist *sg;
516	int ret, n;
517
518	*st = kmalloc(sizeof(**st), GFP_KERNEL);
519	if (*st == NULL)
520		return -ENOMEM;
521
522	if (swiotlb_active()) {
523		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
524		if (ret)
525			goto err;
526
527		for_each_sg((*st)->sgl, sg, num_pages, n)
528			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
529	} else {
530		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
531						0, num_pages << PAGE_SHIFT,
532						GFP_KERNEL);
533		if (ret)
534			goto err;
535	}
536
537	return 0;
538
539err:
540	kfree(*st);
541	*st = NULL;
542	return ret;
543}
544
545static void
546__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
547{
548	struct get_pages_work *work = container_of(_work, typeof(*work), work);
549	struct drm_i915_gem_object *obj = work->obj;
550	struct drm_device *dev = obj->base.dev;
551	const int num_pages = obj->base.size >> PAGE_SHIFT;
552	struct page **pvec;
553	int pinned, ret;
554
555	ret = -ENOMEM;
556	pinned = 0;
557
558	pvec = kmalloc(num_pages*sizeof(struct page *),
559		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
560	if (pvec == NULL)
561		pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
562	if (pvec != NULL) {
563		struct mm_struct *mm = obj->userptr.mm->mm;
564
565		down_read(&mm->mmap_sem);
566		while (pinned < num_pages) {
567			ret = get_user_pages(work->task, mm,
568					     obj->userptr.ptr + pinned * PAGE_SIZE,
569					     num_pages - pinned,
570					     !obj->userptr.read_only, 0,
571					     pvec + pinned, NULL);
572			if (ret < 0)
573				break;
574
575			pinned += ret;
576		}
577		up_read(&mm->mmap_sem);
578	}
579
580	mutex_lock(&dev->struct_mutex);
581	if (obj->userptr.work != &work->work) {
582		ret = 0;
583	} else if (pinned == num_pages) {
584		ret = st_set_pages(&obj->pages, pvec, num_pages);
585		if (ret == 0) {
586			list_add_tail(&obj->global_list, &to_i915(dev)->mm.unbound_list);
587			pinned = 0;
588		}
589	}
590
591	obj->userptr.work = ERR_PTR(ret);
592	obj->userptr.workers--;
593	drm_gem_object_unreference(&obj->base);
594	mutex_unlock(&dev->struct_mutex);
595
596	release_pages(pvec, pinned, 0);
597	drm_free_large(pvec);
598
599	put_task_struct(work->task);
600	kfree(work);
601}
602
603static int
604i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
605{
606	const int num_pages = obj->base.size >> PAGE_SHIFT;
607	struct page **pvec;
608	int pinned, ret;
609
610	/* If userspace should engineer that these pages are replaced in
611	 * the vma between us binding this page into the GTT and completion
612	 * of rendering... Their loss. If they change the mapping of their
613	 * pages they need to create a new bo to point to the new vma.
614	 *
615	 * However, that still leaves open the possibility of the vma
616	 * being copied upon fork. Which falls under the same userspace
617	 * synchronisation issue as a regular bo, except that this time
618	 * the process may not be expecting that a particular piece of
619	 * memory is tied to the GPU.
620	 *
621	 * Fortunately, we can hook into the mmu_notifier in order to
622	 * discard the page references prior to anything nasty happening
623	 * to the vma (discard or cloning) which should prevent the more
624	 * egregious cases from causing harm.
625	 */
626
627	pvec = NULL;
628	pinned = 0;
629	if (obj->userptr.mm->mm == current->mm) {
630		pvec = kmalloc(num_pages*sizeof(struct page *),
631			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
632		if (pvec == NULL) {
633			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
634			if (pvec == NULL)
635				return -ENOMEM;
636		}
637
638		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
639					       !obj->userptr.read_only, pvec);
640	}
641	if (pinned < num_pages) {
642		if (pinned < 0) {
643			ret = pinned;
644			pinned = 0;
645		} else {
646			/* Spawn a worker so that we can acquire the
647			 * user pages without holding our mutex. Access
648			 * to the user pages requires mmap_sem, and we have
649			 * a strict lock ordering of mmap_sem, struct_mutex -
650			 * we already hold struct_mutex here and so cannot
651			 * call gup without encountering a lock inversion.
652			 *
653			 * Userspace will keep on repeating the operation
654			 * (thanks to EAGAIN) until either we hit the fast
655			 * path or the worker completes. If the worker is
656			 * cancelled or superseded, the task is still run
657			 * but the results ignored. (This leads to
658			 * complications that we may have a stray object
659			 * refcount that we need to be wary of when
660			 * checking for existing objects during creation.)
661			 * If the worker encounters an error, it reports
662			 * that error back to this function through
663			 * obj->userptr.work = ERR_PTR.
664			 */
665			ret = -EAGAIN;
666			if (obj->userptr.work == NULL &&
667			    obj->userptr.workers < I915_GEM_USERPTR_MAX_WORKERS) {
668				struct get_pages_work *work;
669
670				work = kmalloc(sizeof(*work), GFP_KERNEL);
671				if (work != NULL) {
672					obj->userptr.work = &work->work;
673					obj->userptr.workers++;
674
675					work->obj = obj;
676					drm_gem_object_reference(&obj->base);
677
678					work->task = current;
679					get_task_struct(work->task);
680
681					INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
682					schedule_work(&work->work);
683				} else
684					ret = -ENOMEM;
685			} else {
686				if (IS_ERR(obj->userptr.work)) {
687					ret = PTR_ERR(obj->userptr.work);
688					obj->userptr.work = NULL;
689				}
690			}
691		}
692	} else {
693		ret = st_set_pages(&obj->pages, pvec, num_pages);
694		if (ret == 0) {
695			obj->userptr.work = NULL;
696			pinned = 0;
697		}
698	}
699
700	release_pages(pvec, pinned, 0);
701	drm_free_large(pvec);
702	return ret;
703}
704
705static void
706i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
707{
708	struct sg_page_iter sg_iter;
709
710	BUG_ON(obj->userptr.work != NULL);
711
712	if (obj->madv != I915_MADV_WILLNEED)
713		obj->dirty = 0;
714
715	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
716		struct page *page = sg_page_iter_page(&sg_iter);
717
718		if (obj->dirty)
719			set_page_dirty(page);
720
721		mark_page_accessed(page);
722		page_cache_release(page);
723	}
724	obj->dirty = 0;
725
726	sg_free_table(obj->pages);
727	kfree(obj->pages);
728}
729
730static void
731i915_gem_userptr_release(struct drm_i915_gem_object *obj)
732{
733	i915_gem_userptr_release__mmu_notifier(obj);
734	i915_gem_userptr_release__mm_struct(obj);
735}
736
737static int
738i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
739{
740	if (obj->userptr.mmu_object)
741		return 0;
742
743	return i915_gem_userptr_init__mmu_notifier(obj, 0);
744}
745
746static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
747	.dmabuf_export = i915_gem_userptr_dmabuf_export,
748	.get_pages = i915_gem_userptr_get_pages,
749	.put_pages = i915_gem_userptr_put_pages,
750	.release = i915_gem_userptr_release,
751};
752
753/**
754 * Creates a new mm object that wraps some normal memory from the process
755 * context - user memory.
756 *
757 * We impose several restrictions upon the memory being mapped
758 * into the GPU.
759 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
760 * 2. It must be normal system memory, not a pointer into another map of IO
761 *    space (e.g. it must not be a GTT mmapping of another object).
762 * 3. We only allow a bo as large as we could in theory map into the GTT,
763 *    that is we limit the size to the total size of the GTT.
764 * 4. The bo is marked as being snoopable. The backing pages are left
765 *    accessible directly by the CPU, but reads and writes by the GPU may
766 *    incur the cost of a snoop (unless you have an LLC architecture).
767 *
768 * Synchronisation between multiple users and the GPU is left to userspace
769 * through the normal set-domain-ioctl. The kernel will enforce that the
770 * GPU relinquishes the VMA before it is returned back to the system
771 * i.e. upon free(), munmap() or process termination. However, the userspace
772 * malloc() library may not immediately relinquish the VMA after free() and
773 * instead reuse it whilst the GPU is still reading and writing to the VMA.
774 * Caveat emptor.
775 *
776 * Also note, that the object created here is not currently a "first class"
777 * object, in that several ioctls are banned. These are the CPU access
778 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
779 * direct access via your pointer rather than use those ioctls. Another
780 * restriction is that we do not allow userptr surfaces to be pinned to the
781 * hardware and so we reject any attempt to create a framebuffer out of a
782 * userptr.
783 *
784 * If you think this is a good interface to use to pass GPU memory between
785 * drivers, please use dma-buf instead. In fact, wherever possible use
786 * dma-buf instead.
787 */
788int
789i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
790{
791	struct drm_i915_private *dev_priv = dev->dev_private;
792	struct drm_i915_gem_userptr *args = data;
793	struct drm_i915_gem_object *obj;
794	int ret;
795	u32 handle;
796
797	if (args->flags & ~(I915_USERPTR_READ_ONLY |
798			    I915_USERPTR_UNSYNCHRONIZED))
799		return -EINVAL;
800
801	if (offset_in_page(args->user_ptr | args->user_size))
802		return -EINVAL;
803
804	if (args->user_size > dev_priv->gtt.base.total)
805		return -E2BIG;
806
807	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
808		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
809		return -EFAULT;
810
811	if (args->flags & I915_USERPTR_READ_ONLY) {
812		/* On almost all of the current hw, we cannot tell the GPU that a
813		 * page is readonly, so this is just a placeholder in the uAPI.
814		 */
815		return -ENODEV;
816	}
817
818	obj = i915_gem_object_alloc(dev);
819	if (obj == NULL)
820		return -ENOMEM;
821
822	drm_gem_private_object_init(dev, &obj->base, args->user_size);
823	i915_gem_object_init(obj, &i915_gem_userptr_ops);
824	obj->cache_level = I915_CACHE_LLC;
825	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
826	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
827
828	obj->userptr.ptr = args->user_ptr;
829	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
830
831	/* And keep a pointer to the current->mm for resolving the user pages
832	 * at binding. This means that we need to hook into the mmu_notifier
833	 * in order to detect if the mmu is destroyed.
834	 */
835	ret = i915_gem_userptr_init__mm_struct(obj);
836	if (ret == 0)
837		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
838	if (ret == 0)
839		ret = drm_gem_handle_create(file, &obj->base, &handle);
840
841	/* drop reference from allocate - handle holds it now */
842	drm_gem_object_unreference_unlocked(&obj->base);
843	if (ret)
844		return ret;
845
846	args->handle = handle;
847	return 0;
848}
849
850int
851i915_gem_init_userptr(struct drm_device *dev)
852{
853	struct drm_i915_private *dev_priv = to_i915(dev);
854	mutex_init(&dev_priv->mm_lock);
855	hash_init(dev_priv->mm_structs);
856	return 0;
857}
858