1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54#include <drm/drmP.h>
55
56#include "intel_drv.h"
57#include "i915_drv.h"
58
59static bool is_edp_psr(struct intel_dp *intel_dp)
60{
61	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62}
63
64static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65{
66	struct drm_i915_private *dev_priv = dev->dev_private;
67	uint32_t val;
68
69	val = I915_READ(VLV_PSRSTAT(pipe)) &
70	      VLV_EDP_PSR_CURR_STATE_MASK;
71	return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72	       (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73}
74
75static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76				    struct edp_vsc_psr *vsc_psr)
77{
78	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79	struct drm_device *dev = dig_port->base.base.dev;
80	struct drm_i915_private *dev_priv = dev->dev_private;
81	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config->cpu_transcoder);
83	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config->cpu_transcoder);
84	uint32_t *data = (uint32_t *) vsc_psr;
85	unsigned int i;
86
87	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
88	   the video DIP being updated before program video DIP data buffer
89	   registers for DIP being updated. */
90	I915_WRITE(ctl_reg, 0);
91	POSTING_READ(ctl_reg);
92
93	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
94		if (i < sizeof(struct edp_vsc_psr))
95			I915_WRITE(data_reg + i, *data++);
96		else
97			I915_WRITE(data_reg + i, 0);
98	}
99
100	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
101	POSTING_READ(ctl_reg);
102}
103
104static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
105{
106	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
107	struct drm_device *dev = intel_dig_port->base.base.dev;
108	struct drm_i915_private *dev_priv = dev->dev_private;
109	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
110	enum pipe pipe = to_intel_crtc(crtc)->pipe;
111	uint32_t val;
112
113	/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
114	val  = I915_READ(VLV_VSCSDP(pipe));
115	val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
116	val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
117	I915_WRITE(VLV_VSCSDP(pipe), val);
118}
119
120static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
121{
122	struct edp_vsc_psr psr_vsc;
123
124	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
125	memset(&psr_vsc, 0, sizeof(psr_vsc));
126	psr_vsc.sdp_header.HB0 = 0;
127	psr_vsc.sdp_header.HB1 = 0x7;
128	psr_vsc.sdp_header.HB2 = 0x2;
129	psr_vsc.sdp_header.HB3 = 0x8;
130	intel_psr_write_vsc(intel_dp, &psr_vsc);
131}
132
133static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
134{
135	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
136			   DP_PSR_ENABLE);
137}
138
139static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
140{
141	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
142	struct drm_device *dev = dig_port->base.base.dev;
143	struct drm_i915_private *dev_priv = dev->dev_private;
144	uint32_t aux_clock_divider;
145	uint32_t aux_data_reg, aux_ctl_reg;
146	int precharge = 0x3;
147	static const uint8_t aux_msg[] = {
148		[0] = DP_AUX_NATIVE_WRITE << 4,
149		[1] = DP_SET_POWER >> 8,
150		[2] = DP_SET_POWER & 0xff,
151		[3] = 1 - 1,
152		[4] = DP_SET_POWER_D0,
153	};
154	int i;
155
156	BUILD_BUG_ON(sizeof(aux_msg) > 20);
157
158	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
159
160	/* Enable PSR in sink */
161	if (dev_priv->psr.link_standby)
162		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
163				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
164	else
165		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
166				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
167
168	aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ?
169				DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev);
170	aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ?
171				DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev);
172
173	/* Setup AUX registers */
174	for (i = 0; i < sizeof(aux_msg); i += 4)
175		I915_WRITE(aux_data_reg + i,
176			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
177
178	if (INTEL_INFO(dev)->gen >= 9) {
179		uint32_t val;
180
181		val = I915_READ(aux_ctl_reg);
182		val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
183		val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
184		val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
185		val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
186		/* Use hardcoded data values for PSR */
187		val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
188		I915_WRITE(aux_ctl_reg, val);
189	} else {
190		I915_WRITE(aux_ctl_reg,
191		   DP_AUX_CH_CTL_TIME_OUT_400us |
192		   (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
193		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
194		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
195	}
196}
197
198static void vlv_psr_enable_source(struct intel_dp *intel_dp)
199{
200	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
201	struct drm_device *dev = dig_port->base.base.dev;
202	struct drm_i915_private *dev_priv = dev->dev_private;
203	struct drm_crtc *crtc = dig_port->base.base.crtc;
204	enum pipe pipe = to_intel_crtc(crtc)->pipe;
205
206	/* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
207	I915_WRITE(VLV_PSRCTL(pipe),
208		   VLV_EDP_PSR_MODE_SW_TIMER |
209		   VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
210		   VLV_EDP_PSR_ENABLE);
211}
212
213static void vlv_psr_activate(struct intel_dp *intel_dp)
214{
215	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
216	struct drm_device *dev = dig_port->base.base.dev;
217	struct drm_i915_private *dev_priv = dev->dev_private;
218	struct drm_crtc *crtc = dig_port->base.base.crtc;
219	enum pipe pipe = to_intel_crtc(crtc)->pipe;
220
221	/* Let's do the transition from PSR_state 1 to PSR_state 2
222	 * that is PSR transition to active - static frame transmission.
223	 * Then Hardware is responsible for the transition to PSR_state 3
224	 * that is PSR active - no Remote Frame Buffer (RFB) update.
225	 */
226	I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
227		   VLV_EDP_PSR_ACTIVE_ENTRY);
228}
229
230static void hsw_psr_enable_source(struct intel_dp *intel_dp)
231{
232	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
233	struct drm_device *dev = dig_port->base.base.dev;
234	struct drm_i915_private *dev_priv = dev->dev_private;
235	uint32_t max_sleep_time = 0x1f;
236	/* Lately it was identified that depending on panel idle frame count
237	 * calculated at HW can be off by 1. So let's use what came
238	 * from VBT + 1 and at minimum 2 to be on the safe side.
239	 */
240	uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ?
241			       dev_priv->vbt.psr.idle_frames + 1 : 2;
242	uint32_t val = 0x0;
243	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
244
245	if (dev_priv->psr.link_standby) {
246		val |= EDP_PSR_LINK_STANDBY;
247		val |= EDP_PSR_TP2_TP3_TIME_0us;
248		val |= EDP_PSR_TP1_TIME_0us;
249		val |= EDP_PSR_SKIP_AUX_EXIT;
250	} else
251		val |= EDP_PSR_LINK_DISABLE;
252
253	I915_WRITE(EDP_PSR_CTL(dev), val |
254		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
255		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
256		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
257		   EDP_PSR_ENABLE);
258}
259
260static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
261{
262	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
263	struct drm_device *dev = dig_port->base.base.dev;
264	struct drm_i915_private *dev_priv = dev->dev_private;
265	struct drm_crtc *crtc = dig_port->base.base.crtc;
266	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
267
268	lockdep_assert_held(&dev_priv->psr.lock);
269	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
270	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
271
272	dev_priv->psr.source_ok = false;
273
274	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
275		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
276		return false;
277	}
278
279	if (!i915.enable_psr) {
280		DRM_DEBUG_KMS("PSR disable by flag\n");
281		return false;
282	}
283
284	if (IS_HASWELL(dev) &&
285	    I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
286		      S3D_ENABLE) {
287		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
288		return false;
289	}
290
291	if (IS_HASWELL(dev) &&
292	    intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
293		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
294		return false;
295	}
296
297	dev_priv->psr.source_ok = true;
298	return true;
299}
300
301static void intel_psr_activate(struct intel_dp *intel_dp)
302{
303	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304	struct drm_device *dev = intel_dig_port->base.base.dev;
305	struct drm_i915_private *dev_priv = dev->dev_private;
306
307	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
308	WARN_ON(dev_priv->psr.active);
309	lockdep_assert_held(&dev_priv->psr.lock);
310
311	/* Enable/Re-enable PSR on the host */
312	if (HAS_DDI(dev))
313		/* On HSW+ after we enable PSR on source it will activate it
314		 * as soon as it match configure idle_frame count. So
315		 * we just actually enable it here on activation time.
316		 */
317		hsw_psr_enable_source(intel_dp);
318	else
319		vlv_psr_activate(intel_dp);
320
321	dev_priv->psr.active = true;
322}
323
324/**
325 * intel_psr_enable - Enable PSR
326 * @intel_dp: Intel DP
327 *
328 * This function can only be called after the pipe is fully trained and enabled.
329 */
330void intel_psr_enable(struct intel_dp *intel_dp)
331{
332	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
333	struct drm_device *dev = intel_dig_port->base.base.dev;
334	struct drm_i915_private *dev_priv = dev->dev_private;
335
336	if (!HAS_PSR(dev)) {
337		DRM_DEBUG_KMS("PSR not supported on this platform\n");
338		return;
339	}
340
341	if (!is_edp_psr(intel_dp)) {
342		DRM_DEBUG_KMS("PSR not supported by this panel\n");
343		return;
344	}
345
346	mutex_lock(&dev_priv->psr.lock);
347	if (dev_priv->psr.enabled) {
348		DRM_DEBUG_KMS("PSR already in use\n");
349		goto unlock;
350	}
351
352	if (!intel_psr_match_conditions(intel_dp))
353		goto unlock;
354
355	/* First we check VBT, but we must respect sink and source
356	 * known restrictions */
357	dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
358	if ((intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) ||
359	    (IS_BROADWELL(dev) && intel_dig_port->port != PORT_A))
360		dev_priv->psr.link_standby = true;
361
362	dev_priv->psr.busy_frontbuffer_bits = 0;
363
364	if (HAS_DDI(dev)) {
365		hsw_psr_setup_vsc(intel_dp);
366
367		/* Avoid continuous PSR exit by masking memup and hpd */
368		I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
369			   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
370
371		/* Enable PSR on the panel */
372		hsw_psr_enable_sink(intel_dp);
373
374		if (INTEL_INFO(dev)->gen >= 9)
375			intel_psr_activate(intel_dp);
376	} else {
377		vlv_psr_setup_vsc(intel_dp);
378
379		/* Enable PSR on the panel */
380		vlv_psr_enable_sink(intel_dp);
381
382		/* On HSW+ enable_source also means go to PSR entry/active
383		 * state as soon as idle_frame achieved and here would be
384		 * to soon. However on VLV enable_source just enable PSR
385		 * but let it on inactive state. So we might do this prior
386		 * to active transition, i.e. here.
387		 */
388		vlv_psr_enable_source(intel_dp);
389	}
390
391	dev_priv->psr.enabled = intel_dp;
392unlock:
393	mutex_unlock(&dev_priv->psr.lock);
394}
395
396static void vlv_psr_disable(struct intel_dp *intel_dp)
397{
398	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399	struct drm_device *dev = intel_dig_port->base.base.dev;
400	struct drm_i915_private *dev_priv = dev->dev_private;
401	struct intel_crtc *intel_crtc =
402		to_intel_crtc(intel_dig_port->base.base.crtc);
403	uint32_t val;
404
405	if (dev_priv->psr.active) {
406		/* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
407		if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
408			      VLV_EDP_PSR_IN_TRANS) == 0, 1))
409			WARN(1, "PSR transition took longer than expected\n");
410
411		val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
412		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
413		val &= ~VLV_EDP_PSR_ENABLE;
414		val &= ~VLV_EDP_PSR_MODE_MASK;
415		I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
416
417		dev_priv->psr.active = false;
418	} else {
419		WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
420	}
421}
422
423static void hsw_psr_disable(struct intel_dp *intel_dp)
424{
425	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426	struct drm_device *dev = intel_dig_port->base.base.dev;
427	struct drm_i915_private *dev_priv = dev->dev_private;
428
429	if (dev_priv->psr.active) {
430		I915_WRITE(EDP_PSR_CTL(dev),
431			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
432
433		/* Wait till PSR is idle */
434		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
435			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
436			DRM_ERROR("Timed out waiting for PSR Idle State\n");
437
438		dev_priv->psr.active = false;
439	} else {
440		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
441	}
442}
443
444/**
445 * intel_psr_disable - Disable PSR
446 * @intel_dp: Intel DP
447 *
448 * This function needs to be called before disabling pipe.
449 */
450void intel_psr_disable(struct intel_dp *intel_dp)
451{
452	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
453	struct drm_device *dev = intel_dig_port->base.base.dev;
454	struct drm_i915_private *dev_priv = dev->dev_private;
455
456	mutex_lock(&dev_priv->psr.lock);
457	if (!dev_priv->psr.enabled) {
458		mutex_unlock(&dev_priv->psr.lock);
459		return;
460	}
461
462	if (HAS_DDI(dev))
463		hsw_psr_disable(intel_dp);
464	else
465		vlv_psr_disable(intel_dp);
466
467	dev_priv->psr.enabled = NULL;
468	mutex_unlock(&dev_priv->psr.lock);
469
470	cancel_delayed_work_sync(&dev_priv->psr.work);
471}
472
473static void intel_psr_work(struct work_struct *work)
474{
475	struct drm_i915_private *dev_priv =
476		container_of(work, typeof(*dev_priv), psr.work.work);
477	struct intel_dp *intel_dp = dev_priv->psr.enabled;
478	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
479	enum pipe pipe = to_intel_crtc(crtc)->pipe;
480
481	/* We have to make sure PSR is ready for re-enable
482	 * otherwise it keeps disabled until next full enable/disable cycle.
483	 * PSR might take some time to get fully disabled
484	 * and be ready for re-enable.
485	 */
486	if (HAS_DDI(dev_priv->dev)) {
487		if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
488			      EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
489			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
490			return;
491		}
492	} else {
493		if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
494			      VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
495			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
496			return;
497		}
498	}
499	mutex_lock(&dev_priv->psr.lock);
500	intel_dp = dev_priv->psr.enabled;
501
502	if (!intel_dp)
503		goto unlock;
504
505	/*
506	 * The delayed work can race with an invalidate hence we need to
507	 * recheck. Since psr_flush first clears this and then reschedules we
508	 * won't ever miss a flush when bailing out here.
509	 */
510	if (dev_priv->psr.busy_frontbuffer_bits)
511		goto unlock;
512
513	intel_psr_activate(intel_dp);
514unlock:
515	mutex_unlock(&dev_priv->psr.lock);
516}
517
518static void intel_psr_exit(struct drm_device *dev)
519{
520	struct drm_i915_private *dev_priv = dev->dev_private;
521	struct intel_dp *intel_dp = dev_priv->psr.enabled;
522	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
523	enum pipe pipe = to_intel_crtc(crtc)->pipe;
524	u32 val;
525
526	if (!dev_priv->psr.active)
527		return;
528
529	if (HAS_DDI(dev)) {
530		val = I915_READ(EDP_PSR_CTL(dev));
531
532		WARN_ON(!(val & EDP_PSR_ENABLE));
533
534		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
535	} else {
536		val = I915_READ(VLV_PSRCTL(pipe));
537
538		/* Here we do the transition from PSR_state 3 to PSR_state 5
539		 * directly once PSR State 4 that is active with single frame
540		 * update can be skipped. PSR_state 5 that is PSR exit then
541		 * Hardware is responsible to transition back to PSR_state 1
542		 * that is PSR inactive. Same state after
543		 * vlv_edp_psr_enable_source.
544		 */
545		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
546		I915_WRITE(VLV_PSRCTL(pipe), val);
547
548		/* Send AUX wake up - Spec says after transitioning to PSR
549		 * active we have to send AUX wake up by writing 01h in DPCD
550		 * 600h of sink device.
551		 * XXX: This might slow down the transition, but without this
552		 * HW doesn't complete the transition to PSR_state 1 and we
553		 * never get the screen updated.
554		 */
555		drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
556				   DP_SET_POWER_D0);
557	}
558
559	dev_priv->psr.active = false;
560}
561
562/**
563 * intel_psr_invalidate - Invalidade PSR
564 * @dev: DRM device
565 * @frontbuffer_bits: frontbuffer plane tracking bits
566 *
567 * Since the hardware frontbuffer tracking has gaps we need to integrate
568 * with the software frontbuffer tracking. This function gets called every
569 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
570 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
571 *
572 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
573 */
574void intel_psr_invalidate(struct drm_device *dev,
575			      unsigned frontbuffer_bits)
576{
577	struct drm_i915_private *dev_priv = dev->dev_private;
578	struct drm_crtc *crtc;
579	enum pipe pipe;
580
581	mutex_lock(&dev_priv->psr.lock);
582	if (!dev_priv->psr.enabled) {
583		mutex_unlock(&dev_priv->psr.lock);
584		return;
585	}
586
587	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
588	pipe = to_intel_crtc(crtc)->pipe;
589
590	intel_psr_exit(dev);
591
592	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
593
594	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
595	mutex_unlock(&dev_priv->psr.lock);
596}
597
598/**
599 * intel_psr_flush - Flush PSR
600 * @dev: DRM device
601 * @frontbuffer_bits: frontbuffer plane tracking bits
602 *
603 * Since the hardware frontbuffer tracking has gaps we need to integrate
604 * with the software frontbuffer tracking. This function gets called every
605 * time frontbuffer rendering has completed and flushed out to memory. PSR
606 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
607 *
608 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
609 */
610void intel_psr_flush(struct drm_device *dev,
611			 unsigned frontbuffer_bits)
612{
613	struct drm_i915_private *dev_priv = dev->dev_private;
614	struct drm_crtc *crtc;
615	enum pipe pipe;
616
617	mutex_lock(&dev_priv->psr.lock);
618	if (!dev_priv->psr.enabled) {
619		mutex_unlock(&dev_priv->psr.lock);
620		return;
621	}
622
623	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
624	pipe = to_intel_crtc(crtc)->pipe;
625	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
626
627	/*
628	 * On Haswell sprite plane updates don't result in a psr invalidating
629	 * signal in the hardware. Which means we need to manually fake this in
630	 * software for all flushes, not just when we've seen a preceding
631	 * invalidation through frontbuffer rendering.
632	 */
633	if (IS_HASWELL(dev) &&
634	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
635		intel_psr_exit(dev);
636
637	/*
638	 * On Valleyview and Cherryview we don't use hardware tracking so
639	 * any plane updates or cursor moves don't result in a PSR
640	 * invalidating. Which means we need to manually fake this in
641	 * software for all flushes, not just when we've seen a preceding
642	 * invalidation through frontbuffer rendering. */
643	if (!HAS_DDI(dev))
644		intel_psr_exit(dev);
645
646	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
647		schedule_delayed_work(&dev_priv->psr.work,
648				      msecs_to_jiffies(100));
649	mutex_unlock(&dev_priv->psr.lock);
650}
651
652/**
653 * intel_psr_init - Init basic PSR work and mutex.
654 * @dev: DRM device
655 *
656 * This function is  called only once at driver load to initialize basic
657 * PSR stuff.
658 */
659void intel_psr_init(struct drm_device *dev)
660{
661	struct drm_i915_private *dev_priv = dev->dev_private;
662
663	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
664	mutex_init(&dev_priv->psr.lock);
665}
666