1/*
2 * Copyright 2010 Matt Turner.
3 * Copyright 2012 Red Hat
4 *
5 * This file is subject to the terms and conditions of the GNU General
6 * Public License version 2. See the file COPYING in the main
7 * directory of this archive for more details.
8 *
9 * Authors: Matthew Garrett
10 *	    Matt Turner
11 *	    Dave Airlie
12 */
13
14#include <linux/delay.h>
15
16#include <drm/drmP.h>
17#include <drm/drm_crtc_helper.h>
18#include <drm/drm_plane_helper.h>
19
20#include "mgag200_drv.h"
21
22#define MGAG200_LUT_SIZE 256
23
24/*
25 * This file contains setup code for the CRTC.
26 */
27
28static void mga_crtc_load_lut(struct drm_crtc *crtc)
29{
30	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31	struct drm_device *dev = crtc->dev;
32	struct mga_device *mdev = dev->dev_private;
33	struct drm_framebuffer *fb = crtc->primary->fb;
34	int i;
35
36	if (!crtc->enabled)
37		return;
38
39	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
40
41	if (fb && fb->bits_per_pixel == 16) {
42		int inc = (fb->depth == 15) ? 8 : 4;
43		u8 r, b;
44		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
45			if (fb->depth == 16) {
46				if (i > (MGAG200_LUT_SIZE >> 1)) {
47					r = b = 0;
48				} else {
49					r = mga_crtc->lut_r[i << 1];
50					b = mga_crtc->lut_b[i << 1];
51				}
52			} else {
53				r = mga_crtc->lut_r[i];
54				b = mga_crtc->lut_b[i];
55			}
56			/* VGA registers */
57			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
58			WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
59			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
60		}
61		return;
62	}
63	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
64		/* VGA registers */
65		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
66		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
67		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
68	}
69}
70
71static inline void mga_wait_vsync(struct mga_device *mdev)
72{
73	unsigned long timeout = jiffies + HZ/10;
74	unsigned int status = 0;
75
76	do {
77		status = RREG32(MGAREG_Status);
78	} while ((status & 0x08) && time_before(jiffies, timeout));
79	timeout = jiffies + HZ/10;
80	status = 0;
81	do {
82		status = RREG32(MGAREG_Status);
83	} while (!(status & 0x08) && time_before(jiffies, timeout));
84}
85
86static inline void mga_wait_busy(struct mga_device *mdev)
87{
88	unsigned long timeout = jiffies + HZ;
89	unsigned int status = 0;
90	do {
91		status = RREG8(MGAREG_Status + 2);
92	} while ((status & 0x01) && time_before(jiffies, timeout));
93}
94
95/*
96 * The core passes the desired mode to the CRTC code to see whether any
97 * CRTC-specific modifications need to be made to it. We're in a position
98 * to just pass that straight through, so this does nothing
99 */
100static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
101				const struct drm_display_mode *mode,
102				struct drm_display_mode *adjusted_mode)
103{
104	return true;
105}
106
107static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
108{
109	unsigned int vcomax, vcomin, pllreffreq;
110	unsigned int delta, tmpdelta, permitteddelta;
111	unsigned int testp, testm, testn;
112	unsigned int p, m, n;
113	unsigned int computed;
114
115	m = n = p = 0;
116	vcomax = 320000;
117	vcomin = 160000;
118	pllreffreq = 25000;
119
120	delta = 0xffffffff;
121	permitteddelta = clock * 5 / 1000;
122
123	for (testp = 8; testp > 0; testp /= 2) {
124		if (clock * testp > vcomax)
125			continue;
126		if (clock * testp < vcomin)
127			continue;
128
129		for (testn = 17; testn < 256; testn++) {
130			for (testm = 1; testm < 32; testm++) {
131				computed = (pllreffreq * testn) /
132					(testm * testp);
133				if (computed > clock)
134					tmpdelta = computed - clock;
135				else
136					tmpdelta = clock - computed;
137				if (tmpdelta < delta) {
138					delta = tmpdelta;
139					m = testm - 1;
140					n = testn - 1;
141					p = testp - 1;
142				}
143			}
144		}
145	}
146
147	if (delta > permitteddelta) {
148		printk(KERN_WARNING "PLL delta too large\n");
149		return 1;
150	}
151
152	WREG_DAC(MGA1064_PIX_PLLC_M, m);
153	WREG_DAC(MGA1064_PIX_PLLC_N, n);
154	WREG_DAC(MGA1064_PIX_PLLC_P, p);
155	return 0;
156}
157
158static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
159{
160	unsigned int vcomax, vcomin, pllreffreq;
161	unsigned int delta, tmpdelta, permitteddelta;
162	unsigned int testp, testm, testn;
163	unsigned int p, m, n;
164	unsigned int computed;
165	int i, j, tmpcount, vcount;
166	bool pll_locked = false;
167	u8 tmp;
168
169	m = n = p = 0;
170	vcomax = 550000;
171	vcomin = 150000;
172	pllreffreq = 48000;
173
174	delta = 0xffffffff;
175	permitteddelta = clock * 5 / 1000;
176
177	for (testp = 1; testp < 9; testp++) {
178		if (clock * testp > vcomax)
179			continue;
180		if (clock * testp < vcomin)
181			continue;
182
183		for (testm = 1; testm < 17; testm++) {
184			for (testn = 1; testn < 151; testn++) {
185				computed = (pllreffreq * testn) /
186					(testm * testp);
187				if (computed > clock)
188					tmpdelta = computed - clock;
189				else
190					tmpdelta = clock - computed;
191				if (tmpdelta < delta) {
192					delta = tmpdelta;
193					n = testn - 1;
194					m = (testm - 1) | ((n >> 1) & 0x80);
195					p = testp - 1;
196				}
197			}
198		}
199	}
200
201	for (i = 0; i <= 32 && pll_locked == false; i++) {
202		if (i > 0) {
203			WREG8(MGAREG_CRTC_INDEX, 0x1e);
204			tmp = RREG8(MGAREG_CRTC_DATA);
205			if (tmp < 0xff)
206				WREG8(MGAREG_CRTC_DATA, tmp+1);
207		}
208
209		/* set pixclkdis to 1 */
210		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
211		tmp = RREG8(DAC_DATA);
212		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
213		WREG8(DAC_DATA, tmp);
214
215		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
216		tmp = RREG8(DAC_DATA);
217		tmp |= MGA1064_REMHEADCTL_CLKDIS;
218		WREG8(DAC_DATA, tmp);
219
220		/* select PLL Set C */
221		tmp = RREG8(MGAREG_MEM_MISC_READ);
222		tmp |= 0x3 << 2;
223		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
224
225		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
226		tmp = RREG8(DAC_DATA);
227		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
228		WREG8(DAC_DATA, tmp);
229
230		udelay(500);
231
232		/* reset the PLL */
233		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
234		tmp = RREG8(DAC_DATA);
235		tmp &= ~0x04;
236		WREG8(DAC_DATA, tmp);
237
238		udelay(50);
239
240		/* program pixel pll register */
241		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
242		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
243		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
244
245		udelay(50);
246
247		/* turn pll on */
248		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
249		tmp = RREG8(DAC_DATA);
250		tmp |= 0x04;
251		WREG_DAC(MGA1064_VREF_CTL, tmp);
252
253		udelay(500);
254
255		/* select the pixel pll */
256		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
257		tmp = RREG8(DAC_DATA);
258		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
259		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
260		WREG8(DAC_DATA, tmp);
261
262		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
263		tmp = RREG8(DAC_DATA);
264		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
265		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
266		WREG8(DAC_DATA, tmp);
267
268		/* reset dotclock rate bit */
269		WREG8(MGAREG_SEQ_INDEX, 1);
270		tmp = RREG8(MGAREG_SEQ_DATA);
271		tmp &= ~0x8;
272		WREG8(MGAREG_SEQ_DATA, tmp);
273
274		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
275		tmp = RREG8(DAC_DATA);
276		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
277		WREG8(DAC_DATA, tmp);
278
279		vcount = RREG8(MGAREG_VCOUNT);
280
281		for (j = 0; j < 30 && pll_locked == false; j++) {
282			tmpcount = RREG8(MGAREG_VCOUNT);
283			if (tmpcount < vcount)
284				vcount = 0;
285			if ((tmpcount - vcount) > 2)
286				pll_locked = true;
287			else
288				udelay(5);
289		}
290	}
291	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
292	tmp = RREG8(DAC_DATA);
293	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
294	WREG_DAC(MGA1064_REMHEADCTL, tmp);
295	return 0;
296}
297
298static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
299{
300	unsigned int vcomax, vcomin, pllreffreq;
301	unsigned int delta, tmpdelta, permitteddelta;
302	unsigned int testp, testm, testn;
303	unsigned int p, m, n;
304	unsigned int computed;
305	u8 tmp;
306
307	m = n = p = 0;
308	vcomax = 550000;
309	vcomin = 150000;
310	pllreffreq = 50000;
311
312	delta = 0xffffffff;
313	permitteddelta = clock * 5 / 1000;
314
315	for (testp = 16; testp > 0; testp--) {
316		if (clock * testp > vcomax)
317			continue;
318		if (clock * testp < vcomin)
319			continue;
320
321		for (testn = 1; testn < 257; testn++) {
322			for (testm = 1; testm < 17; testm++) {
323				computed = (pllreffreq * testn) /
324					(testm * testp);
325				if (computed > clock)
326					tmpdelta = computed - clock;
327				else
328					tmpdelta = clock - computed;
329				if (tmpdelta < delta) {
330					delta = tmpdelta;
331					n = testn - 1;
332					m = testm - 1;
333					p = testp - 1;
334				}
335			}
336		}
337	}
338
339	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
340	tmp = RREG8(DAC_DATA);
341	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
342	WREG8(DAC_DATA, tmp);
343
344	tmp = RREG8(MGAREG_MEM_MISC_READ);
345	tmp |= 0x3 << 2;
346	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
347
348	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
349	tmp = RREG8(DAC_DATA);
350	WREG8(DAC_DATA, tmp & ~0x40);
351
352	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
353	tmp = RREG8(DAC_DATA);
354	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
355	WREG8(DAC_DATA, tmp);
356
357	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
358	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
359	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
360
361	udelay(50);
362
363	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
364	tmp = RREG8(DAC_DATA);
365	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
366	WREG8(DAC_DATA, tmp);
367
368	udelay(500);
369
370	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
371	tmp = RREG8(DAC_DATA);
372	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
373	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
374	WREG8(DAC_DATA, tmp);
375
376	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
377	tmp = RREG8(DAC_DATA);
378	WREG8(DAC_DATA, tmp | 0x40);
379
380	tmp = RREG8(MGAREG_MEM_MISC_READ);
381	tmp |= (0x3 << 2);
382	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
383
384	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
385	tmp = RREG8(DAC_DATA);
386	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
387	WREG8(DAC_DATA, tmp);
388
389	return 0;
390}
391
392static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
393{
394	unsigned int vcomax, vcomin, pllreffreq;
395	unsigned int delta, tmpdelta, permitteddelta;
396	unsigned int testp, testm, testn;
397	unsigned int p, m, n;
398	unsigned int computed;
399	int i, j, tmpcount, vcount;
400	u8 tmp;
401	bool pll_locked = false;
402
403	m = n = p = 0;
404	vcomax = 800000;
405	vcomin = 400000;
406	pllreffreq = 33333;
407
408	delta = 0xffffffff;
409	permitteddelta = clock * 5 / 1000;
410
411	for (testp = 16; testp > 0; testp >>= 1) {
412		if (clock * testp > vcomax)
413			continue;
414		if (clock * testp < vcomin)
415			continue;
416
417		for (testm = 1; testm < 33; testm++) {
418			for (testn = 17; testn < 257; testn++) {
419				computed = (pllreffreq * testn) /
420					(testm * testp);
421				if (computed > clock)
422					tmpdelta = computed - clock;
423				else
424					tmpdelta = clock - computed;
425				if (tmpdelta < delta) {
426					delta = tmpdelta;
427					n = testn - 1;
428					m = (testm - 1);
429					p = testp - 1;
430				}
431				if ((clock * testp) >= 600000)
432					p |= 0x80;
433			}
434		}
435	}
436	for (i = 0; i <= 32 && pll_locked == false; i++) {
437		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
438		tmp = RREG8(DAC_DATA);
439		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
440		WREG8(DAC_DATA, tmp);
441
442		tmp = RREG8(MGAREG_MEM_MISC_READ);
443		tmp |= 0x3 << 2;
444		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
445
446		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
447		tmp = RREG8(DAC_DATA);
448		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
449		WREG8(DAC_DATA, tmp);
450
451		udelay(500);
452
453		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
454		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
455		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
456
457		udelay(500);
458
459		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
460		tmp = RREG8(DAC_DATA);
461		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
462		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
463		WREG8(DAC_DATA, tmp);
464
465		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
466		tmp = RREG8(DAC_DATA);
467		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
468		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
469		WREG8(DAC_DATA, tmp);
470
471		vcount = RREG8(MGAREG_VCOUNT);
472
473		for (j = 0; j < 30 && pll_locked == false; j++) {
474			tmpcount = RREG8(MGAREG_VCOUNT);
475			if (tmpcount < vcount)
476				vcount = 0;
477			if ((tmpcount - vcount) > 2)
478				pll_locked = true;
479			else
480				udelay(5);
481		}
482	}
483
484	return 0;
485}
486
487static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
488{
489	unsigned int vcomax, vcomin, pllreffreq;
490	unsigned int delta, tmpdelta;
491	int testr, testn, testm, testo;
492	unsigned int p, m, n;
493	unsigned int computed, vco;
494	int tmp;
495	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
496
497	m = n = p = 0;
498	vcomax = 1488000;
499	vcomin = 1056000;
500	pllreffreq = 48000;
501
502	delta = 0xffffffff;
503
504	for (testr = 0; testr < 4; testr++) {
505		if (delta == 0)
506			break;
507		for (testn = 5; testn < 129; testn++) {
508			if (delta == 0)
509				break;
510			for (testm = 3; testm >= 0; testm--) {
511				if (delta == 0)
512					break;
513				for (testo = 5; testo < 33; testo++) {
514					vco = pllreffreq * (testn + 1) /
515						(testr + 1);
516					if (vco < vcomin)
517						continue;
518					if (vco > vcomax)
519						continue;
520					computed = vco / (m_div_val[testm] * (testo + 1));
521					if (computed > clock)
522						tmpdelta = computed - clock;
523					else
524						tmpdelta = clock - computed;
525					if (tmpdelta < delta) {
526						delta = tmpdelta;
527						m = testm | (testo << 3);
528						n = testn;
529						p = testr | (testr << 3);
530					}
531				}
532			}
533		}
534	}
535
536	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
537	tmp = RREG8(DAC_DATA);
538	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
539	WREG8(DAC_DATA, tmp);
540
541	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
542	tmp = RREG8(DAC_DATA);
543	tmp |= MGA1064_REMHEADCTL_CLKDIS;
544	WREG8(DAC_DATA, tmp);
545
546	tmp = RREG8(MGAREG_MEM_MISC_READ);
547	tmp |= (0x3<<2) | 0xc0;
548	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
549
550	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
551	tmp = RREG8(DAC_DATA);
552	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
553	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
554	WREG8(DAC_DATA, tmp);
555
556	udelay(500);
557
558	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
559	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
560	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
561
562	udelay(50);
563
564	return 0;
565}
566
567static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
568{
569	switch(mdev->type) {
570	case G200_SE_A:
571	case G200_SE_B:
572		return mga_g200se_set_plls(mdev, clock);
573		break;
574	case G200_WB:
575		return mga_g200wb_set_plls(mdev, clock);
576		break;
577	case G200_EV:
578		return mga_g200ev_set_plls(mdev, clock);
579		break;
580	case G200_EH:
581		return mga_g200eh_set_plls(mdev, clock);
582		break;
583	case G200_ER:
584		return mga_g200er_set_plls(mdev, clock);
585		break;
586	}
587	return 0;
588}
589
590static void mga_g200wb_prepare(struct drm_crtc *crtc)
591{
592	struct mga_device *mdev = crtc->dev->dev_private;
593	u8 tmp;
594	int iter_max;
595
596	/* 1- The first step is to warn the BMC of an upcoming mode change.
597	 * We are putting the misc<0> to output.*/
598
599	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
600	tmp = RREG8(DAC_DATA);
601	tmp |= 0x10;
602	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
603
604	/* we are putting a 1 on the misc<0> line */
605	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
606	tmp = RREG8(DAC_DATA);
607	tmp |= 0x10;
608	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
609
610	/* 2- Second step to mask and further scan request
611	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
612	 */
613	WREG8(DAC_INDEX, MGA1064_SPAREREG);
614	tmp = RREG8(DAC_DATA);
615	tmp |= 0x80;
616	WREG_DAC(MGA1064_SPAREREG, tmp);
617
618	/* 3a- the third step is to verifu if there is an active scan
619	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
620	 */
621	iter_max = 300;
622	while (!(tmp & 0x1) && iter_max) {
623		WREG8(DAC_INDEX, MGA1064_SPAREREG);
624		tmp = RREG8(DAC_DATA);
625		udelay(1000);
626		iter_max--;
627	}
628
629	/* 3b- this step occurs only if the remove is actually scanning
630	 * we are waiting for the end of the frame which is a 1 on
631	 * remvsyncsts (XSPAREREG<1>)
632	 */
633	if (iter_max) {
634		iter_max = 300;
635		while ((tmp & 0x2) && iter_max) {
636			WREG8(DAC_INDEX, MGA1064_SPAREREG);
637			tmp = RREG8(DAC_DATA);
638			udelay(1000);
639			iter_max--;
640		}
641	}
642}
643
644static void mga_g200wb_commit(struct drm_crtc *crtc)
645{
646	u8 tmp;
647	struct mga_device *mdev = crtc->dev->dev_private;
648
649	/* 1- The first step is to ensure that the vrsten and hrsten are set */
650	WREG8(MGAREG_CRTCEXT_INDEX, 1);
651	tmp = RREG8(MGAREG_CRTCEXT_DATA);
652	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
653
654	/* 2- second step is to assert the rstlvl2 */
655	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
656	tmp = RREG8(DAC_DATA);
657	tmp |= 0x8;
658	WREG8(DAC_DATA, tmp);
659
660	/* wait 10 us */
661	udelay(10);
662
663	/* 3- deassert rstlvl2 */
664	tmp &= ~0x08;
665	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
666	WREG8(DAC_DATA, tmp);
667
668	/* 4- remove mask of scan request */
669	WREG8(DAC_INDEX, MGA1064_SPAREREG);
670	tmp = RREG8(DAC_DATA);
671	tmp &= ~0x80;
672	WREG8(DAC_DATA, tmp);
673
674	/* 5- put back a 0 on the misc<0> line */
675	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
676	tmp = RREG8(DAC_DATA);
677	tmp &= ~0x10;
678	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
679}
680
681/*
682   This is how the framebuffer base address is stored in g200 cards:
683   * Assume @offset is the gpu_addr variable of the framebuffer object
684   * Then addr is the number of _pixels_ (not bytes) from the start of
685     VRAM to the first pixel we want to display. (divided by 2 for 32bit
686     framebuffers)
687   * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
688   addr<20> -> CRTCEXT0<6>
689   addr<19-16> -> CRTCEXT0<3-0>
690   addr<15-8> -> CRTCC<7-0>
691   addr<7-0> -> CRTCD<7-0>
692   CRTCEXT0 has to be programmed last to trigger an update and make the
693   new addr variable take effect.
694 */
695static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
696{
697	struct mga_device *mdev = crtc->dev->dev_private;
698	u32 addr;
699	int count;
700	u8 crtcext0;
701
702	while (RREG8(0x1fda) & 0x08);
703	while (!(RREG8(0x1fda) & 0x08));
704
705	count = RREG8(MGAREG_VCOUNT) + 2;
706	while (RREG8(MGAREG_VCOUNT) < count);
707
708	WREG8(MGAREG_CRTCEXT_INDEX, 0);
709	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
710	crtcext0 &= 0xB0;
711	addr = offset / 8;
712	/* Can't store addresses any higher than that...
713	   but we also don't have more than 16MB of memory, so it should be fine. */
714	WARN_ON(addr > 0x1fffff);
715	crtcext0 |= (!!(addr & (1<<20)))<<6;
716	WREG_CRT(0x0d, (u8)(addr & 0xff));
717	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
718	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
719}
720
721
722/* ast is different - we will force move buffers out of VRAM */
723static int mga_crtc_do_set_base(struct drm_crtc *crtc,
724				struct drm_framebuffer *fb,
725				int x, int y, int atomic)
726{
727	struct mga_device *mdev = crtc->dev->dev_private;
728	struct drm_gem_object *obj;
729	struct mga_framebuffer *mga_fb;
730	struct mgag200_bo *bo;
731	int ret;
732	u64 gpu_addr;
733
734	/* push the previous fb to system ram */
735	if (!atomic && fb) {
736		mga_fb = to_mga_framebuffer(fb);
737		obj = mga_fb->obj;
738		bo = gem_to_mga_bo(obj);
739		ret = mgag200_bo_reserve(bo, false);
740		if (ret)
741			return ret;
742		mgag200_bo_push_sysram(bo);
743		mgag200_bo_unreserve(bo);
744	}
745
746	mga_fb = to_mga_framebuffer(crtc->primary->fb);
747	obj = mga_fb->obj;
748	bo = gem_to_mga_bo(obj);
749
750	ret = mgag200_bo_reserve(bo, false);
751	if (ret)
752		return ret;
753
754	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
755	if (ret) {
756		mgag200_bo_unreserve(bo);
757		return ret;
758	}
759
760	if (&mdev->mfbdev->mfb == mga_fb) {
761		/* if pushing console in kmap it */
762		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
763		if (ret)
764			DRM_ERROR("failed to kmap fbcon\n");
765
766	}
767	mgag200_bo_unreserve(bo);
768
769	mga_set_start_address(crtc, (u32)gpu_addr);
770
771	return 0;
772}
773
774static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
775				  struct drm_framebuffer *old_fb)
776{
777	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
778}
779
780static int mga_crtc_mode_set(struct drm_crtc *crtc,
781				struct drm_display_mode *mode,
782				struct drm_display_mode *adjusted_mode,
783				int x, int y, struct drm_framebuffer *old_fb)
784{
785	struct drm_device *dev = crtc->dev;
786	struct mga_device *mdev = dev->dev_private;
787	int hdisplay, hsyncstart, hsyncend, htotal;
788	int vdisplay, vsyncstart, vsyncend, vtotal;
789	int pitch;
790	int option = 0, option2 = 0;
791	int i;
792	unsigned char misc = 0;
793	unsigned char ext_vga[6];
794	u8 bppshift;
795
796	static unsigned char dacvalue[] = {
797		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
798		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
799		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
800		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
801		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
802		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
803		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
804		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
805		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
806		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
807	};
808
809	bppshift = mdev->bpp_shifts[(crtc->primary->fb->bits_per_pixel >> 3) - 1];
810
811	switch (mdev->type) {
812	case G200_SE_A:
813	case G200_SE_B:
814		dacvalue[MGA1064_VREF_CTL] = 0x03;
815		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
816		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
817					     MGA1064_MISC_CTL_VGA8 |
818					     MGA1064_MISC_CTL_DAC_RAM_CS;
819		if (mdev->has_sdram)
820			option = 0x40049120;
821		else
822			option = 0x4004d120;
823		option2 = 0x00008000;
824		break;
825	case G200_WB:
826		dacvalue[MGA1064_VREF_CTL] = 0x07;
827		option = 0x41049120;
828		option2 = 0x0000b000;
829		break;
830	case G200_EV:
831		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
832		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
833					     MGA1064_MISC_CTL_DAC_RAM_CS;
834		option = 0x00000120;
835		option2 = 0x0000b000;
836		break;
837	case G200_EH:
838		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
839					     MGA1064_MISC_CTL_DAC_RAM_CS;
840		option = 0x00000120;
841		option2 = 0x0000b000;
842		break;
843	case G200_ER:
844		break;
845	}
846
847	switch (crtc->primary->fb->bits_per_pixel) {
848	case 8:
849		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
850		break;
851	case 16:
852		if (crtc->primary->fb->depth == 15)
853			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
854		else
855			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
856		break;
857	case 24:
858		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
859		break;
860	case 32:
861		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
862		break;
863	}
864
865	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
866		misc |= 0x40;
867	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
868		misc |= 0x80;
869
870
871	for (i = 0; i < sizeof(dacvalue); i++) {
872		if ((i <= 0x17) ||
873		    (i == 0x1b) ||
874		    (i == 0x1c) ||
875		    ((i >= 0x1f) && (i <= 0x29)) ||
876		    ((i >= 0x30) && (i <= 0x37)))
877			continue;
878		if (IS_G200_SE(mdev) &&
879		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
880			continue;
881		if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
882		    (i >= 0x44) && (i <= 0x4e))
883			continue;
884
885		WREG_DAC(i, dacvalue[i]);
886	}
887
888	if (mdev->type == G200_ER)
889		WREG_DAC(0x90, 0);
890
891	if (option)
892		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
893	if (option2)
894		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
895
896	WREG_SEQ(2, 0xf);
897	WREG_SEQ(3, 0);
898	WREG_SEQ(4, 0xe);
899
900	pitch = crtc->primary->fb->pitches[0] / (crtc->primary->fb->bits_per_pixel / 8);
901	if (crtc->primary->fb->bits_per_pixel == 24)
902		pitch = (pitch * 3) >> (4 - bppshift);
903	else
904		pitch = pitch >> (4 - bppshift);
905
906	hdisplay = mode->hdisplay / 8 - 1;
907	hsyncstart = mode->hsync_start / 8 - 1;
908	hsyncend = mode->hsync_end / 8 - 1;
909	htotal = mode->htotal / 8 - 1;
910
911	/* Work around hardware quirk */
912	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
913		htotal++;
914
915	vdisplay = mode->vdisplay - 1;
916	vsyncstart = mode->vsync_start - 1;
917	vsyncend = mode->vsync_end - 1;
918	vtotal = mode->vtotal - 2;
919
920	WREG_GFX(0, 0);
921	WREG_GFX(1, 0);
922	WREG_GFX(2, 0);
923	WREG_GFX(3, 0);
924	WREG_GFX(4, 0);
925	WREG_GFX(5, 0x40);
926	WREG_GFX(6, 0x5);
927	WREG_GFX(7, 0xf);
928	WREG_GFX(8, 0xf);
929
930	WREG_CRT(0, htotal - 4);
931	WREG_CRT(1, hdisplay);
932	WREG_CRT(2, hdisplay);
933	WREG_CRT(3, (htotal & 0x1F) | 0x80);
934	WREG_CRT(4, hsyncstart);
935	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
936	WREG_CRT(6, vtotal & 0xFF);
937	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
938		 ((vdisplay & 0x100) >> 7) |
939		 ((vsyncstart & 0x100) >> 6) |
940		 ((vdisplay & 0x100) >> 5) |
941		 ((vdisplay & 0x100) >> 4) | /* linecomp */
942		 ((vtotal & 0x200) >> 4)|
943		 ((vdisplay & 0x200) >> 3) |
944		 ((vsyncstart & 0x200) >> 2));
945	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
946		 ((vdisplay & 0x200) >> 3));
947	WREG_CRT(10, 0);
948	WREG_CRT(11, 0);
949	WREG_CRT(12, 0);
950	WREG_CRT(13, 0);
951	WREG_CRT(14, 0);
952	WREG_CRT(15, 0);
953	WREG_CRT(16, vsyncstart & 0xFF);
954	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
955	WREG_CRT(18, vdisplay & 0xFF);
956	WREG_CRT(19, pitch & 0xFF);
957	WREG_CRT(20, 0);
958	WREG_CRT(21, vdisplay & 0xFF);
959	WREG_CRT(22, (vtotal + 1) & 0xFF);
960	WREG_CRT(23, 0xc3);
961	WREG_CRT(24, vdisplay & 0xFF);
962
963	ext_vga[0] = 0;
964	ext_vga[5] = 0;
965
966	/* TODO interlace */
967
968	ext_vga[0] |= (pitch & 0x300) >> 4;
969	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
970		((hdisplay & 0x100) >> 7) |
971		((hsyncstart & 0x100) >> 6) |
972		(htotal & 0x40);
973	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
974		((vdisplay & 0x400) >> 8) |
975		((vdisplay & 0xc00) >> 7) |
976		((vsyncstart & 0xc00) >> 5) |
977		((vdisplay & 0x400) >> 3);
978	if (crtc->primary->fb->bits_per_pixel == 24)
979		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
980	else
981		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
982	ext_vga[4] = 0;
983	if (mdev->type == G200_WB)
984		ext_vga[1] |= 0x88;
985
986	/* Set pixel clocks */
987	misc = 0x2d;
988	WREG8(MGA_MISC_OUT, misc);
989
990	mga_crtc_set_plls(mdev, mode->clock);
991
992	for (i = 0; i < 6; i++) {
993		WREG_ECRT(i, ext_vga[i]);
994	}
995
996	if (mdev->type == G200_ER)
997		WREG_ECRT(0x24, 0x5);
998
999	if (mdev->type == G200_EV) {
1000		WREG_ECRT(6, 0);
1001	}
1002
1003	WREG_ECRT(0, ext_vga[0]);
1004	/* Enable mga pixel clock */
1005	misc = 0x2d;
1006
1007	WREG8(MGA_MISC_OUT, misc);
1008
1009	if (adjusted_mode)
1010		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1011
1012	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1013
1014	/* reset tagfifo */
1015	if (mdev->type == G200_ER) {
1016		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1017		u8 seq1;
1018
1019		/* screen off */
1020		WREG8(MGAREG_SEQ_INDEX, 0x01);
1021		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1022		WREG8(MGAREG_SEQ_DATA, seq1);
1023
1024		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1025		udelay(1000);
1026		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1027
1028		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1029	}
1030
1031
1032	if (IS_G200_SE(mdev)) {
1033		if (mdev->unique_rev_id >= 0x02) {
1034			u8 hi_pri_lvl;
1035			u32 bpp;
1036			u32 mb;
1037
1038			if (crtc->primary->fb->bits_per_pixel > 16)
1039				bpp = 32;
1040			else if (crtc->primary->fb->bits_per_pixel > 8)
1041				bpp = 16;
1042			else
1043				bpp = 8;
1044
1045			mb = (mode->clock * bpp) / 1000;
1046			if (mb > 3100)
1047				hi_pri_lvl = 0;
1048			else if (mb > 2600)
1049				hi_pri_lvl = 1;
1050			else if (mb > 1900)
1051				hi_pri_lvl = 2;
1052			else if (mb > 1160)
1053				hi_pri_lvl = 3;
1054			else if (mb > 440)
1055				hi_pri_lvl = 4;
1056			else
1057				hi_pri_lvl = 5;
1058
1059			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1060			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1061		} else {
1062			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1063			if (mdev->unique_rev_id >= 0x01)
1064				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1065			else
1066				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1067		}
1068	}
1069	return 0;
1070}
1071
1072#if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1073static int mga_suspend(struct drm_crtc *crtc)
1074{
1075	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1076	struct drm_device *dev = crtc->dev;
1077	struct mga_device *mdev = dev->dev_private;
1078	struct pci_dev *pdev = dev->pdev;
1079	int option;
1080
1081	if (mdev->suspended)
1082		return 0;
1083
1084	WREG_SEQ(1, 0x20);
1085	WREG_ECRT(1, 0x30);
1086	/* Disable the pixel clock */
1087	WREG_DAC(0x1a, 0x05);
1088	/* Power down the DAC */
1089	WREG_DAC(0x1e, 0x18);
1090	/* Power down the pixel PLL */
1091	WREG_DAC(0x1a, 0x0d);
1092
1093	/* Disable PLLs and clocks */
1094	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1095	option &= ~(0x1F8024);
1096	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1097	pci_set_power_state(pdev, PCI_D3hot);
1098	pci_disable_device(pdev);
1099
1100	mdev->suspended = true;
1101
1102	return 0;
1103}
1104
1105static int mga_resume(struct drm_crtc *crtc)
1106{
1107	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1108	struct drm_device *dev = crtc->dev;
1109	struct mga_device *mdev = dev->dev_private;
1110	struct pci_dev *pdev = dev->pdev;
1111	int option;
1112
1113	if (!mdev->suspended)
1114		return 0;
1115
1116	pci_set_power_state(pdev, PCI_D0);
1117	pci_enable_device(pdev);
1118
1119	/* Disable sysclk */
1120	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1121	option &= ~(0x4);
1122	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1123
1124	mdev->suspended = false;
1125
1126	return 0;
1127}
1128
1129#endif
1130
1131static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1132{
1133	struct drm_device *dev = crtc->dev;
1134	struct mga_device *mdev = dev->dev_private;
1135	u8 seq1 = 0, crtcext1 = 0;
1136
1137	switch (mode) {
1138	case DRM_MODE_DPMS_ON:
1139		seq1 = 0;
1140		crtcext1 = 0;
1141		mga_crtc_load_lut(crtc);
1142		break;
1143	case DRM_MODE_DPMS_STANDBY:
1144		seq1 = 0x20;
1145		crtcext1 = 0x10;
1146		break;
1147	case DRM_MODE_DPMS_SUSPEND:
1148		seq1 = 0x20;
1149		crtcext1 = 0x20;
1150		break;
1151	case DRM_MODE_DPMS_OFF:
1152		seq1 = 0x20;
1153		crtcext1 = 0x30;
1154		break;
1155	}
1156
1157#if 0
1158	if (mode == DRM_MODE_DPMS_OFF) {
1159		mga_suspend(crtc);
1160	}
1161#endif
1162	WREG8(MGAREG_SEQ_INDEX, 0x01);
1163	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1164	mga_wait_vsync(mdev);
1165	mga_wait_busy(mdev);
1166	WREG8(MGAREG_SEQ_DATA, seq1);
1167	msleep(20);
1168	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1169	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1170	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1171
1172#if 0
1173	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1174		mga_resume(crtc);
1175		drm_helper_resume_force_mode(dev);
1176	}
1177#endif
1178}
1179
1180/*
1181 * This is called before a mode is programmed. A typical use might be to
1182 * enable DPMS during the programming to avoid seeing intermediate stages,
1183 * but that's not relevant to us
1184 */
1185static void mga_crtc_prepare(struct drm_crtc *crtc)
1186{
1187	struct drm_device *dev = crtc->dev;
1188	struct mga_device *mdev = dev->dev_private;
1189	u8 tmp;
1190
1191	/*	mga_resume(crtc);*/
1192
1193	WREG8(MGAREG_CRTC_INDEX, 0x11);
1194	tmp = RREG8(MGAREG_CRTC_DATA);
1195	WREG_CRT(0x11, tmp | 0x80);
1196
1197	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1198		WREG_SEQ(0, 1);
1199		msleep(50);
1200		WREG_SEQ(1, 0x20);
1201		msleep(20);
1202	} else {
1203		WREG8(MGAREG_SEQ_INDEX, 0x1);
1204		tmp = RREG8(MGAREG_SEQ_DATA);
1205
1206		/* start sync reset */
1207		WREG_SEQ(0, 1);
1208		WREG_SEQ(1, tmp | 0x20);
1209	}
1210
1211	if (mdev->type == G200_WB)
1212		mga_g200wb_prepare(crtc);
1213
1214	WREG_CRT(17, 0);
1215}
1216
1217/*
1218 * This is called after a mode is programmed. It should reverse anything done
1219 * by the prepare function
1220 */
1221static void mga_crtc_commit(struct drm_crtc *crtc)
1222{
1223	struct drm_device *dev = crtc->dev;
1224	struct mga_device *mdev = dev->dev_private;
1225	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1226	u8 tmp;
1227
1228	if (mdev->type == G200_WB)
1229		mga_g200wb_commit(crtc);
1230
1231	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1232		msleep(50);
1233		WREG_SEQ(1, 0x0);
1234		msleep(20);
1235		WREG_SEQ(0, 0x3);
1236	} else {
1237		WREG8(MGAREG_SEQ_INDEX, 0x1);
1238		tmp = RREG8(MGAREG_SEQ_DATA);
1239
1240		tmp &= ~0x20;
1241		WREG_SEQ(0x1, tmp);
1242		WREG_SEQ(0, 3);
1243	}
1244	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1245}
1246
1247/*
1248 * The core can pass us a set of gamma values to program. We actually only
1249 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1250 * but it's a requirement that we provide the function
1251 */
1252static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1253				  u16 *blue, uint32_t start, uint32_t size)
1254{
1255	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1256	int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1257	int i;
1258
1259	for (i = start; i < end; i++) {
1260		mga_crtc->lut_r[i] = red[i] >> 8;
1261		mga_crtc->lut_g[i] = green[i] >> 8;
1262		mga_crtc->lut_b[i] = blue[i] >> 8;
1263	}
1264	mga_crtc_load_lut(crtc);
1265}
1266
1267/* Simple cleanup function */
1268static void mga_crtc_destroy(struct drm_crtc *crtc)
1269{
1270	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1271
1272	drm_crtc_cleanup(crtc);
1273	kfree(mga_crtc);
1274}
1275
1276static void mga_crtc_disable(struct drm_crtc *crtc)
1277{
1278	int ret;
1279	DRM_DEBUG_KMS("\n");
1280	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1281	if (crtc->primary->fb) {
1282		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1283		struct drm_gem_object *obj = mga_fb->obj;
1284		struct mgag200_bo *bo = gem_to_mga_bo(obj);
1285		ret = mgag200_bo_reserve(bo, false);
1286		if (ret)
1287			return;
1288		mgag200_bo_push_sysram(bo);
1289		mgag200_bo_unreserve(bo);
1290	}
1291	crtc->primary->fb = NULL;
1292}
1293
1294/* These provide the minimum set of functions required to handle a CRTC */
1295static const struct drm_crtc_funcs mga_crtc_funcs = {
1296	.cursor_set = mga_crtc_cursor_set,
1297	.cursor_move = mga_crtc_cursor_move,
1298	.gamma_set = mga_crtc_gamma_set,
1299	.set_config = drm_crtc_helper_set_config,
1300	.destroy = mga_crtc_destroy,
1301};
1302
1303static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1304	.disable = mga_crtc_disable,
1305	.dpms = mga_crtc_dpms,
1306	.mode_fixup = mga_crtc_mode_fixup,
1307	.mode_set = mga_crtc_mode_set,
1308	.mode_set_base = mga_crtc_mode_set_base,
1309	.prepare = mga_crtc_prepare,
1310	.commit = mga_crtc_commit,
1311	.load_lut = mga_crtc_load_lut,
1312};
1313
1314/* CRTC setup */
1315static void mga_crtc_init(struct mga_device *mdev)
1316{
1317	struct mga_crtc *mga_crtc;
1318	int i;
1319
1320	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1321			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1322			      GFP_KERNEL);
1323
1324	if (mga_crtc == NULL)
1325		return;
1326
1327	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1328
1329	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1330	mdev->mode_info.crtc = mga_crtc;
1331
1332	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1333		mga_crtc->lut_r[i] = i;
1334		mga_crtc->lut_g[i] = i;
1335		mga_crtc->lut_b[i] = i;
1336	}
1337
1338	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1339}
1340
1341/** Sets the color ramps on behalf of fbcon */
1342void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1343			      u16 blue, int regno)
1344{
1345	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1346
1347	mga_crtc->lut_r[regno] = red >> 8;
1348	mga_crtc->lut_g[regno] = green >> 8;
1349	mga_crtc->lut_b[regno] = blue >> 8;
1350}
1351
1352/** Gets the color ramps on behalf of fbcon */
1353void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1354			      u16 *blue, int regno)
1355{
1356	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1357
1358	*red = (u16)mga_crtc->lut_r[regno] << 8;
1359	*green = (u16)mga_crtc->lut_g[regno] << 8;
1360	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1361}
1362
1363/*
1364 * The encoder comes after the CRTC in the output pipeline, but before
1365 * the connector. It's responsible for ensuring that the digital
1366 * stream is appropriately converted into the output format. Setup is
1367 * very simple in this case - all we have to do is inform qemu of the
1368 * colour depth in order to ensure that it displays appropriately
1369 */
1370
1371/*
1372 * These functions are analagous to those in the CRTC code, but are intended
1373 * to handle any encoder-specific limitations
1374 */
1375static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1376				   const struct drm_display_mode *mode,
1377				   struct drm_display_mode *adjusted_mode)
1378{
1379	return true;
1380}
1381
1382static void mga_encoder_mode_set(struct drm_encoder *encoder,
1383				struct drm_display_mode *mode,
1384				struct drm_display_mode *adjusted_mode)
1385{
1386
1387}
1388
1389static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1390{
1391	return;
1392}
1393
1394static void mga_encoder_prepare(struct drm_encoder *encoder)
1395{
1396}
1397
1398static void mga_encoder_commit(struct drm_encoder *encoder)
1399{
1400}
1401
1402static void mga_encoder_destroy(struct drm_encoder *encoder)
1403{
1404	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1405	drm_encoder_cleanup(encoder);
1406	kfree(mga_encoder);
1407}
1408
1409static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1410	.dpms = mga_encoder_dpms,
1411	.mode_fixup = mga_encoder_mode_fixup,
1412	.mode_set = mga_encoder_mode_set,
1413	.prepare = mga_encoder_prepare,
1414	.commit = mga_encoder_commit,
1415};
1416
1417static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1418	.destroy = mga_encoder_destroy,
1419};
1420
1421static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1422{
1423	struct drm_encoder *encoder;
1424	struct mga_encoder *mga_encoder;
1425
1426	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1427	if (!mga_encoder)
1428		return NULL;
1429
1430	encoder = &mga_encoder->base;
1431	encoder->possible_crtcs = 0x1;
1432
1433	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1434			 DRM_MODE_ENCODER_DAC);
1435	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1436
1437	return encoder;
1438}
1439
1440
1441static int mga_vga_get_modes(struct drm_connector *connector)
1442{
1443	struct mga_connector *mga_connector = to_mga_connector(connector);
1444	struct edid *edid;
1445	int ret = 0;
1446
1447	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1448	if (edid) {
1449		drm_mode_connector_update_edid_property(connector, edid);
1450		ret = drm_add_edid_modes(connector, edid);
1451		kfree(edid);
1452	}
1453	return ret;
1454}
1455
1456static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1457							int bits_per_pixel)
1458{
1459	uint32_t total_area, divisor;
1460	int64_t active_area, pixels_per_second, bandwidth;
1461	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1462
1463	divisor = 1024;
1464
1465	if (!mode->htotal || !mode->vtotal || !mode->clock)
1466		return 0;
1467
1468	active_area = mode->hdisplay * mode->vdisplay;
1469	total_area = mode->htotal * mode->vtotal;
1470
1471	pixels_per_second = active_area * mode->clock * 1000;
1472	do_div(pixels_per_second, total_area);
1473
1474	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1475	do_div(bandwidth, divisor);
1476
1477	return (uint32_t)(bandwidth);
1478}
1479
1480#define MODE_BANDWIDTH	MODE_BAD
1481
1482static int mga_vga_mode_valid(struct drm_connector *connector,
1483				 struct drm_display_mode *mode)
1484{
1485	struct drm_device *dev = connector->dev;
1486	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1487	int bpp = 32;
1488
1489	if (IS_G200_SE(mdev)) {
1490		if (mdev->unique_rev_id == 0x01) {
1491			if (mode->hdisplay > 1600)
1492				return MODE_VIRTUAL_X;
1493			if (mode->vdisplay > 1200)
1494				return MODE_VIRTUAL_Y;
1495			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1496				> (24400 * 1024))
1497				return MODE_BANDWIDTH;
1498		} else if (mdev->unique_rev_id >= 0x02) {
1499			if (mode->hdisplay > 1920)
1500				return MODE_VIRTUAL_X;
1501			if (mode->vdisplay > 1200)
1502				return MODE_VIRTUAL_Y;
1503			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1504				> (30100 * 1024))
1505				return MODE_BANDWIDTH;
1506		}
1507	} else if (mdev->type == G200_WB) {
1508		if (mode->hdisplay > 1280)
1509			return MODE_VIRTUAL_X;
1510		if (mode->vdisplay > 1024)
1511			return MODE_VIRTUAL_Y;
1512		if (mga_vga_calculate_mode_bandwidth(mode,
1513			bpp > (31877 * 1024)))
1514			return MODE_BANDWIDTH;
1515	} else if (mdev->type == G200_EV &&
1516		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1517			> (32700 * 1024))) {
1518		return MODE_BANDWIDTH;
1519	} else if (mdev->type == G200_EH &&
1520		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1521			> (37500 * 1024))) {
1522		return MODE_BANDWIDTH;
1523	} else if (mdev->type == G200_ER &&
1524		(mga_vga_calculate_mode_bandwidth(mode,
1525			bpp) > (55000 * 1024))) {
1526		return MODE_BANDWIDTH;
1527	}
1528
1529	if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1530	    (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1531		return MODE_H_ILLEGAL;
1532	}
1533
1534	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1535	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1536	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1537	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1538		return MODE_BAD;
1539	}
1540
1541	/* Validate the mode input by the user */
1542	if (connector->cmdline_mode.specified) {
1543		if (connector->cmdline_mode.bpp_specified)
1544			bpp = connector->cmdline_mode.bpp;
1545	}
1546
1547	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1548		if (connector->cmdline_mode.specified)
1549			connector->cmdline_mode.specified = false;
1550		return MODE_BAD;
1551	}
1552
1553	return MODE_OK;
1554}
1555
1556static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1557						  *connector)
1558{
1559	int enc_id = connector->encoder_ids[0];
1560	/* pick the encoder ids */
1561	if (enc_id)
1562		return drm_encoder_find(connector->dev, enc_id);
1563	return NULL;
1564}
1565
1566static enum drm_connector_status mga_vga_detect(struct drm_connector
1567						   *connector, bool force)
1568{
1569	return connector_status_connected;
1570}
1571
1572static void mga_connector_destroy(struct drm_connector *connector)
1573{
1574	struct mga_connector *mga_connector = to_mga_connector(connector);
1575	mgag200_i2c_destroy(mga_connector->i2c);
1576	drm_connector_cleanup(connector);
1577	kfree(connector);
1578}
1579
1580struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1581	.get_modes = mga_vga_get_modes,
1582	.mode_valid = mga_vga_mode_valid,
1583	.best_encoder = mga_connector_best_encoder,
1584};
1585
1586struct drm_connector_funcs mga_vga_connector_funcs = {
1587	.dpms = drm_helper_connector_dpms,
1588	.detect = mga_vga_detect,
1589	.fill_modes = drm_helper_probe_single_connector_modes,
1590	.destroy = mga_connector_destroy,
1591};
1592
1593static struct drm_connector *mga_vga_init(struct drm_device *dev)
1594{
1595	struct drm_connector *connector;
1596	struct mga_connector *mga_connector;
1597
1598	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1599	if (!mga_connector)
1600		return NULL;
1601
1602	connector = &mga_connector->base;
1603
1604	drm_connector_init(dev, connector,
1605			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1606
1607	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1608
1609	drm_connector_register(connector);
1610
1611	mga_connector->i2c = mgag200_i2c_create(dev);
1612	if (!mga_connector->i2c)
1613		DRM_ERROR("failed to add ddc bus\n");
1614
1615	return connector;
1616}
1617
1618
1619int mgag200_modeset_init(struct mga_device *mdev)
1620{
1621	struct drm_encoder *encoder;
1622	struct drm_connector *connector;
1623	int ret;
1624
1625	mdev->mode_info.mode_config_initialized = true;
1626
1627	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1628	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1629
1630	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1631
1632	mga_crtc_init(mdev);
1633
1634	encoder = mga_encoder_init(mdev->dev);
1635	if (!encoder) {
1636		DRM_ERROR("mga_encoder_init failed\n");
1637		return -1;
1638	}
1639
1640	connector = mga_vga_init(mdev->dev);
1641	if (!connector) {
1642		DRM_ERROR("mga_vga_init failed\n");
1643		return -1;
1644	}
1645
1646	drm_mode_connector_attach_encoder(connector, encoder);
1647
1648	ret = mgag200_fbdev_init(mdev);
1649	if (ret) {
1650		DRM_ERROR("mga_fbdev_init failed\n");
1651		return ret;
1652	}
1653
1654	return 0;
1655}
1656
1657void mgag200_modeset_fini(struct mga_device *mdev)
1658{
1659
1660}
1661