1/*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33#include <rdma/ib_umem.h>
34#include <rdma/ib_umem_odp.h>
35
36#include "mlx5_ib.h"
37
38#define MAX_PREFETCH_LEN (4*1024*1024U)
39
40/* Timeout in ms to wait for an active mmu notifier to complete when handling
41 * a pagefault. */
42#define MMU_NOTIFIER_TIMEOUT 1000
43
44struct workqueue_struct *mlx5_ib_page_fault_wq;
45
46void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
47			      unsigned long end)
48{
49	struct mlx5_ib_mr *mr;
50	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(u64)) - 1;
51	u64 idx = 0, blk_start_idx = 0;
52	int in_block = 0;
53	u64 addr;
54
55	if (!umem || !umem->odp_data) {
56		pr_err("invalidation called on NULL umem or non-ODP umem\n");
57		return;
58	}
59
60	mr = umem->odp_data->private;
61
62	if (!mr || !mr->ibmr.pd)
63		return;
64
65	start = max_t(u64, ib_umem_start(umem), start);
66	end = min_t(u64, ib_umem_end(umem), end);
67
68	/*
69	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
70	 * while we are doing the invalidation, no page fault will attempt to
71	 * overwrite the same MTTs.  Concurent invalidations might race us,
72	 * but they will write 0s as well, so no difference in the end result.
73	 */
74
75	for (addr = start; addr < end; addr += (u64)umem->page_size) {
76		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
77		/*
78		 * Strive to write the MTTs in chunks, but avoid overwriting
79		 * non-existing MTTs. The huristic here can be improved to
80		 * estimate the cost of another UMR vs. the cost of bigger
81		 * UMR.
82		 */
83		if (umem->odp_data->dma_list[idx] &
84		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
85			if (!in_block) {
86				blk_start_idx = idx;
87				in_block = 1;
88			}
89		} else {
90			u64 umr_offset = idx & umr_block_mask;
91
92			if (in_block && umr_offset == 0) {
93				mlx5_ib_update_mtt(mr, blk_start_idx,
94						   idx - blk_start_idx, 1);
95				in_block = 0;
96			}
97		}
98	}
99	if (in_block)
100		mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx + 1,
101				   1);
102
103	/*
104	 * We are now sure that the device will not access the
105	 * memory. We can safely unmap it, and mark it as dirty if
106	 * needed.
107	 */
108
109	ib_umem_odp_unmap_dma_pages(umem, start, end);
110}
111
112#define COPY_ODP_BIT_MLX_TO_IB(reg, ib_caps, field_name, bit_name) do {	\
113	if (be32_to_cpu(reg.field_name) & MLX5_ODP_SUPPORT_##bit_name)	\
114		ib_caps->field_name |= IB_ODP_SUPPORT_##bit_name;	\
115} while (0)
116
117int mlx5_ib_internal_query_odp_caps(struct mlx5_ib_dev *dev)
118{
119	int err;
120	struct mlx5_odp_caps hw_caps;
121	struct ib_odp_caps *caps = &dev->odp_caps;
122
123	memset(caps, 0, sizeof(*caps));
124
125	if (!(dev->mdev->caps.gen.flags & MLX5_DEV_CAP_FLAG_ON_DMND_PG))
126		return 0;
127
128	err = mlx5_query_odp_caps(dev->mdev, &hw_caps);
129	if (err)
130		goto out;
131
132	caps->general_caps = IB_ODP_SUPPORT;
133	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.ud_odp_caps,
134			       SEND);
135	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
136			       SEND);
137	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
138			       RECV);
139	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
140			       WRITE);
141	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
142			       READ);
143
144out:
145	return err;
146}
147
148static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
149						   u32 key)
150{
151	u32 base_key = mlx5_base_mkey(key);
152	struct mlx5_core_mr *mmr = __mlx5_mr_lookup(dev->mdev, base_key);
153	struct mlx5_ib_mr *mr = container_of(mmr, struct mlx5_ib_mr, mmr);
154
155	if (!mmr || mmr->key != key || !mr->live)
156		return NULL;
157
158	return container_of(mmr, struct mlx5_ib_mr, mmr);
159}
160
161static void mlx5_ib_page_fault_resume(struct mlx5_ib_qp *qp,
162				      struct mlx5_ib_pfault *pfault,
163				      int error) {
164	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
165	int ret = mlx5_core_page_fault_resume(dev->mdev, qp->mqp.qpn,
166					      pfault->mpfault.flags,
167					      error);
168	if (ret)
169		pr_err("Failed to resolve the page fault on QP 0x%x\n",
170		       qp->mqp.qpn);
171}
172
173/*
174 * Handle a single data segment in a page-fault WQE.
175 *
176 * Returns number of pages retrieved on success. The caller will continue to
177 * the next data segment.
178 * Can return the following error codes:
179 * -EAGAIN to designate a temporary error. The caller will abort handling the
180 *  page fault and resolve it.
181 * -EFAULT when there's an error mapping the requested pages. The caller will
182 *  abort the page fault handling and possibly move the QP to an error state.
183 * On other errors the QP should also be closed with an error.
184 */
185static int pagefault_single_data_segment(struct mlx5_ib_qp *qp,
186					 struct mlx5_ib_pfault *pfault,
187					 u32 key, u64 io_virt, size_t bcnt,
188					 u32 *bytes_mapped)
189{
190	struct mlx5_ib_dev *mib_dev = to_mdev(qp->ibqp.pd->device);
191	int srcu_key;
192	unsigned int current_seq;
193	u64 start_idx;
194	int npages = 0, ret = 0;
195	struct mlx5_ib_mr *mr;
196	u64 access_mask = ODP_READ_ALLOWED_BIT;
197
198	srcu_key = srcu_read_lock(&mib_dev->mr_srcu);
199	mr = mlx5_ib_odp_find_mr_lkey(mib_dev, key);
200	/*
201	 * If we didn't find the MR, it means the MR was closed while we were
202	 * handling the ODP event. In this case we return -EFAULT so that the
203	 * QP will be closed.
204	 */
205	if (!mr || !mr->ibmr.pd) {
206		pr_err("Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
207		       key);
208		ret = -EFAULT;
209		goto srcu_unlock;
210	}
211	if (!mr->umem->odp_data) {
212		pr_debug("skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
213			 key);
214		if (bytes_mapped)
215			*bytes_mapped +=
216				(bcnt - pfault->mpfault.bytes_committed);
217		goto srcu_unlock;
218	}
219	if (mr->ibmr.pd != qp->ibqp.pd) {
220		pr_err("Page-fault with different PDs for QP and MR.\n");
221		ret = -EFAULT;
222		goto srcu_unlock;
223	}
224
225	current_seq = ACCESS_ONCE(mr->umem->odp_data->notifiers_seq);
226	/*
227	 * Ensure the sequence number is valid for some time before we call
228	 * gup.
229	 */
230	smp_rmb();
231
232	/*
233	 * Avoid branches - this code will perform correctly
234	 * in all iterations (in iteration 2 and above,
235	 * bytes_committed == 0).
236	 */
237	io_virt += pfault->mpfault.bytes_committed;
238	bcnt -= pfault->mpfault.bytes_committed;
239
240	start_idx = (io_virt - (mr->mmr.iova & PAGE_MASK)) >> PAGE_SHIFT;
241
242	if (mr->umem->writable)
243		access_mask |= ODP_WRITE_ALLOWED_BIT;
244	npages = ib_umem_odp_map_dma_pages(mr->umem, io_virt, bcnt,
245					   access_mask, current_seq);
246	if (npages < 0) {
247		ret = npages;
248		goto srcu_unlock;
249	}
250
251	if (npages > 0) {
252		mutex_lock(&mr->umem->odp_data->umem_mutex);
253		if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
254			/*
255			 * No need to check whether the MTTs really belong to
256			 * this MR, since ib_umem_odp_map_dma_pages already
257			 * checks this.
258			 */
259			ret = mlx5_ib_update_mtt(mr, start_idx, npages, 0);
260		} else {
261			ret = -EAGAIN;
262		}
263		mutex_unlock(&mr->umem->odp_data->umem_mutex);
264		if (ret < 0) {
265			if (ret != -EAGAIN)
266				pr_err("Failed to update mkey page tables\n");
267			goto srcu_unlock;
268		}
269
270		if (bytes_mapped) {
271			u32 new_mappings = npages * PAGE_SIZE -
272				(io_virt - round_down(io_virt, PAGE_SIZE));
273			*bytes_mapped += min_t(u32, new_mappings, bcnt);
274		}
275	}
276
277srcu_unlock:
278	if (ret == -EAGAIN) {
279		if (!mr->umem->odp_data->dying) {
280			struct ib_umem_odp *odp_data = mr->umem->odp_data;
281			unsigned long timeout =
282				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
283
284			if (!wait_for_completion_timeout(
285					&odp_data->notifier_completion,
286					timeout)) {
287				pr_warn("timeout waiting for mmu notifier completion\n");
288			}
289		} else {
290			/* The MR is being killed, kill the QP as well. */
291			ret = -EFAULT;
292		}
293	}
294	srcu_read_unlock(&mib_dev->mr_srcu, srcu_key);
295	pfault->mpfault.bytes_committed = 0;
296	return ret ? ret : npages;
297}
298
299/**
300 * Parse a series of data segments for page fault handling.
301 *
302 * @qp the QP on which the fault occurred.
303 * @pfault contains page fault information.
304 * @wqe points at the first data segment in the WQE.
305 * @wqe_end points after the end of the WQE.
306 * @bytes_mapped receives the number of bytes that the function was able to
307 *               map. This allows the caller to decide intelligently whether
308 *               enough memory was mapped to resolve the page fault
309 *               successfully (e.g. enough for the next MTU, or the entire
310 *               WQE).
311 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
312 *                  the committed bytes).
313 *
314 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
315 * negative error code.
316 */
317static int pagefault_data_segments(struct mlx5_ib_qp *qp,
318				   struct mlx5_ib_pfault *pfault, void *wqe,
319				   void *wqe_end, u32 *bytes_mapped,
320				   u32 *total_wqe_bytes, int receive_queue)
321{
322	int ret = 0, npages = 0;
323	u64 io_virt;
324	u32 key;
325	u32 byte_count;
326	size_t bcnt;
327	int inline_segment;
328
329	/* Skip SRQ next-WQE segment. */
330	if (receive_queue && qp->ibqp.srq)
331		wqe += sizeof(struct mlx5_wqe_srq_next_seg);
332
333	if (bytes_mapped)
334		*bytes_mapped = 0;
335	if (total_wqe_bytes)
336		*total_wqe_bytes = 0;
337
338	while (wqe < wqe_end) {
339		struct mlx5_wqe_data_seg *dseg = wqe;
340
341		io_virt = be64_to_cpu(dseg->addr);
342		key = be32_to_cpu(dseg->lkey);
343		byte_count = be32_to_cpu(dseg->byte_count);
344		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
345		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
346
347		if (inline_segment) {
348			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
349			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
350				     16);
351		} else {
352			wqe += sizeof(*dseg);
353		}
354
355		/* receive WQE end of sg list. */
356		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
357		    io_virt == 0)
358			break;
359
360		if (!inline_segment && total_wqe_bytes) {
361			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
362					pfault->mpfault.bytes_committed);
363		}
364
365		/* A zero length data segment designates a length of 2GB. */
366		if (bcnt == 0)
367			bcnt = 1U << 31;
368
369		if (inline_segment || bcnt <= pfault->mpfault.bytes_committed) {
370			pfault->mpfault.bytes_committed -=
371				min_t(size_t, bcnt,
372				      pfault->mpfault.bytes_committed);
373			continue;
374		}
375
376		ret = pagefault_single_data_segment(qp, pfault, key, io_virt,
377						    bcnt, bytes_mapped);
378		if (ret < 0)
379			break;
380		npages += ret;
381	}
382
383	return ret < 0 ? ret : npages;
384}
385
386/*
387 * Parse initiator WQE. Advances the wqe pointer to point at the
388 * scatter-gather list, and set wqe_end to the end of the WQE.
389 */
390static int mlx5_ib_mr_initiator_pfault_handler(
391	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
392	void **wqe, void **wqe_end, int wqe_length)
393{
394	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
395	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
396	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
397	unsigned ds, opcode;
398#if defined(DEBUG)
399	u32 ctrl_wqe_index, ctrl_qpn;
400#endif
401
402	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
403	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
404		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
405			    ds, wqe_length);
406		return -EFAULT;
407	}
408
409	if (ds == 0) {
410		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
411			    wqe_index, qp->mqp.qpn);
412		return -EFAULT;
413	}
414
415#if defined(DEBUG)
416	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
417			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
418			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
419	if (wqe_index != ctrl_wqe_index) {
420		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
421			    wqe_index, qp->mqp.qpn,
422			    ctrl_wqe_index);
423		return -EFAULT;
424	}
425
426	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
427		MLX5_WQE_CTRL_QPN_SHIFT;
428	if (qp->mqp.qpn != ctrl_qpn) {
429		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
430			    wqe_index, qp->mqp.qpn,
431			    ctrl_qpn);
432		return -EFAULT;
433	}
434#endif /* DEBUG */
435
436	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
437	*wqe += sizeof(*ctrl);
438
439	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
440		 MLX5_WQE_CTRL_OPCODE_MASK;
441	switch (qp->ibqp.qp_type) {
442	case IB_QPT_RC:
443		switch (opcode) {
444		case MLX5_OPCODE_SEND:
445		case MLX5_OPCODE_SEND_IMM:
446		case MLX5_OPCODE_SEND_INVAL:
447			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
448			      IB_ODP_SUPPORT_SEND))
449				goto invalid_transport_or_opcode;
450			break;
451		case MLX5_OPCODE_RDMA_WRITE:
452		case MLX5_OPCODE_RDMA_WRITE_IMM:
453			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
454			      IB_ODP_SUPPORT_WRITE))
455				goto invalid_transport_or_opcode;
456			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
457			break;
458		case MLX5_OPCODE_RDMA_READ:
459			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
460			      IB_ODP_SUPPORT_READ))
461				goto invalid_transport_or_opcode;
462			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
463			break;
464		default:
465			goto invalid_transport_or_opcode;
466		}
467		break;
468	case IB_QPT_UD:
469		switch (opcode) {
470		case MLX5_OPCODE_SEND:
471		case MLX5_OPCODE_SEND_IMM:
472			if (!(dev->odp_caps.per_transport_caps.ud_odp_caps &
473			      IB_ODP_SUPPORT_SEND))
474				goto invalid_transport_or_opcode;
475			*wqe += sizeof(struct mlx5_wqe_datagram_seg);
476			break;
477		default:
478			goto invalid_transport_or_opcode;
479		}
480		break;
481	default:
482invalid_transport_or_opcode:
483		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode or transport. transport: 0x%x opcode: 0x%x.\n",
484			    qp->ibqp.qp_type, opcode);
485		return -EFAULT;
486	}
487
488	return 0;
489}
490
491/*
492 * Parse responder WQE. Advances the wqe pointer to point at the
493 * scatter-gather list, and set wqe_end to the end of the WQE.
494 */
495static int mlx5_ib_mr_responder_pfault_handler(
496	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
497	void **wqe, void **wqe_end, int wqe_length)
498{
499	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
500	struct mlx5_ib_wq *wq = &qp->rq;
501	int wqe_size = 1 << wq->wqe_shift;
502
503	if (qp->ibqp.srq) {
504		mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
505		return -EFAULT;
506	}
507
508	if (qp->wq_sig) {
509		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
510		return -EFAULT;
511	}
512
513	if (wqe_size > wqe_length) {
514		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
515		return -EFAULT;
516	}
517
518	switch (qp->ibqp.qp_type) {
519	case IB_QPT_RC:
520		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
521		      IB_ODP_SUPPORT_RECV))
522			goto invalid_transport_or_opcode;
523		break;
524	default:
525invalid_transport_or_opcode:
526		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
527			    qp->ibqp.qp_type);
528		return -EFAULT;
529	}
530
531	*wqe_end = *wqe + wqe_size;
532
533	return 0;
534}
535
536static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_qp *qp,
537					  struct mlx5_ib_pfault *pfault)
538{
539	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
540	int ret;
541	void *wqe, *wqe_end;
542	u32 bytes_mapped, total_wqe_bytes;
543	char *buffer = NULL;
544	int resume_with_error = 0;
545	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
546	int requestor = pfault->mpfault.flags & MLX5_PFAULT_REQUESTOR;
547
548	buffer = (char *)__get_free_page(GFP_KERNEL);
549	if (!buffer) {
550		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
551		resume_with_error = 1;
552		goto resolve_page_fault;
553	}
554
555	ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
556				    PAGE_SIZE);
557	if (ret < 0) {
558		mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%x, wqe_index=%x, qpn=%x\n",
559			    -ret, wqe_index, qp->mqp.qpn);
560		resume_with_error = 1;
561		goto resolve_page_fault;
562	}
563
564	wqe = buffer;
565	if (requestor)
566		ret = mlx5_ib_mr_initiator_pfault_handler(qp, pfault, &wqe,
567							  &wqe_end, ret);
568	else
569		ret = mlx5_ib_mr_responder_pfault_handler(qp, pfault, &wqe,
570							  &wqe_end, ret);
571	if (ret < 0) {
572		resume_with_error = 1;
573		goto resolve_page_fault;
574	}
575
576	if (wqe >= wqe_end) {
577		mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
578		resume_with_error = 1;
579		goto resolve_page_fault;
580	}
581
582	ret = pagefault_data_segments(qp, pfault, wqe, wqe_end, &bytes_mapped,
583				      &total_wqe_bytes, !requestor);
584	if (ret == -EAGAIN) {
585		goto resolve_page_fault;
586	} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
587		mlx5_ib_err(dev, "Error getting user pages for page fault. Error: 0x%x\n",
588			    -ret);
589		resume_with_error = 1;
590		goto resolve_page_fault;
591	}
592
593resolve_page_fault:
594	mlx5_ib_page_fault_resume(qp, pfault, resume_with_error);
595	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, flags: 0x%x\n",
596		    qp->mqp.qpn, resume_with_error, pfault->mpfault.flags);
597
598	free_page((unsigned long)buffer);
599}
600
601static int pages_in_range(u64 address, u32 length)
602{
603	return (ALIGN(address + length, PAGE_SIZE) -
604		(address & PAGE_MASK)) >> PAGE_SHIFT;
605}
606
607static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_qp *qp,
608					   struct mlx5_ib_pfault *pfault)
609{
610	struct mlx5_pagefault *mpfault = &pfault->mpfault;
611	u64 address;
612	u32 length;
613	u32 prefetch_len = mpfault->bytes_committed;
614	int prefetch_activated = 0;
615	u32 rkey = mpfault->rdma.r_key;
616	int ret;
617
618	/* The RDMA responder handler handles the page fault in two parts.
619	 * First it brings the necessary pages for the current packet
620	 * (and uses the pfault context), and then (after resuming the QP)
621	 * prefetches more pages. The second operation cannot use the pfault
622	 * context and therefore uses the dummy_pfault context allocated on
623	 * the stack */
624	struct mlx5_ib_pfault dummy_pfault = {};
625
626	dummy_pfault.mpfault.bytes_committed = 0;
627
628	mpfault->rdma.rdma_va += mpfault->bytes_committed;
629	mpfault->rdma.rdma_op_len -= min(mpfault->bytes_committed,
630					 mpfault->rdma.rdma_op_len);
631	mpfault->bytes_committed = 0;
632
633	address = mpfault->rdma.rdma_va;
634	length  = mpfault->rdma.rdma_op_len;
635
636	/* For some operations, the hardware cannot tell the exact message
637	 * length, and in those cases it reports zero. Use prefetch
638	 * logic. */
639	if (length == 0) {
640		prefetch_activated = 1;
641		length = mpfault->rdma.packet_size;
642		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
643	}
644
645	ret = pagefault_single_data_segment(qp, pfault, rkey, address, length,
646					    NULL);
647	if (ret == -EAGAIN) {
648		/* We're racing with an invalidation, don't prefetch */
649		prefetch_activated = 0;
650	} else if (ret < 0 || pages_in_range(address, length) > ret) {
651		mlx5_ib_page_fault_resume(qp, pfault, 1);
652		return;
653	}
654
655	mlx5_ib_page_fault_resume(qp, pfault, 0);
656
657	/* At this point, there might be a new pagefault already arriving in
658	 * the eq, switch to the dummy pagefault for the rest of the
659	 * processing. We're still OK with the objects being alive as the
660	 * work-queue is being fenced. */
661
662	if (prefetch_activated) {
663		ret = pagefault_single_data_segment(qp, &dummy_pfault, rkey,
664						    address,
665						    prefetch_len,
666						    NULL);
667		if (ret < 0) {
668			pr_warn("Prefetch failed (ret = %d, prefetch_activated = %d) for QPN %d, address: 0x%.16llx, length = 0x%.16x\n",
669				ret, prefetch_activated,
670				qp->ibqp.qp_num, address, prefetch_len);
671		}
672	}
673}
674
675void mlx5_ib_mr_pfault_handler(struct mlx5_ib_qp *qp,
676			       struct mlx5_ib_pfault *pfault)
677{
678	u8 event_subtype = pfault->mpfault.event_subtype;
679
680	switch (event_subtype) {
681	case MLX5_PFAULT_SUBTYPE_WQE:
682		mlx5_ib_mr_wqe_pfault_handler(qp, pfault);
683		break;
684	case MLX5_PFAULT_SUBTYPE_RDMA:
685		mlx5_ib_mr_rdma_pfault_handler(qp, pfault);
686		break;
687	default:
688		pr_warn("Invalid page fault event subtype: 0x%x\n",
689			event_subtype);
690		mlx5_ib_page_fault_resume(qp, pfault, 1);
691		break;
692	}
693}
694
695static void mlx5_ib_qp_pfault_action(struct work_struct *work)
696{
697	struct mlx5_ib_pfault *pfault = container_of(work,
698						     struct mlx5_ib_pfault,
699						     work);
700	enum mlx5_ib_pagefault_context context =
701		mlx5_ib_get_pagefault_context(&pfault->mpfault);
702	struct mlx5_ib_qp *qp = container_of(pfault, struct mlx5_ib_qp,
703					     pagefaults[context]);
704	mlx5_ib_mr_pfault_handler(qp, pfault);
705}
706
707void mlx5_ib_qp_disable_pagefaults(struct mlx5_ib_qp *qp)
708{
709	unsigned long flags;
710
711	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
712	qp->disable_page_faults = 1;
713	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
714
715	/*
716	 * Note that at this point, we are guarenteed that no more
717	 * work queue elements will be posted to the work queue with
718	 * the QP we are closing.
719	 */
720	flush_workqueue(mlx5_ib_page_fault_wq);
721}
722
723void mlx5_ib_qp_enable_pagefaults(struct mlx5_ib_qp *qp)
724{
725	unsigned long flags;
726
727	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
728	qp->disable_page_faults = 0;
729	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
730}
731
732static void mlx5_ib_pfault_handler(struct mlx5_core_qp *qp,
733				   struct mlx5_pagefault *pfault)
734{
735	/*
736	 * Note that we will only get one fault event per QP per context
737	 * (responder/initiator, read/write), until we resolve the page fault
738	 * with the mlx5_ib_page_fault_resume command. Since this function is
739	 * called from within the work element, there is no risk of missing
740	 * events.
741	 */
742	struct mlx5_ib_qp *mibqp = to_mibqp(qp);
743	enum mlx5_ib_pagefault_context context =
744		mlx5_ib_get_pagefault_context(pfault);
745	struct mlx5_ib_pfault *qp_pfault = &mibqp->pagefaults[context];
746
747	qp_pfault->mpfault = *pfault;
748
749	/* No need to stop interrupts here since we are in an interrupt */
750	spin_lock(&mibqp->disable_page_faults_lock);
751	if (!mibqp->disable_page_faults)
752		queue_work(mlx5_ib_page_fault_wq, &qp_pfault->work);
753	spin_unlock(&mibqp->disable_page_faults_lock);
754}
755
756void mlx5_ib_odp_create_qp(struct mlx5_ib_qp *qp)
757{
758	int i;
759
760	qp->disable_page_faults = 1;
761	spin_lock_init(&qp->disable_page_faults_lock);
762
763	qp->mqp.pfault_handler	= mlx5_ib_pfault_handler;
764
765	for (i = 0; i < MLX5_IB_PAGEFAULT_CONTEXTS; ++i)
766		INIT_WORK(&qp->pagefaults[i].work, mlx5_ib_qp_pfault_action);
767}
768
769int mlx5_ib_odp_init_one(struct mlx5_ib_dev *ibdev)
770{
771	int ret;
772
773	ret = init_srcu_struct(&ibdev->mr_srcu);
774	if (ret)
775		return ret;
776
777	return 0;
778}
779
780void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *ibdev)
781{
782	cleanup_srcu_struct(&ibdev->mr_srcu);
783}
784
785int __init mlx5_ib_odp_init(void)
786{
787	mlx5_ib_page_fault_wq =
788		create_singlethread_workqueue("mlx5_ib_page_faults");
789	if (!mlx5_ib_page_fault_wq)
790		return -ENOMEM;
791
792	return 0;
793}
794
795void mlx5_ib_odp_cleanup(void)
796{
797	destroy_workqueue(mlx5_ib_page_fault_wq);
798}
799