1/*
2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3 *  - BMC150
4 *  - BMI055
5 *  - BMA255
6 *  - BMA250E
7 *  - BMA222E
8 *  - BMA280
9 *
10 * Copyright (c) 2014, Intel Corporation.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19 * more details.
20 */
21
22#include <linux/module.h>
23#include <linux/i2c.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/slab.h>
27#include <linux/acpi.h>
28#include <linux/gpio/consumer.h>
29#include <linux/pm.h>
30#include <linux/pm_runtime.h>
31#include <linux/iio/iio.h>
32#include <linux/iio/sysfs.h>
33#include <linux/iio/buffer.h>
34#include <linux/iio/events.h>
35#include <linux/iio/trigger.h>
36#include <linux/iio/trigger_consumer.h>
37#include <linux/iio/triggered_buffer.h>
38
39#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
40#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
41#define BMC150_ACCEL_GPIO_NAME			"bmc150_accel_int"
42
43#define BMC150_ACCEL_REG_CHIP_ID		0x00
44
45#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
46#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
47#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
48#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
49#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
50#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
51
52#define BMC150_ACCEL_REG_PMU_LPW		0x11
53#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
54#define BMC150_ACCEL_PMU_MODE_SHIFT		5
55#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
56#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
57
58#define BMC150_ACCEL_REG_PMU_RANGE		0x0F
59
60#define BMC150_ACCEL_DEF_RANGE_2G		0x03
61#define BMC150_ACCEL_DEF_RANGE_4G		0x05
62#define BMC150_ACCEL_DEF_RANGE_8G		0x08
63#define BMC150_ACCEL_DEF_RANGE_16G		0x0C
64
65/* Default BW: 125Hz */
66#define BMC150_ACCEL_REG_PMU_BW		0x10
67#define BMC150_ACCEL_DEF_BW			125
68
69#define BMC150_ACCEL_REG_INT_MAP_0		0x19
70#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
71
72#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
73#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
74#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
75#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
76
77#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
78#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
79#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
80#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
81
82#define BMC150_ACCEL_REG_INT_EN_0		0x16
83#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
84#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
85#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
86
87#define BMC150_ACCEL_REG_INT_EN_1		0x17
88#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
89#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
90#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
91
92#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
93#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
94
95#define BMC150_ACCEL_REG_INT_5			0x27
96#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
97
98#define BMC150_ACCEL_REG_INT_6			0x28
99#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
100
101/* Slope duration in terms of number of samples */
102#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
103/* in terms of multiples of g's/LSB, based on range */
104#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
105
106#define BMC150_ACCEL_REG_XOUT_L		0x02
107
108#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
109
110/* Sleep Duration values */
111#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
112#define BMC150_ACCEL_SLEEP_1_MS		0x06
113#define BMC150_ACCEL_SLEEP_2_MS		0x07
114#define BMC150_ACCEL_SLEEP_4_MS		0x08
115#define BMC150_ACCEL_SLEEP_6_MS		0x09
116#define BMC150_ACCEL_SLEEP_10_MS		0x0A
117#define BMC150_ACCEL_SLEEP_25_MS		0x0B
118#define BMC150_ACCEL_SLEEP_50_MS		0x0C
119#define BMC150_ACCEL_SLEEP_100_MS		0x0D
120#define BMC150_ACCEL_SLEEP_500_MS		0x0E
121#define BMC150_ACCEL_SLEEP_1_SEC		0x0F
122
123#define BMC150_ACCEL_REG_TEMP			0x08
124#define BMC150_ACCEL_TEMP_CENTER_VAL		24
125
126#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
127#define BMC150_AUTO_SUSPEND_DELAY_MS		2000
128
129#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
130#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
131#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
132#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
133#define BMC150_ACCEL_FIFO_LENGTH		32
134
135enum bmc150_accel_axis {
136	AXIS_X,
137	AXIS_Y,
138	AXIS_Z,
139};
140
141enum bmc150_power_modes {
142	BMC150_ACCEL_SLEEP_MODE_NORMAL,
143	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
144	BMC150_ACCEL_SLEEP_MODE_LPM,
145	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
146};
147
148struct bmc150_scale_info {
149	int scale;
150	u8 reg_range;
151};
152
153struct bmc150_accel_chip_info {
154	u8 chip_id;
155	const struct iio_chan_spec *channels;
156	int num_channels;
157	const struct bmc150_scale_info scale_table[4];
158};
159
160struct bmc150_accel_interrupt {
161	const struct bmc150_accel_interrupt_info *info;
162	atomic_t users;
163};
164
165struct bmc150_accel_trigger {
166	struct bmc150_accel_data *data;
167	struct iio_trigger *indio_trig;
168	int (*setup)(struct bmc150_accel_trigger *t, bool state);
169	int intr;
170	bool enabled;
171};
172
173enum bmc150_accel_interrupt_id {
174	BMC150_ACCEL_INT_DATA_READY,
175	BMC150_ACCEL_INT_ANY_MOTION,
176	BMC150_ACCEL_INT_WATERMARK,
177	BMC150_ACCEL_INTERRUPTS,
178};
179
180enum bmc150_accel_trigger_id {
181	BMC150_ACCEL_TRIGGER_DATA_READY,
182	BMC150_ACCEL_TRIGGER_ANY_MOTION,
183	BMC150_ACCEL_TRIGGERS,
184};
185
186struct bmc150_accel_data {
187	struct i2c_client *client;
188	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
189	atomic_t active_intr;
190	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
191	struct mutex mutex;
192	u8 fifo_mode, watermark;
193	s16 buffer[8];
194	u8 bw_bits;
195	u32 slope_dur;
196	u32 slope_thres;
197	u32 range;
198	int ev_enable_state;
199	int64_t timestamp, old_timestamp;
200	const struct bmc150_accel_chip_info *chip_info;
201};
202
203static const struct {
204	int val;
205	int val2;
206	u8 bw_bits;
207} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
208				     {31, 260000, 0x09},
209				     {62, 500000, 0x0A},
210				     {125, 0, 0x0B},
211				     {250, 0, 0x0C},
212				     {500, 0, 0x0D},
213				     {1000, 0, 0x0E},
214				     {2000, 0, 0x0F} };
215
216static const struct {
217	int bw_bits;
218	int msec;
219} bmc150_accel_sample_upd_time[] = { {0x08, 64},
220				     {0x09, 32},
221				     {0x0A, 16},
222				     {0x0B, 8},
223				     {0x0C, 4},
224				     {0x0D, 2},
225				     {0x0E, 1},
226				     {0x0F, 1} };
227
228static const struct {
229	int sleep_dur;
230	u8 reg_value;
231} bmc150_accel_sleep_value_table[] = { {0, 0},
232				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
233				       {1000, BMC150_ACCEL_SLEEP_1_MS},
234				       {2000, BMC150_ACCEL_SLEEP_2_MS},
235				       {4000, BMC150_ACCEL_SLEEP_4_MS},
236				       {6000, BMC150_ACCEL_SLEEP_6_MS},
237				       {10000, BMC150_ACCEL_SLEEP_10_MS},
238				       {25000, BMC150_ACCEL_SLEEP_25_MS},
239				       {50000, BMC150_ACCEL_SLEEP_50_MS},
240				       {100000, BMC150_ACCEL_SLEEP_100_MS},
241				       {500000, BMC150_ACCEL_SLEEP_500_MS},
242				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
243
244
245static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
246				 enum bmc150_power_modes mode,
247				 int dur_us)
248{
249	int i;
250	int ret;
251	u8 lpw_bits;
252	int dur_val = -1;
253
254	if (dur_us > 0) {
255		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
256									 ++i) {
257			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
258									dur_us)
259				dur_val =
260				bmc150_accel_sleep_value_table[i].reg_value;
261		}
262	} else
263		dur_val = 0;
264
265	if (dur_val < 0)
266		return -EINVAL;
267
268	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
269	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
270
271	dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
272
273	ret = i2c_smbus_write_byte_data(data->client,
274					BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
275	if (ret < 0) {
276		dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
277		return ret;
278	}
279
280	return 0;
281}
282
283static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
284			       int val2)
285{
286	int i;
287	int ret;
288
289	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
290		if (bmc150_accel_samp_freq_table[i].val == val &&
291				bmc150_accel_samp_freq_table[i].val2 == val2) {
292			ret = i2c_smbus_write_byte_data(
293				data->client,
294				BMC150_ACCEL_REG_PMU_BW,
295				bmc150_accel_samp_freq_table[i].bw_bits);
296			if (ret < 0)
297				return ret;
298
299			data->bw_bits =
300				bmc150_accel_samp_freq_table[i].bw_bits;
301			return 0;
302		}
303	}
304
305	return -EINVAL;
306}
307
308static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
309{
310	int ret, val;
311
312	ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6,
313					data->slope_thres);
314	if (ret < 0) {
315		dev_err(&data->client->dev, "Error writing reg_int_6\n");
316		return ret;
317	}
318
319	ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
320	if (ret < 0) {
321		dev_err(&data->client->dev, "Error reading reg_int_5\n");
322		return ret;
323	}
324
325	val = (ret & ~BMC150_ACCEL_SLOPE_DUR_MASK) | data->slope_dur;
326	ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5,
327					val);
328	if (ret < 0) {
329		dev_err(&data->client->dev, "Error write reg_int_5\n");
330		return ret;
331	}
332
333	dev_dbg(&data->client->dev, "%s: %x %x\n", __func__, data->slope_thres,
334		data->slope_dur);
335
336	return ret;
337}
338
339static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
340					 bool state)
341{
342	if (state)
343		return bmc150_accel_update_slope(t->data);
344
345	return 0;
346}
347
348static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
349{
350	int ret;
351
352	ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
353	if (ret < 0) {
354		dev_err(&data->client->dev,
355			"Error: Reading chip id\n");
356		return ret;
357	}
358
359	dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
360	if (ret != data->chip_info->chip_id) {
361		dev_err(&data->client->dev, "Invalid chip %x\n", ret);
362		return -ENODEV;
363	}
364
365	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
366	if (ret < 0)
367		return ret;
368
369	/* Set Bandwidth */
370	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
371	if (ret < 0)
372		return ret;
373
374	/* Set Default Range */
375	ret = i2c_smbus_write_byte_data(data->client,
376					BMC150_ACCEL_REG_PMU_RANGE,
377					BMC150_ACCEL_DEF_RANGE_4G);
378	if (ret < 0) {
379		dev_err(&data->client->dev,
380					"Error writing reg_pmu_range\n");
381		return ret;
382	}
383
384	data->range = BMC150_ACCEL_DEF_RANGE_4G;
385
386	/* Set default slope duration and thresholds */
387	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
388	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
389	ret = bmc150_accel_update_slope(data);
390	if (ret < 0)
391		return ret;
392
393	/* Set default as latched interrupts */
394	ret = i2c_smbus_write_byte_data(data->client,
395					BMC150_ACCEL_REG_INT_RST_LATCH,
396					BMC150_ACCEL_INT_MODE_LATCH_INT |
397					BMC150_ACCEL_INT_MODE_LATCH_RESET);
398	if (ret < 0) {
399		dev_err(&data->client->dev,
400			"Error writing reg_int_rst_latch\n");
401		return ret;
402	}
403
404	return 0;
405}
406
407static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
408			       int *val2)
409{
410	int i;
411
412	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
413		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
414			*val = bmc150_accel_samp_freq_table[i].val;
415			*val2 = bmc150_accel_samp_freq_table[i].val2;
416			return IIO_VAL_INT_PLUS_MICRO;
417		}
418	}
419
420	return -EINVAL;
421}
422
423#ifdef CONFIG_PM
424static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
425{
426	int i;
427
428	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
429		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
430			return bmc150_accel_sample_upd_time[i].msec;
431	}
432
433	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
434}
435
436static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
437{
438	int ret;
439
440	if (on)
441		ret = pm_runtime_get_sync(&data->client->dev);
442	else {
443		pm_runtime_mark_last_busy(&data->client->dev);
444		ret = pm_runtime_put_autosuspend(&data->client->dev);
445	}
446	if (ret < 0) {
447		dev_err(&data->client->dev,
448			"Failed: bmc150_accel_set_power_state for %d\n", on);
449		if (on)
450			pm_runtime_put_noidle(&data->client->dev);
451
452		return ret;
453	}
454
455	return 0;
456}
457#else
458static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
459{
460	return 0;
461}
462#endif
463
464static const struct bmc150_accel_interrupt_info {
465	u8 map_reg;
466	u8 map_bitmask;
467	u8 en_reg;
468	u8 en_bitmask;
469} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
470	{ /* data ready interrupt */
471		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
472		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
473		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
474		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
475	},
476	{  /* motion interrupt */
477		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
478		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
479		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
480		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
481			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
482			BMC150_ACCEL_INT_EN_BIT_SLP_Z
483	},
484	{ /* fifo watermark interrupt */
485		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
486		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
487		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
488		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
489	},
490};
491
492static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
493					  struct bmc150_accel_data *data)
494{
495	int i;
496
497	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
498		data->interrupts[i].info = &bmc150_accel_interrupts[i];
499}
500
501static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
502				      bool state)
503{
504	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
505	const struct bmc150_accel_interrupt_info *info = intr->info;
506	int ret;
507
508	if (state) {
509		if (atomic_inc_return(&intr->users) > 1)
510			return 0;
511	} else {
512		if (atomic_dec_return(&intr->users) > 0)
513			return 0;
514	}
515
516	/*
517	 * We will expect the enable and disable to do operation in
518	 * in reverse order. This will happen here anyway as our
519	 * resume operation uses sync mode runtime pm calls, the
520	 * suspend operation will be delayed by autosuspend delay
521	 * So the disable operation will still happen in reverse of
522	 * enable operation. When runtime pm is disabled the mode
523	 * is always on so sequence doesn't matter
524	 */
525	ret = bmc150_accel_set_power_state(data, state);
526	if (ret < 0)
527		return ret;
528
529	/* map the interrupt to the appropriate pins */
530	ret = i2c_smbus_read_byte_data(data->client, info->map_reg);
531	if (ret < 0) {
532		dev_err(&data->client->dev, "Error reading reg_int_map\n");
533		goto out_fix_power_state;
534	}
535	if (state)
536		ret |= info->map_bitmask;
537	else
538		ret &= ~info->map_bitmask;
539
540	ret = i2c_smbus_write_byte_data(data->client, info->map_reg,
541					ret);
542	if (ret < 0) {
543		dev_err(&data->client->dev, "Error writing reg_int_map\n");
544		goto out_fix_power_state;
545	}
546
547	/* enable/disable the interrupt */
548	ret = i2c_smbus_read_byte_data(data->client, info->en_reg);
549	if (ret < 0) {
550		dev_err(&data->client->dev, "Error reading reg_int_en\n");
551		goto out_fix_power_state;
552	}
553
554	if (state)
555		ret |= info->en_bitmask;
556	else
557		ret &= ~info->en_bitmask;
558
559	ret = i2c_smbus_write_byte_data(data->client, info->en_reg, ret);
560	if (ret < 0) {
561		dev_err(&data->client->dev, "Error writing reg_int_en\n");
562		goto out_fix_power_state;
563	}
564
565	if (state)
566		atomic_inc(&data->active_intr);
567	else
568		atomic_dec(&data->active_intr);
569
570	return 0;
571
572out_fix_power_state:
573	bmc150_accel_set_power_state(data, false);
574	return ret;
575}
576
577
578static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
579{
580	int ret, i;
581
582	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
583		if (data->chip_info->scale_table[i].scale == val) {
584			ret = i2c_smbus_write_byte_data(
585				     data->client,
586				     BMC150_ACCEL_REG_PMU_RANGE,
587				     data->chip_info->scale_table[i].reg_range);
588			if (ret < 0) {
589				dev_err(&data->client->dev,
590					"Error writing pmu_range\n");
591				return ret;
592			}
593
594			data->range = data->chip_info->scale_table[i].reg_range;
595			return 0;
596		}
597	}
598
599	return -EINVAL;
600}
601
602static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
603{
604	int ret;
605
606	mutex_lock(&data->mutex);
607
608	ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
609	if (ret < 0) {
610		dev_err(&data->client->dev, "Error reading reg_temp\n");
611		mutex_unlock(&data->mutex);
612		return ret;
613	}
614	*val = sign_extend32(ret, 7);
615
616	mutex_unlock(&data->mutex);
617
618	return IIO_VAL_INT;
619}
620
621static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
622				 struct iio_chan_spec const *chan,
623				 int *val)
624{
625	int ret;
626	int axis = chan->scan_index;
627
628	mutex_lock(&data->mutex);
629	ret = bmc150_accel_set_power_state(data, true);
630	if (ret < 0) {
631		mutex_unlock(&data->mutex);
632		return ret;
633	}
634
635	ret = i2c_smbus_read_word_data(data->client,
636				       BMC150_ACCEL_AXIS_TO_REG(axis));
637	if (ret < 0) {
638		dev_err(&data->client->dev, "Error reading axis %d\n", axis);
639		bmc150_accel_set_power_state(data, false);
640		mutex_unlock(&data->mutex);
641		return ret;
642	}
643	*val = sign_extend32(ret >> chan->scan_type.shift,
644			     chan->scan_type.realbits - 1);
645	ret = bmc150_accel_set_power_state(data, false);
646	mutex_unlock(&data->mutex);
647	if (ret < 0)
648		return ret;
649
650	return IIO_VAL_INT;
651}
652
653static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
654				 struct iio_chan_spec const *chan,
655				 int *val, int *val2, long mask)
656{
657	struct bmc150_accel_data *data = iio_priv(indio_dev);
658	int ret;
659
660	switch (mask) {
661	case IIO_CHAN_INFO_RAW:
662		switch (chan->type) {
663		case IIO_TEMP:
664			return bmc150_accel_get_temp(data, val);
665		case IIO_ACCEL:
666			if (iio_buffer_enabled(indio_dev))
667				return -EBUSY;
668			else
669				return bmc150_accel_get_axis(data, chan, val);
670		default:
671			return -EINVAL;
672		}
673	case IIO_CHAN_INFO_OFFSET:
674		if (chan->type == IIO_TEMP) {
675			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
676			return IIO_VAL_INT;
677		} else
678			return -EINVAL;
679	case IIO_CHAN_INFO_SCALE:
680		*val = 0;
681		switch (chan->type) {
682		case IIO_TEMP:
683			*val2 = 500000;
684			return IIO_VAL_INT_PLUS_MICRO;
685		case IIO_ACCEL:
686		{
687			int i;
688			const struct bmc150_scale_info *si;
689			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
690
691			for (i = 0; i < st_size; ++i) {
692				si = &data->chip_info->scale_table[i];
693				if (si->reg_range == data->range) {
694					*val2 = si->scale;
695					return IIO_VAL_INT_PLUS_MICRO;
696				}
697			}
698			return -EINVAL;
699		}
700		default:
701			return -EINVAL;
702		}
703	case IIO_CHAN_INFO_SAMP_FREQ:
704		mutex_lock(&data->mutex);
705		ret = bmc150_accel_get_bw(data, val, val2);
706		mutex_unlock(&data->mutex);
707		return ret;
708	default:
709		return -EINVAL;
710	}
711}
712
713static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
714				  struct iio_chan_spec const *chan,
715				  int val, int val2, long mask)
716{
717	struct bmc150_accel_data *data = iio_priv(indio_dev);
718	int ret;
719
720	switch (mask) {
721	case IIO_CHAN_INFO_SAMP_FREQ:
722		mutex_lock(&data->mutex);
723		ret = bmc150_accel_set_bw(data, val, val2);
724		mutex_unlock(&data->mutex);
725		break;
726	case IIO_CHAN_INFO_SCALE:
727		if (val)
728			return -EINVAL;
729
730		mutex_lock(&data->mutex);
731		ret = bmc150_accel_set_scale(data, val2);
732		mutex_unlock(&data->mutex);
733		return ret;
734	default:
735		ret = -EINVAL;
736	}
737
738	return ret;
739}
740
741static int bmc150_accel_read_event(struct iio_dev *indio_dev,
742				   const struct iio_chan_spec *chan,
743				   enum iio_event_type type,
744				   enum iio_event_direction dir,
745				   enum iio_event_info info,
746				   int *val, int *val2)
747{
748	struct bmc150_accel_data *data = iio_priv(indio_dev);
749
750	*val2 = 0;
751	switch (info) {
752	case IIO_EV_INFO_VALUE:
753		*val = data->slope_thres;
754		break;
755	case IIO_EV_INFO_PERIOD:
756		*val = data->slope_dur;
757		break;
758	default:
759		return -EINVAL;
760	}
761
762	return IIO_VAL_INT;
763}
764
765static int bmc150_accel_write_event(struct iio_dev *indio_dev,
766				    const struct iio_chan_spec *chan,
767				    enum iio_event_type type,
768				    enum iio_event_direction dir,
769				    enum iio_event_info info,
770				    int val, int val2)
771{
772	struct bmc150_accel_data *data = iio_priv(indio_dev);
773
774	if (data->ev_enable_state)
775		return -EBUSY;
776
777	switch (info) {
778	case IIO_EV_INFO_VALUE:
779		data->slope_thres = val & 0xFF;
780		break;
781	case IIO_EV_INFO_PERIOD:
782		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
783		break;
784	default:
785		return -EINVAL;
786	}
787
788	return 0;
789}
790
791static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
792					  const struct iio_chan_spec *chan,
793					  enum iio_event_type type,
794					  enum iio_event_direction dir)
795{
796
797	struct bmc150_accel_data *data = iio_priv(indio_dev);
798
799	return data->ev_enable_state;
800}
801
802static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
803					   const struct iio_chan_spec *chan,
804					   enum iio_event_type type,
805					   enum iio_event_direction dir,
806					   int state)
807{
808	struct bmc150_accel_data *data = iio_priv(indio_dev);
809	int ret;
810
811	if (state == data->ev_enable_state)
812		return 0;
813
814	mutex_lock(&data->mutex);
815
816	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
817					 state);
818	if (ret < 0) {
819		mutex_unlock(&data->mutex);
820		return ret;
821	}
822
823	data->ev_enable_state = state;
824	mutex_unlock(&data->mutex);
825
826	return 0;
827}
828
829static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
830				   struct iio_trigger *trig)
831{
832	struct bmc150_accel_data *data = iio_priv(indio_dev);
833	int i;
834
835	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
836		if (data->triggers[i].indio_trig == trig)
837			return 0;
838	}
839
840	return -EINVAL;
841}
842
843static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
844					       struct device_attribute *attr,
845					       char *buf)
846{
847	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
848	struct bmc150_accel_data *data = iio_priv(indio_dev);
849	int wm;
850
851	mutex_lock(&data->mutex);
852	wm = data->watermark;
853	mutex_unlock(&data->mutex);
854
855	return sprintf(buf, "%d\n", wm);
856}
857
858static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
859					   struct device_attribute *attr,
860					   char *buf)
861{
862	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
863	struct bmc150_accel_data *data = iio_priv(indio_dev);
864	bool state;
865
866	mutex_lock(&data->mutex);
867	state = data->fifo_mode;
868	mutex_unlock(&data->mutex);
869
870	return sprintf(buf, "%d\n", state);
871}
872
873static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
874static IIO_CONST_ATTR(hwfifo_watermark_max,
875		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
876static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
877		       bmc150_accel_get_fifo_state, NULL, 0);
878static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
879		       bmc150_accel_get_fifo_watermark, NULL, 0);
880
881static const struct attribute *bmc150_accel_fifo_attributes[] = {
882	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
883	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
884	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
885	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
886	NULL,
887};
888
889static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
890{
891	struct bmc150_accel_data *data = iio_priv(indio_dev);
892
893	if (val > BMC150_ACCEL_FIFO_LENGTH)
894		val = BMC150_ACCEL_FIFO_LENGTH;
895
896	mutex_lock(&data->mutex);
897	data->watermark = val;
898	mutex_unlock(&data->mutex);
899
900	return 0;
901}
902
903/*
904 * We must read at least one full frame in one burst, otherwise the rest of the
905 * frame data is discarded.
906 */
907static int bmc150_accel_fifo_transfer(const struct i2c_client *client,
908				      char *buffer, int samples)
909{
910	int sample_length = 3 * 2;
911	u8 reg_fifo_data = BMC150_ACCEL_REG_FIFO_DATA;
912	int ret = -EIO;
913
914	if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
915		struct i2c_msg msg[2] = {
916			{
917				.addr = client->addr,
918				.flags = 0,
919				.buf = &reg_fifo_data,
920				.len = sizeof(reg_fifo_data),
921			},
922			{
923				.addr = client->addr,
924				.flags = I2C_M_RD,
925				.buf = (u8 *)buffer,
926				.len = samples * sample_length,
927			}
928		};
929
930		ret = i2c_transfer(client->adapter, msg, 2);
931		if (ret != 2)
932			ret = -EIO;
933		else
934			ret = 0;
935	} else {
936		int i, step = I2C_SMBUS_BLOCK_MAX / sample_length;
937
938		for (i = 0; i < samples * sample_length; i += step) {
939			ret = i2c_smbus_read_i2c_block_data(client,
940							    reg_fifo_data, step,
941							    &buffer[i]);
942			if (ret != step) {
943				ret = -EIO;
944				break;
945			}
946
947			ret = 0;
948		}
949	}
950
951	if (ret)
952		dev_err(&client->dev, "Error transferring data from fifo\n");
953
954	return ret;
955}
956
957static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
958				     unsigned samples, bool irq)
959{
960	struct bmc150_accel_data *data = iio_priv(indio_dev);
961	int ret, i;
962	u8 count;
963	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
964	int64_t tstamp;
965	uint64_t sample_period;
966	ret = i2c_smbus_read_byte_data(data->client,
967				       BMC150_ACCEL_REG_FIFO_STATUS);
968	if (ret < 0) {
969		dev_err(&data->client->dev, "Error reading reg_fifo_status\n");
970		return ret;
971	}
972
973	count = ret & 0x7F;
974
975	if (!count)
976		return 0;
977
978	/*
979	 * If we getting called from IRQ handler we know the stored timestamp is
980	 * fairly accurate for the last stored sample. Otherwise, if we are
981	 * called as a result of a read operation from userspace and hence
982	 * before the watermark interrupt was triggered, take a timestamp
983	 * now. We can fall anywhere in between two samples so the error in this
984	 * case is at most one sample period.
985	 */
986	if (!irq) {
987		data->old_timestamp = data->timestamp;
988		data->timestamp = iio_get_time_ns();
989	}
990
991	/*
992	 * Approximate timestamps for each of the sample based on the sampling
993	 * frequency, timestamp for last sample and number of samples.
994	 *
995	 * Note that we can't use the current bandwidth settings to compute the
996	 * sample period because the sample rate varies with the device
997	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
998	 * small variation adds when we store a large number of samples and
999	 * creates significant jitter between the last and first samples in
1000	 * different batches (e.g. 32ms vs 21ms).
1001	 *
1002	 * To avoid this issue we compute the actual sample period ourselves
1003	 * based on the timestamp delta between the last two flush operations.
1004	 */
1005	sample_period = (data->timestamp - data->old_timestamp);
1006	do_div(sample_period, count);
1007	tstamp = data->timestamp - (count - 1) * sample_period;
1008
1009	if (samples && count > samples)
1010		count = samples;
1011
1012	ret = bmc150_accel_fifo_transfer(data->client, (u8 *)buffer, count);
1013	if (ret)
1014		return ret;
1015
1016	/*
1017	 * Ideally we want the IIO core to handle the demux when running in fifo
1018	 * mode but not when running in triggered buffer mode. Unfortunately
1019	 * this does not seem to be possible, so stick with driver demux for
1020	 * now.
1021	 */
1022	for (i = 0; i < count; i++) {
1023		u16 sample[8];
1024		int j, bit;
1025
1026		j = 0;
1027		for_each_set_bit(bit, indio_dev->active_scan_mask,
1028				 indio_dev->masklength)
1029			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
1030
1031		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
1032
1033		tstamp += sample_period;
1034	}
1035
1036	return count;
1037}
1038
1039static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
1040{
1041	struct bmc150_accel_data *data = iio_priv(indio_dev);
1042	int ret;
1043
1044	mutex_lock(&data->mutex);
1045	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
1046	mutex_unlock(&data->mutex);
1047
1048	return ret;
1049}
1050
1051static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1052		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1053
1054static struct attribute *bmc150_accel_attributes[] = {
1055	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1056	NULL,
1057};
1058
1059static const struct attribute_group bmc150_accel_attrs_group = {
1060	.attrs = bmc150_accel_attributes,
1061};
1062
1063static const struct iio_event_spec bmc150_accel_event = {
1064		.type = IIO_EV_TYPE_ROC,
1065		.dir = IIO_EV_DIR_EITHER,
1066		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
1067				 BIT(IIO_EV_INFO_ENABLE) |
1068				 BIT(IIO_EV_INFO_PERIOD)
1069};
1070
1071#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1072	.type = IIO_ACCEL,						\
1073	.modified = 1,							\
1074	.channel2 = IIO_MOD_##_axis,					\
1075	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
1076	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
1077				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
1078	.scan_index = AXIS_##_axis,					\
1079	.scan_type = {							\
1080		.sign = 's',						\
1081		.realbits = (bits),					\
1082		.storagebits = 16,					\
1083		.shift = 16 - (bits),					\
1084	},								\
1085	.event_spec = &bmc150_accel_event,				\
1086	.num_event_specs = 1						\
1087}
1088
1089#define BMC150_ACCEL_CHANNELS(bits) {					\
1090	{								\
1091		.type = IIO_TEMP,					\
1092		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1093				      BIT(IIO_CHAN_INFO_SCALE) |	\
1094				      BIT(IIO_CHAN_INFO_OFFSET),	\
1095		.scan_index = -1,					\
1096	},								\
1097	BMC150_ACCEL_CHANNEL(X, bits),					\
1098	BMC150_ACCEL_CHANNEL(Y, bits),					\
1099	BMC150_ACCEL_CHANNEL(Z, bits),					\
1100	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1101}
1102
1103static const struct iio_chan_spec bma222e_accel_channels[] =
1104	BMC150_ACCEL_CHANNELS(8);
1105static const struct iio_chan_spec bma250e_accel_channels[] =
1106	BMC150_ACCEL_CHANNELS(10);
1107static const struct iio_chan_spec bmc150_accel_channels[] =
1108	BMC150_ACCEL_CHANNELS(12);
1109static const struct iio_chan_spec bma280_accel_channels[] =
1110	BMC150_ACCEL_CHANNELS(14);
1111
1112enum {
1113	bmc150,
1114	bmi055,
1115	bma255,
1116	bma250e,
1117	bma222e,
1118	bma280,
1119};
1120
1121static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1122	[bmc150] = {
1123		.chip_id = 0xFA,
1124		.channels = bmc150_accel_channels,
1125		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1126		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1127				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1128				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1129				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1130	},
1131	[bmi055] = {
1132		.chip_id = 0xFA,
1133		.channels = bmc150_accel_channels,
1134		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1135		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1136				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1137				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1138				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1139	},
1140	[bma255] = {
1141		.chip_id = 0xFA,
1142		.channels = bmc150_accel_channels,
1143		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1144		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1145				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1146				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1147				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1148	},
1149	[bma250e] = {
1150		.chip_id = 0xF9,
1151		.channels = bma250e_accel_channels,
1152		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1153		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1154				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1155				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1156				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1157	},
1158	[bma222e] = {
1159		.chip_id = 0xF8,
1160		.channels = bma222e_accel_channels,
1161		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1162		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1163				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1164				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1165				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1166	},
1167	[bma280] = {
1168		.chip_id = 0xFB,
1169		.channels = bma280_accel_channels,
1170		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1171		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1172				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1173				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1174				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1175	},
1176};
1177
1178static const struct iio_info bmc150_accel_info = {
1179	.attrs			= &bmc150_accel_attrs_group,
1180	.read_raw		= bmc150_accel_read_raw,
1181	.write_raw		= bmc150_accel_write_raw,
1182	.read_event_value	= bmc150_accel_read_event,
1183	.write_event_value	= bmc150_accel_write_event,
1184	.write_event_config	= bmc150_accel_write_event_config,
1185	.read_event_config	= bmc150_accel_read_event_config,
1186	.validate_trigger	= bmc150_accel_validate_trigger,
1187	.driver_module		= THIS_MODULE,
1188};
1189
1190static const struct iio_info bmc150_accel_info_fifo = {
1191	.attrs			= &bmc150_accel_attrs_group,
1192	.read_raw		= bmc150_accel_read_raw,
1193	.write_raw		= bmc150_accel_write_raw,
1194	.read_event_value	= bmc150_accel_read_event,
1195	.write_event_value	= bmc150_accel_write_event,
1196	.write_event_config	= bmc150_accel_write_event_config,
1197	.read_event_config	= bmc150_accel_read_event_config,
1198	.validate_trigger	= bmc150_accel_validate_trigger,
1199	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1200	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1201	.driver_module		= THIS_MODULE,
1202};
1203
1204static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1205{
1206	struct iio_poll_func *pf = p;
1207	struct iio_dev *indio_dev = pf->indio_dev;
1208	struct bmc150_accel_data *data = iio_priv(indio_dev);
1209	int bit, ret, i = 0;
1210
1211	mutex_lock(&data->mutex);
1212	for_each_set_bit(bit, indio_dev->active_scan_mask,
1213			 indio_dev->masklength) {
1214		ret = i2c_smbus_read_word_data(data->client,
1215					       BMC150_ACCEL_AXIS_TO_REG(bit));
1216		if (ret < 0) {
1217			mutex_unlock(&data->mutex);
1218			goto err_read;
1219		}
1220		data->buffer[i++] = ret;
1221	}
1222	mutex_unlock(&data->mutex);
1223
1224	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1225					   data->timestamp);
1226err_read:
1227	iio_trigger_notify_done(indio_dev->trig);
1228
1229	return IRQ_HANDLED;
1230}
1231
1232static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1233{
1234	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1235	struct bmc150_accel_data *data = t->data;
1236	int ret;
1237
1238	/* new data interrupts don't need ack */
1239	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1240		return 0;
1241
1242	mutex_lock(&data->mutex);
1243	/* clear any latched interrupt */
1244	ret = i2c_smbus_write_byte_data(data->client,
1245					BMC150_ACCEL_REG_INT_RST_LATCH,
1246					BMC150_ACCEL_INT_MODE_LATCH_INT |
1247					BMC150_ACCEL_INT_MODE_LATCH_RESET);
1248	mutex_unlock(&data->mutex);
1249	if (ret < 0) {
1250		dev_err(&data->client->dev,
1251			"Error writing reg_int_rst_latch\n");
1252		return ret;
1253	}
1254
1255	return 0;
1256}
1257
1258static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1259						   bool state)
1260{
1261	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1262	struct bmc150_accel_data *data = t->data;
1263	int ret;
1264
1265	mutex_lock(&data->mutex);
1266
1267	if (t->enabled == state) {
1268		mutex_unlock(&data->mutex);
1269		return 0;
1270	}
1271
1272	if (t->setup) {
1273		ret = t->setup(t, state);
1274		if (ret < 0) {
1275			mutex_unlock(&data->mutex);
1276			return ret;
1277		}
1278	}
1279
1280	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1281	if (ret < 0) {
1282		mutex_unlock(&data->mutex);
1283		return ret;
1284	}
1285
1286	t->enabled = state;
1287
1288	mutex_unlock(&data->mutex);
1289
1290	return ret;
1291}
1292
1293static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1294	.set_trigger_state = bmc150_accel_trigger_set_state,
1295	.try_reenable = bmc150_accel_trig_try_reen,
1296	.owner = THIS_MODULE,
1297};
1298
1299static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1300{
1301	struct bmc150_accel_data *data = iio_priv(indio_dev);
1302	int dir;
1303	int ret;
1304
1305	ret = i2c_smbus_read_byte_data(data->client,
1306				       BMC150_ACCEL_REG_INT_STATUS_2);
1307	if (ret < 0) {
1308		dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
1309		return ret;
1310	}
1311
1312	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1313		dir = IIO_EV_DIR_FALLING;
1314	else
1315		dir = IIO_EV_DIR_RISING;
1316
1317	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
1318		iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1319							0,
1320							IIO_MOD_X,
1321							IIO_EV_TYPE_ROC,
1322							dir),
1323							data->timestamp);
1324	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1325		iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1326							0,
1327							IIO_MOD_Y,
1328							IIO_EV_TYPE_ROC,
1329							dir),
1330							data->timestamp);
1331	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1332		iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1333							0,
1334							IIO_MOD_Z,
1335							IIO_EV_TYPE_ROC,
1336							dir),
1337							data->timestamp);
1338	return ret;
1339}
1340
1341static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1342{
1343	struct iio_dev *indio_dev = private;
1344	struct bmc150_accel_data *data = iio_priv(indio_dev);
1345	bool ack = false;
1346	int ret;
1347
1348	mutex_lock(&data->mutex);
1349
1350	if (data->fifo_mode) {
1351		ret = __bmc150_accel_fifo_flush(indio_dev,
1352						BMC150_ACCEL_FIFO_LENGTH, true);
1353		if (ret > 0)
1354			ack = true;
1355	}
1356
1357	if (data->ev_enable_state) {
1358		ret = bmc150_accel_handle_roc_event(indio_dev);
1359		if (ret > 0)
1360			ack = true;
1361	}
1362
1363	if (ack) {
1364		ret = i2c_smbus_write_byte_data(data->client,
1365					BMC150_ACCEL_REG_INT_RST_LATCH,
1366					BMC150_ACCEL_INT_MODE_LATCH_INT |
1367					BMC150_ACCEL_INT_MODE_LATCH_RESET);
1368		if (ret)
1369			dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
1370		ret = IRQ_HANDLED;
1371	} else {
1372		ret = IRQ_NONE;
1373	}
1374
1375	mutex_unlock(&data->mutex);
1376
1377	return ret;
1378}
1379
1380static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1381{
1382	struct iio_dev *indio_dev = private;
1383	struct bmc150_accel_data *data = iio_priv(indio_dev);
1384	bool ack = false;
1385	int i;
1386
1387	data->old_timestamp = data->timestamp;
1388	data->timestamp = iio_get_time_ns();
1389
1390	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1391		if (data->triggers[i].enabled) {
1392			iio_trigger_poll(data->triggers[i].indio_trig);
1393			ack = true;
1394			break;
1395		}
1396	}
1397
1398	if (data->ev_enable_state || data->fifo_mode)
1399		return IRQ_WAKE_THREAD;
1400
1401	if (ack)
1402		return IRQ_HANDLED;
1403
1404	return IRQ_NONE;
1405}
1406
1407static const char *bmc150_accel_match_acpi_device(struct device *dev, int *data)
1408{
1409	const struct acpi_device_id *id;
1410
1411	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1412
1413	if (!id)
1414		return NULL;
1415
1416	*data = (int) id->driver_data;
1417
1418	return dev_name(dev);
1419}
1420
1421static int bmc150_accel_gpio_probe(struct i2c_client *client,
1422					struct bmc150_accel_data *data)
1423{
1424	struct device *dev;
1425	struct gpio_desc *gpio;
1426	int ret;
1427
1428	if (!client)
1429		return -EINVAL;
1430
1431	dev = &client->dev;
1432
1433	/* data ready gpio interrupt pin */
1434	gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0, GPIOD_IN);
1435	if (IS_ERR(gpio)) {
1436		dev_err(dev, "Failed: gpio get index\n");
1437		return PTR_ERR(gpio);
1438	}
1439
1440	ret = gpiod_to_irq(gpio);
1441
1442	dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1443
1444	return ret;
1445}
1446
1447static const struct {
1448	int intr;
1449	const char *name;
1450	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1451} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1452	{
1453		.intr = 0,
1454		.name = "%s-dev%d",
1455	},
1456	{
1457		.intr = 1,
1458		.name = "%s-any-motion-dev%d",
1459		.setup = bmc150_accel_any_motion_setup,
1460	},
1461};
1462
1463static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1464					     int from)
1465{
1466	int i;
1467
1468	for (i = from; i >= 0; i--) {
1469		if (data->triggers[i].indio_trig) {
1470			iio_trigger_unregister(data->triggers[i].indio_trig);
1471			data->triggers[i].indio_trig = NULL;
1472		}
1473	}
1474}
1475
1476static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1477				       struct bmc150_accel_data *data)
1478{
1479	int i, ret;
1480
1481	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1482		struct bmc150_accel_trigger *t = &data->triggers[i];
1483
1484		t->indio_trig = devm_iio_trigger_alloc(&data->client->dev,
1485					       bmc150_accel_triggers[i].name,
1486						       indio_dev->name,
1487						       indio_dev->id);
1488		if (!t->indio_trig) {
1489			ret = -ENOMEM;
1490			break;
1491		}
1492
1493		t->indio_trig->dev.parent = &data->client->dev;
1494		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1495		t->intr = bmc150_accel_triggers[i].intr;
1496		t->data = data;
1497		t->setup = bmc150_accel_triggers[i].setup;
1498		iio_trigger_set_drvdata(t->indio_trig, t);
1499
1500		ret = iio_trigger_register(t->indio_trig);
1501		if (ret)
1502			break;
1503	}
1504
1505	if (ret)
1506		bmc150_accel_unregister_triggers(data, i - 1);
1507
1508	return ret;
1509}
1510
1511#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1512#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1513#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1514
1515static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1516{
1517	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1518	int ret;
1519
1520	ret = i2c_smbus_write_byte_data(data->client, reg, data->fifo_mode);
1521	if (ret < 0) {
1522		dev_err(&data->client->dev, "Error writing reg_fifo_config1\n");
1523		return ret;
1524	}
1525
1526	if (!data->fifo_mode)
1527		return 0;
1528
1529	ret = i2c_smbus_write_byte_data(data->client,
1530					BMC150_ACCEL_REG_FIFO_CONFIG0,
1531					data->watermark);
1532	if (ret < 0)
1533		dev_err(&data->client->dev, "Error writing reg_fifo_config0\n");
1534
1535	return ret;
1536}
1537
1538static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1539{
1540	struct bmc150_accel_data *data = iio_priv(indio_dev);
1541	int ret = 0;
1542
1543	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1544		return iio_triggered_buffer_postenable(indio_dev);
1545
1546	mutex_lock(&data->mutex);
1547
1548	if (!data->watermark)
1549		goto out;
1550
1551	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1552					 true);
1553	if (ret)
1554		goto out;
1555
1556	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1557
1558	ret = bmc150_accel_fifo_set_mode(data);
1559	if (ret) {
1560		data->fifo_mode = 0;
1561		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1562					   false);
1563	}
1564
1565out:
1566	mutex_unlock(&data->mutex);
1567
1568	return ret;
1569}
1570
1571static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1572{
1573	struct bmc150_accel_data *data = iio_priv(indio_dev);
1574
1575	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1576		return iio_triggered_buffer_predisable(indio_dev);
1577
1578	mutex_lock(&data->mutex);
1579
1580	if (!data->fifo_mode)
1581		goto out;
1582
1583	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1584	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1585	data->fifo_mode = 0;
1586	bmc150_accel_fifo_set_mode(data);
1587
1588out:
1589	mutex_unlock(&data->mutex);
1590
1591	return 0;
1592}
1593
1594static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1595	.postenable = bmc150_accel_buffer_postenable,
1596	.predisable = bmc150_accel_buffer_predisable,
1597};
1598
1599static int bmc150_accel_probe(struct i2c_client *client,
1600			      const struct i2c_device_id *id)
1601{
1602	struct bmc150_accel_data *data;
1603	struct iio_dev *indio_dev;
1604	int ret;
1605	const char *name = NULL;
1606	int chip_id = 0;
1607
1608	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1609	if (!indio_dev)
1610		return -ENOMEM;
1611
1612	data = iio_priv(indio_dev);
1613	i2c_set_clientdata(client, indio_dev);
1614	data->client = client;
1615
1616	if (id) {
1617		name = id->name;
1618		chip_id = id->driver_data;
1619	}
1620
1621	if (ACPI_HANDLE(&client->dev))
1622		name = bmc150_accel_match_acpi_device(&client->dev, &chip_id);
1623
1624	data->chip_info = &bmc150_accel_chip_info_tbl[chip_id];
1625
1626	ret = bmc150_accel_chip_init(data);
1627	if (ret < 0)
1628		return ret;
1629
1630	mutex_init(&data->mutex);
1631
1632	indio_dev->dev.parent = &client->dev;
1633	indio_dev->channels = data->chip_info->channels;
1634	indio_dev->num_channels = data->chip_info->num_channels;
1635	indio_dev->name = name;
1636	indio_dev->modes = INDIO_DIRECT_MODE;
1637	indio_dev->info = &bmc150_accel_info;
1638
1639	if (client->irq < 0)
1640		client->irq = bmc150_accel_gpio_probe(client, data);
1641
1642	if (client->irq >= 0) {
1643		ret = devm_request_threaded_irq(
1644						&client->dev, client->irq,
1645						bmc150_accel_irq_handler,
1646						bmc150_accel_irq_thread_handler,
1647						IRQF_TRIGGER_RISING,
1648						BMC150_ACCEL_IRQ_NAME,
1649						indio_dev);
1650		if (ret)
1651			return ret;
1652
1653		/*
1654		 * Set latched mode interrupt. While certain interrupts are
1655		 * non-latched regardless of this settings (e.g. new data) we
1656		 * want to use latch mode when we can to prevent interrupt
1657		 * flooding.
1658		 */
1659		ret = i2c_smbus_write_byte_data(data->client,
1660						BMC150_ACCEL_REG_INT_RST_LATCH,
1661					     BMC150_ACCEL_INT_MODE_LATCH_RESET);
1662		if (ret < 0) {
1663			dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
1664			return ret;
1665		}
1666
1667		bmc150_accel_interrupts_setup(indio_dev, data);
1668
1669		ret = bmc150_accel_triggers_setup(indio_dev, data);
1670		if (ret)
1671			return ret;
1672
1673		ret = iio_triggered_buffer_setup(indio_dev,
1674						 &iio_pollfunc_store_time,
1675						 bmc150_accel_trigger_handler,
1676						 &bmc150_accel_buffer_ops);
1677		if (ret < 0) {
1678			dev_err(&client->dev,
1679				"Failed: iio triggered buffer setup\n");
1680			goto err_trigger_unregister;
1681		}
1682
1683		if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C) ||
1684		    i2c_check_functionality(client->adapter,
1685					    I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
1686			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1687			indio_dev->info = &bmc150_accel_info_fifo;
1688			indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1689		}
1690	}
1691
1692	ret = iio_device_register(indio_dev);
1693	if (ret < 0) {
1694		dev_err(&client->dev, "Unable to register iio device\n");
1695		goto err_buffer_cleanup;
1696	}
1697
1698	ret = pm_runtime_set_active(&client->dev);
1699	if (ret)
1700		goto err_iio_unregister;
1701
1702	pm_runtime_enable(&client->dev);
1703	pm_runtime_set_autosuspend_delay(&client->dev,
1704					 BMC150_AUTO_SUSPEND_DELAY_MS);
1705	pm_runtime_use_autosuspend(&client->dev);
1706
1707	return 0;
1708
1709err_iio_unregister:
1710	iio_device_unregister(indio_dev);
1711err_buffer_cleanup:
1712	if (indio_dev->pollfunc)
1713		iio_triggered_buffer_cleanup(indio_dev);
1714err_trigger_unregister:
1715	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1716
1717	return ret;
1718}
1719
1720static int bmc150_accel_remove(struct i2c_client *client)
1721{
1722	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1723	struct bmc150_accel_data *data = iio_priv(indio_dev);
1724
1725	pm_runtime_disable(&client->dev);
1726	pm_runtime_set_suspended(&client->dev);
1727	pm_runtime_put_noidle(&client->dev);
1728
1729	iio_device_unregister(indio_dev);
1730
1731	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1732
1733	mutex_lock(&data->mutex);
1734	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1735	mutex_unlock(&data->mutex);
1736
1737	return 0;
1738}
1739
1740#ifdef CONFIG_PM_SLEEP
1741static int bmc150_accel_suspend(struct device *dev)
1742{
1743	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1744	struct bmc150_accel_data *data = iio_priv(indio_dev);
1745
1746	mutex_lock(&data->mutex);
1747	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1748	mutex_unlock(&data->mutex);
1749
1750	return 0;
1751}
1752
1753static int bmc150_accel_resume(struct device *dev)
1754{
1755	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1756	struct bmc150_accel_data *data = iio_priv(indio_dev);
1757
1758	mutex_lock(&data->mutex);
1759	if (atomic_read(&data->active_intr))
1760		bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1761	bmc150_accel_fifo_set_mode(data);
1762	mutex_unlock(&data->mutex);
1763
1764	return 0;
1765}
1766#endif
1767
1768#ifdef CONFIG_PM
1769static int bmc150_accel_runtime_suspend(struct device *dev)
1770{
1771	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1772	struct bmc150_accel_data *data = iio_priv(indio_dev);
1773	int ret;
1774
1775	dev_dbg(&data->client->dev,  __func__);
1776	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1777	if (ret < 0)
1778		return -EAGAIN;
1779
1780	return 0;
1781}
1782
1783static int bmc150_accel_runtime_resume(struct device *dev)
1784{
1785	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1786	struct bmc150_accel_data *data = iio_priv(indio_dev);
1787	int ret;
1788	int sleep_val;
1789
1790	dev_dbg(&data->client->dev,  __func__);
1791
1792	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1793	if (ret < 0)
1794		return ret;
1795	ret = bmc150_accel_fifo_set_mode(data);
1796	if (ret < 0)
1797		return ret;
1798
1799	sleep_val = bmc150_accel_get_startup_times(data);
1800	if (sleep_val < 20)
1801		usleep_range(sleep_val * 1000, 20000);
1802	else
1803		msleep_interruptible(sleep_val);
1804
1805	return 0;
1806}
1807#endif
1808
1809static const struct dev_pm_ops bmc150_accel_pm_ops = {
1810	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1811	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1812			   bmc150_accel_runtime_resume, NULL)
1813};
1814
1815static const struct acpi_device_id bmc150_accel_acpi_match[] = {
1816	{"BSBA0150",	bmc150},
1817	{"BMC150A",	bmc150},
1818	{"BMI055A",	bmi055},
1819	{"BMA0255",	bma255},
1820	{"BMA250E",	bma250e},
1821	{"BMA222E",	bma222e},
1822	{"BMA0280",	bma280},
1823	{ },
1824};
1825MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
1826
1827static const struct i2c_device_id bmc150_accel_id[] = {
1828	{"bmc150_accel",	bmc150},
1829	{"bmi055_accel",	bmi055},
1830	{"bma255",		bma255},
1831	{"bma250e",		bma250e},
1832	{"bma222e",		bma222e},
1833	{"bma280",		bma280},
1834	{}
1835};
1836
1837MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
1838
1839static struct i2c_driver bmc150_accel_driver = {
1840	.driver = {
1841		.name	= BMC150_ACCEL_DRV_NAME,
1842		.acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
1843		.pm	= &bmc150_accel_pm_ops,
1844	},
1845	.probe		= bmc150_accel_probe,
1846	.remove		= bmc150_accel_remove,
1847	.id_table	= bmc150_accel_id,
1848};
1849module_i2c_driver(bmc150_accel_driver);
1850
1851MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1852MODULE_LICENSE("GPL v2");
1853MODULE_DESCRIPTION("BMC150 accelerometer driver");
1854