1/* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 *
5 * This program is free software; you can redistribute it and/or modify
6 *  it under the terms of the GNU General Public License as published by
7 *  the Free Software Foundation version 2 of the License.
8 *
9 *  This program is distributed in the hope that it will be useful,
10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 *  GNU General Public License for more details.
13 */
14
15#include <media/rc-core.h>
16#include <linux/spinlock.h>
17#include <linux/delay.h>
18#include <linux/input.h>
19#include <linux/leds.h>
20#include <linux/slab.h>
21#include <linux/device.h>
22#include <linux/module.h>
23#include "rc-core-priv.h"
24
25/* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
26#define IRRCV_NUM_DEVICES      256
27static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
28
29/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30#define IR_TAB_MIN_SIZE	256
31#define IR_TAB_MAX_SIZE	8192
32
33/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
34#define IR_KEYPRESS_TIMEOUT 250
35
36/* Used to keep track of known keymaps */
37static LIST_HEAD(rc_map_list);
38static DEFINE_SPINLOCK(rc_map_lock);
39static struct led_trigger *led_feedback;
40
41static struct rc_map_list *seek_rc_map(const char *name)
42{
43	struct rc_map_list *map = NULL;
44
45	spin_lock(&rc_map_lock);
46	list_for_each_entry(map, &rc_map_list, list) {
47		if (!strcmp(name, map->map.name)) {
48			spin_unlock(&rc_map_lock);
49			return map;
50		}
51	}
52	spin_unlock(&rc_map_lock);
53
54	return NULL;
55}
56
57struct rc_map *rc_map_get(const char *name)
58{
59
60	struct rc_map_list *map;
61
62	map = seek_rc_map(name);
63#ifdef MODULE
64	if (!map) {
65		int rc = request_module("%s", name);
66		if (rc < 0) {
67			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
68			return NULL;
69		}
70		msleep(20);	/* Give some time for IR to register */
71
72		map = seek_rc_map(name);
73	}
74#endif
75	if (!map) {
76		printk(KERN_ERR "IR keymap %s not found\n", name);
77		return NULL;
78	}
79
80	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
81
82	return &map->map;
83}
84EXPORT_SYMBOL_GPL(rc_map_get);
85
86int rc_map_register(struct rc_map_list *map)
87{
88	spin_lock(&rc_map_lock);
89	list_add_tail(&map->list, &rc_map_list);
90	spin_unlock(&rc_map_lock);
91	return 0;
92}
93EXPORT_SYMBOL_GPL(rc_map_register);
94
95void rc_map_unregister(struct rc_map_list *map)
96{
97	spin_lock(&rc_map_lock);
98	list_del(&map->list);
99	spin_unlock(&rc_map_lock);
100}
101EXPORT_SYMBOL_GPL(rc_map_unregister);
102
103
104static struct rc_map_table empty[] = {
105	{ 0x2a, KEY_COFFEE },
106};
107
108static struct rc_map_list empty_map = {
109	.map = {
110		.scan    = empty,
111		.size    = ARRAY_SIZE(empty),
112		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
113		.name    = RC_MAP_EMPTY,
114	}
115};
116
117/**
118 * ir_create_table() - initializes a scancode table
119 * @rc_map:	the rc_map to initialize
120 * @name:	name to assign to the table
121 * @rc_type:	ir type to assign to the new table
122 * @size:	initial size of the table
123 * @return:	zero on success or a negative error code
124 *
125 * This routine will initialize the rc_map and will allocate
126 * memory to hold at least the specified number of elements.
127 */
128static int ir_create_table(struct rc_map *rc_map,
129			   const char *name, u64 rc_type, size_t size)
130{
131	rc_map->name = name;
132	rc_map->rc_type = rc_type;
133	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
134	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
135	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
136	if (!rc_map->scan)
137		return -ENOMEM;
138
139	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
140		   rc_map->size, rc_map->alloc);
141	return 0;
142}
143
144/**
145 * ir_free_table() - frees memory allocated by a scancode table
146 * @rc_map:	the table whose mappings need to be freed
147 *
148 * This routine will free memory alloctaed for key mappings used by given
149 * scancode table.
150 */
151static void ir_free_table(struct rc_map *rc_map)
152{
153	rc_map->size = 0;
154	kfree(rc_map->scan);
155	rc_map->scan = NULL;
156}
157
158/**
159 * ir_resize_table() - resizes a scancode table if necessary
160 * @rc_map:	the rc_map to resize
161 * @gfp_flags:	gfp flags to use when allocating memory
162 * @return:	zero on success or a negative error code
163 *
164 * This routine will shrink the rc_map if it has lots of
165 * unused entries and grow it if it is full.
166 */
167static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
168{
169	unsigned int oldalloc = rc_map->alloc;
170	unsigned int newalloc = oldalloc;
171	struct rc_map_table *oldscan = rc_map->scan;
172	struct rc_map_table *newscan;
173
174	if (rc_map->size == rc_map->len) {
175		/* All entries in use -> grow keytable */
176		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
177			return -ENOMEM;
178
179		newalloc *= 2;
180		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
181	}
182
183	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
184		/* Less than 1/3 of entries in use -> shrink keytable */
185		newalloc /= 2;
186		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
187	}
188
189	if (newalloc == oldalloc)
190		return 0;
191
192	newscan = kmalloc(newalloc, gfp_flags);
193	if (!newscan) {
194		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
195		return -ENOMEM;
196	}
197
198	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
199	rc_map->scan = newscan;
200	rc_map->alloc = newalloc;
201	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
202	kfree(oldscan);
203	return 0;
204}
205
206/**
207 * ir_update_mapping() - set a keycode in the scancode->keycode table
208 * @dev:	the struct rc_dev device descriptor
209 * @rc_map:	scancode table to be adjusted
210 * @index:	index of the mapping that needs to be updated
211 * @keycode:	the desired keycode
212 * @return:	previous keycode assigned to the mapping
213 *
214 * This routine is used to update scancode->keycode mapping at given
215 * position.
216 */
217static unsigned int ir_update_mapping(struct rc_dev *dev,
218				      struct rc_map *rc_map,
219				      unsigned int index,
220				      unsigned int new_keycode)
221{
222	int old_keycode = rc_map->scan[index].keycode;
223	int i;
224
225	/* Did the user wish to remove the mapping? */
226	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
227		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
228			   index, rc_map->scan[index].scancode);
229		rc_map->len--;
230		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
231			(rc_map->len - index) * sizeof(struct rc_map_table));
232	} else {
233		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
234			   index,
235			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
236			   rc_map->scan[index].scancode, new_keycode);
237		rc_map->scan[index].keycode = new_keycode;
238		__set_bit(new_keycode, dev->input_dev->keybit);
239	}
240
241	if (old_keycode != KEY_RESERVED) {
242		/* A previous mapping was updated... */
243		__clear_bit(old_keycode, dev->input_dev->keybit);
244		/* ... but another scancode might use the same keycode */
245		for (i = 0; i < rc_map->len; i++) {
246			if (rc_map->scan[i].keycode == old_keycode) {
247				__set_bit(old_keycode, dev->input_dev->keybit);
248				break;
249			}
250		}
251
252		/* Possibly shrink the keytable, failure is not a problem */
253		ir_resize_table(rc_map, GFP_ATOMIC);
254	}
255
256	return old_keycode;
257}
258
259/**
260 * ir_establish_scancode() - set a keycode in the scancode->keycode table
261 * @dev:	the struct rc_dev device descriptor
262 * @rc_map:	scancode table to be searched
263 * @scancode:	the desired scancode
264 * @resize:	controls whether we allowed to resize the table to
265 *		accommodate not yet present scancodes
266 * @return:	index of the mapping containing scancode in question
267 *		or -1U in case of failure.
268 *
269 * This routine is used to locate given scancode in rc_map.
270 * If scancode is not yet present the routine will allocate a new slot
271 * for it.
272 */
273static unsigned int ir_establish_scancode(struct rc_dev *dev,
274					  struct rc_map *rc_map,
275					  unsigned int scancode,
276					  bool resize)
277{
278	unsigned int i;
279
280	/*
281	 * Unfortunately, some hardware-based IR decoders don't provide
282	 * all bits for the complete IR code. In general, they provide only
283	 * the command part of the IR code. Yet, as it is possible to replace
284	 * the provided IR with another one, it is needed to allow loading
285	 * IR tables from other remotes. So, we support specifying a mask to
286	 * indicate the valid bits of the scancodes.
287	 */
288	if (dev->scancode_mask)
289		scancode &= dev->scancode_mask;
290
291	/* First check if we already have a mapping for this ir command */
292	for (i = 0; i < rc_map->len; i++) {
293		if (rc_map->scan[i].scancode == scancode)
294			return i;
295
296		/* Keytable is sorted from lowest to highest scancode */
297		if (rc_map->scan[i].scancode >= scancode)
298			break;
299	}
300
301	/* No previous mapping found, we might need to grow the table */
302	if (rc_map->size == rc_map->len) {
303		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
304			return -1U;
305	}
306
307	/* i is the proper index to insert our new keycode */
308	if (i < rc_map->len)
309		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
310			(rc_map->len - i) * sizeof(struct rc_map_table));
311	rc_map->scan[i].scancode = scancode;
312	rc_map->scan[i].keycode = KEY_RESERVED;
313	rc_map->len++;
314
315	return i;
316}
317
318/**
319 * ir_setkeycode() - set a keycode in the scancode->keycode table
320 * @idev:	the struct input_dev device descriptor
321 * @scancode:	the desired scancode
322 * @keycode:	result
323 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
324 *
325 * This routine is used to handle evdev EVIOCSKEY ioctl.
326 */
327static int ir_setkeycode(struct input_dev *idev,
328			 const struct input_keymap_entry *ke,
329			 unsigned int *old_keycode)
330{
331	struct rc_dev *rdev = input_get_drvdata(idev);
332	struct rc_map *rc_map = &rdev->rc_map;
333	unsigned int index;
334	unsigned int scancode;
335	int retval = 0;
336	unsigned long flags;
337
338	spin_lock_irqsave(&rc_map->lock, flags);
339
340	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
341		index = ke->index;
342		if (index >= rc_map->len) {
343			retval = -EINVAL;
344			goto out;
345		}
346	} else {
347		retval = input_scancode_to_scalar(ke, &scancode);
348		if (retval)
349			goto out;
350
351		index = ir_establish_scancode(rdev, rc_map, scancode, true);
352		if (index >= rc_map->len) {
353			retval = -ENOMEM;
354			goto out;
355		}
356	}
357
358	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
359
360out:
361	spin_unlock_irqrestore(&rc_map->lock, flags);
362	return retval;
363}
364
365/**
366 * ir_setkeytable() - sets several entries in the scancode->keycode table
367 * @dev:	the struct rc_dev device descriptor
368 * @to:		the struct rc_map to copy entries to
369 * @from:	the struct rc_map to copy entries from
370 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
371 *
372 * This routine is used to handle table initialization.
373 */
374static int ir_setkeytable(struct rc_dev *dev,
375			  const struct rc_map *from)
376{
377	struct rc_map *rc_map = &dev->rc_map;
378	unsigned int i, index;
379	int rc;
380
381	rc = ir_create_table(rc_map, from->name,
382			     from->rc_type, from->size);
383	if (rc)
384		return rc;
385
386	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
387		   rc_map->size, rc_map->alloc);
388
389	for (i = 0; i < from->size; i++) {
390		index = ir_establish_scancode(dev, rc_map,
391					      from->scan[i].scancode, false);
392		if (index >= rc_map->len) {
393			rc = -ENOMEM;
394			break;
395		}
396
397		ir_update_mapping(dev, rc_map, index,
398				  from->scan[i].keycode);
399	}
400
401	if (rc)
402		ir_free_table(rc_map);
403
404	return rc;
405}
406
407/**
408 * ir_lookup_by_scancode() - locate mapping by scancode
409 * @rc_map:	the struct rc_map to search
410 * @scancode:	scancode to look for in the table
411 * @return:	index in the table, -1U if not found
412 *
413 * This routine performs binary search in RC keykeymap table for
414 * given scancode.
415 */
416static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
417					  unsigned int scancode)
418{
419	int start = 0;
420	int end = rc_map->len - 1;
421	int mid;
422
423	while (start <= end) {
424		mid = (start + end) / 2;
425		if (rc_map->scan[mid].scancode < scancode)
426			start = mid + 1;
427		else if (rc_map->scan[mid].scancode > scancode)
428			end = mid - 1;
429		else
430			return mid;
431	}
432
433	return -1U;
434}
435
436/**
437 * ir_getkeycode() - get a keycode from the scancode->keycode table
438 * @idev:	the struct input_dev device descriptor
439 * @scancode:	the desired scancode
440 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
441 * @return:	always returns zero.
442 *
443 * This routine is used to handle evdev EVIOCGKEY ioctl.
444 */
445static int ir_getkeycode(struct input_dev *idev,
446			 struct input_keymap_entry *ke)
447{
448	struct rc_dev *rdev = input_get_drvdata(idev);
449	struct rc_map *rc_map = &rdev->rc_map;
450	struct rc_map_table *entry;
451	unsigned long flags;
452	unsigned int index;
453	unsigned int scancode;
454	int retval;
455
456	spin_lock_irqsave(&rc_map->lock, flags);
457
458	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
459		index = ke->index;
460	} else {
461		retval = input_scancode_to_scalar(ke, &scancode);
462		if (retval)
463			goto out;
464
465		index = ir_lookup_by_scancode(rc_map, scancode);
466	}
467
468	if (index < rc_map->len) {
469		entry = &rc_map->scan[index];
470
471		ke->index = index;
472		ke->keycode = entry->keycode;
473		ke->len = sizeof(entry->scancode);
474		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
475
476	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
477		/*
478		 * We do not really know the valid range of scancodes
479		 * so let's respond with KEY_RESERVED to anything we
480		 * do not have mapping for [yet].
481		 */
482		ke->index = index;
483		ke->keycode = KEY_RESERVED;
484	} else {
485		retval = -EINVAL;
486		goto out;
487	}
488
489	retval = 0;
490
491out:
492	spin_unlock_irqrestore(&rc_map->lock, flags);
493	return retval;
494}
495
496/**
497 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
498 * @dev:	the struct rc_dev descriptor of the device
499 * @scancode:	the scancode to look for
500 * @return:	the corresponding keycode, or KEY_RESERVED
501 *
502 * This routine is used by drivers which need to convert a scancode to a
503 * keycode. Normally it should not be used since drivers should have no
504 * interest in keycodes.
505 */
506u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
507{
508	struct rc_map *rc_map = &dev->rc_map;
509	unsigned int keycode;
510	unsigned int index;
511	unsigned long flags;
512
513	spin_lock_irqsave(&rc_map->lock, flags);
514
515	index = ir_lookup_by_scancode(rc_map, scancode);
516	keycode = index < rc_map->len ?
517			rc_map->scan[index].keycode : KEY_RESERVED;
518
519	spin_unlock_irqrestore(&rc_map->lock, flags);
520
521	if (keycode != KEY_RESERVED)
522		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
523			   dev->input_name, scancode, keycode);
524
525	return keycode;
526}
527EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
528
529/**
530 * ir_do_keyup() - internal function to signal the release of a keypress
531 * @dev:	the struct rc_dev descriptor of the device
532 * @sync:	whether or not to call input_sync
533 *
534 * This function is used internally to release a keypress, it must be
535 * called with keylock held.
536 */
537static void ir_do_keyup(struct rc_dev *dev, bool sync)
538{
539	if (!dev->keypressed)
540		return;
541
542	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
543	input_report_key(dev->input_dev, dev->last_keycode, 0);
544	led_trigger_event(led_feedback, LED_OFF);
545	if (sync)
546		input_sync(dev->input_dev);
547	dev->keypressed = false;
548}
549
550/**
551 * rc_keyup() - signals the release of a keypress
552 * @dev:	the struct rc_dev descriptor of the device
553 *
554 * This routine is used to signal that a key has been released on the
555 * remote control.
556 */
557void rc_keyup(struct rc_dev *dev)
558{
559	unsigned long flags;
560
561	spin_lock_irqsave(&dev->keylock, flags);
562	ir_do_keyup(dev, true);
563	spin_unlock_irqrestore(&dev->keylock, flags);
564}
565EXPORT_SYMBOL_GPL(rc_keyup);
566
567/**
568 * ir_timer_keyup() - generates a keyup event after a timeout
569 * @cookie:	a pointer to the struct rc_dev for the device
570 *
571 * This routine will generate a keyup event some time after a keydown event
572 * is generated when no further activity has been detected.
573 */
574static void ir_timer_keyup(unsigned long cookie)
575{
576	struct rc_dev *dev = (struct rc_dev *)cookie;
577	unsigned long flags;
578
579	/*
580	 * ir->keyup_jiffies is used to prevent a race condition if a
581	 * hardware interrupt occurs at this point and the keyup timer
582	 * event is moved further into the future as a result.
583	 *
584	 * The timer will then be reactivated and this function called
585	 * again in the future. We need to exit gracefully in that case
586	 * to allow the input subsystem to do its auto-repeat magic or
587	 * a keyup event might follow immediately after the keydown.
588	 */
589	spin_lock_irqsave(&dev->keylock, flags);
590	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
591		ir_do_keyup(dev, true);
592	spin_unlock_irqrestore(&dev->keylock, flags);
593}
594
595/**
596 * rc_repeat() - signals that a key is still pressed
597 * @dev:	the struct rc_dev descriptor of the device
598 *
599 * This routine is used by IR decoders when a repeat message which does
600 * not include the necessary bits to reproduce the scancode has been
601 * received.
602 */
603void rc_repeat(struct rc_dev *dev)
604{
605	unsigned long flags;
606
607	spin_lock_irqsave(&dev->keylock, flags);
608
609	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
610	input_sync(dev->input_dev);
611
612	if (!dev->keypressed)
613		goto out;
614
615	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
616	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
617
618out:
619	spin_unlock_irqrestore(&dev->keylock, flags);
620}
621EXPORT_SYMBOL_GPL(rc_repeat);
622
623/**
624 * ir_do_keydown() - internal function to process a keypress
625 * @dev:	the struct rc_dev descriptor of the device
626 * @protocol:	the protocol of the keypress
627 * @scancode:   the scancode of the keypress
628 * @keycode:    the keycode of the keypress
629 * @toggle:     the toggle value of the keypress
630 *
631 * This function is used internally to register a keypress, it must be
632 * called with keylock held.
633 */
634static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
635			  u32 scancode, u32 keycode, u8 toggle)
636{
637	bool new_event = (!dev->keypressed		 ||
638			  dev->last_protocol != protocol ||
639			  dev->last_scancode != scancode ||
640			  dev->last_toggle   != toggle);
641
642	if (new_event && dev->keypressed)
643		ir_do_keyup(dev, false);
644
645	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
646
647	if (new_event && keycode != KEY_RESERVED) {
648		/* Register a keypress */
649		dev->keypressed = true;
650		dev->last_protocol = protocol;
651		dev->last_scancode = scancode;
652		dev->last_toggle = toggle;
653		dev->last_keycode = keycode;
654
655		IR_dprintk(1, "%s: key down event, "
656			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
657			   dev->input_name, keycode, protocol, scancode);
658		input_report_key(dev->input_dev, keycode, 1);
659
660		led_trigger_event(led_feedback, LED_FULL);
661	}
662
663	input_sync(dev->input_dev);
664}
665
666/**
667 * rc_keydown() - generates input event for a key press
668 * @dev:	the struct rc_dev descriptor of the device
669 * @protocol:	the protocol for the keypress
670 * @scancode:	the scancode for the keypress
671 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
672 *              support toggle values, this should be set to zero)
673 *
674 * This routine is used to signal that a key has been pressed on the
675 * remote control.
676 */
677void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
678{
679	unsigned long flags;
680	u32 keycode = rc_g_keycode_from_table(dev, scancode);
681
682	spin_lock_irqsave(&dev->keylock, flags);
683	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
684
685	if (dev->keypressed) {
686		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
687		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
688	}
689	spin_unlock_irqrestore(&dev->keylock, flags);
690}
691EXPORT_SYMBOL_GPL(rc_keydown);
692
693/**
694 * rc_keydown_notimeout() - generates input event for a key press without
695 *                          an automatic keyup event at a later time
696 * @dev:	the struct rc_dev descriptor of the device
697 * @protocol:	the protocol for the keypress
698 * @scancode:	the scancode for the keypress
699 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
700 *              support toggle values, this should be set to zero)
701 *
702 * This routine is used to signal that a key has been pressed on the
703 * remote control. The driver must manually call rc_keyup() at a later stage.
704 */
705void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
706			  u32 scancode, u8 toggle)
707{
708	unsigned long flags;
709	u32 keycode = rc_g_keycode_from_table(dev, scancode);
710
711	spin_lock_irqsave(&dev->keylock, flags);
712	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
713	spin_unlock_irqrestore(&dev->keylock, flags);
714}
715EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
716
717int rc_open(struct rc_dev *rdev)
718{
719	int rval = 0;
720
721	if (!rdev)
722		return -EINVAL;
723
724	mutex_lock(&rdev->lock);
725	if (!rdev->users++ && rdev->open != NULL)
726		rval = rdev->open(rdev);
727
728	if (rval)
729		rdev->users--;
730
731	mutex_unlock(&rdev->lock);
732
733	return rval;
734}
735EXPORT_SYMBOL_GPL(rc_open);
736
737static int ir_open(struct input_dev *idev)
738{
739	struct rc_dev *rdev = input_get_drvdata(idev);
740
741	return rc_open(rdev);
742}
743
744void rc_close(struct rc_dev *rdev)
745{
746	if (rdev) {
747		mutex_lock(&rdev->lock);
748
749		 if (!--rdev->users && rdev->close != NULL)
750			rdev->close(rdev);
751
752		mutex_unlock(&rdev->lock);
753	}
754}
755EXPORT_SYMBOL_GPL(rc_close);
756
757static void ir_close(struct input_dev *idev)
758{
759	struct rc_dev *rdev = input_get_drvdata(idev);
760	rc_close(rdev);
761}
762
763/* class for /sys/class/rc */
764static char *rc_devnode(struct device *dev, umode_t *mode)
765{
766	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
767}
768
769static struct class rc_class = {
770	.name		= "rc",
771	.devnode	= rc_devnode,
772};
773
774/*
775 * These are the protocol textual descriptions that are
776 * used by the sysfs protocols file. Note that the order
777 * of the entries is relevant.
778 */
779static struct {
780	u64	type;
781	char	*name;
782} proto_names[] = {
783	{ RC_BIT_NONE,		"none"		},
784	{ RC_BIT_OTHER,		"other"		},
785	{ RC_BIT_UNKNOWN,	"unknown"	},
786	{ RC_BIT_RC5 |
787	  RC_BIT_RC5X,		"rc-5"		},
788	{ RC_BIT_NEC,		"nec"		},
789	{ RC_BIT_RC6_0 |
790	  RC_BIT_RC6_6A_20 |
791	  RC_BIT_RC6_6A_24 |
792	  RC_BIT_RC6_6A_32 |
793	  RC_BIT_RC6_MCE,	"rc-6"		},
794	{ RC_BIT_JVC,		"jvc"		},
795	{ RC_BIT_SONY12 |
796	  RC_BIT_SONY15 |
797	  RC_BIT_SONY20,	"sony"		},
798	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
799	{ RC_BIT_SANYO,		"sanyo"		},
800	{ RC_BIT_SHARP,		"sharp"		},
801	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
802	{ RC_BIT_LIRC,		"lirc"		},
803	{ RC_BIT_XMP,		"xmp"		},
804};
805
806/**
807 * struct rc_filter_attribute - Device attribute relating to a filter type.
808 * @attr:	Device attribute.
809 * @type:	Filter type.
810 * @mask:	false for filter value, true for filter mask.
811 */
812struct rc_filter_attribute {
813	struct device_attribute		attr;
814	enum rc_filter_type		type;
815	bool				mask;
816};
817#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
818
819#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
820	struct rc_filter_attribute dev_attr_##_name = {			\
821		.attr = __ATTR(_name, _mode, _show, _store),		\
822		.type = (_type),					\
823	}
824#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
825	struct rc_filter_attribute dev_attr_##_name = {			\
826		.attr = __ATTR(_name, _mode, _show, _store),		\
827		.type = (_type),					\
828		.mask = (_mask),					\
829	}
830
831/**
832 * show_protocols() - shows the current/wakeup IR protocol(s)
833 * @device:	the device descriptor
834 * @mattr:	the device attribute struct
835 * @buf:	a pointer to the output buffer
836 *
837 * This routine is a callback routine for input read the IR protocol type(s).
838 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
839 * It returns the protocol names of supported protocols.
840 * Enabled protocols are printed in brackets.
841 *
842 * dev->lock is taken to guard against races between device
843 * registration, store_protocols and show_protocols.
844 */
845static ssize_t show_protocols(struct device *device,
846			      struct device_attribute *mattr, char *buf)
847{
848	struct rc_dev *dev = to_rc_dev(device);
849	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
850	u64 allowed, enabled;
851	char *tmp = buf;
852	int i;
853
854	/* Device is being removed */
855	if (!dev)
856		return -EINVAL;
857
858	mutex_lock(&dev->lock);
859
860	if (fattr->type == RC_FILTER_NORMAL) {
861		enabled = dev->enabled_protocols;
862		allowed = dev->allowed_protocols;
863		if (dev->raw && !allowed)
864			allowed = ir_raw_get_allowed_protocols();
865	} else {
866		enabled = dev->enabled_wakeup_protocols;
867		allowed = dev->allowed_wakeup_protocols;
868	}
869
870	mutex_unlock(&dev->lock);
871
872	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
873		   __func__, (long long)allowed, (long long)enabled);
874
875	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
876		if (allowed & enabled & proto_names[i].type)
877			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
878		else if (allowed & proto_names[i].type)
879			tmp += sprintf(tmp, "%s ", proto_names[i].name);
880
881		if (allowed & proto_names[i].type)
882			allowed &= ~proto_names[i].type;
883	}
884
885	if (tmp != buf)
886		tmp--;
887	*tmp = '\n';
888
889	return tmp + 1 - buf;
890}
891
892/**
893 * parse_protocol_change() - parses a protocol change request
894 * @protocols:	pointer to the bitmask of current protocols
895 * @buf:	pointer to the buffer with a list of changes
896 *
897 * Writing "+proto" will add a protocol to the protocol mask.
898 * Writing "-proto" will remove a protocol from protocol mask.
899 * Writing "proto" will enable only "proto".
900 * Writing "none" will disable all protocols.
901 * Returns the number of changes performed or a negative error code.
902 */
903static int parse_protocol_change(u64 *protocols, const char *buf)
904{
905	const char *tmp;
906	unsigned count = 0;
907	bool enable, disable;
908	u64 mask;
909	int i;
910
911	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
912		if (!*tmp)
913			break;
914
915		if (*tmp == '+') {
916			enable = true;
917			disable = false;
918			tmp++;
919		} else if (*tmp == '-') {
920			enable = false;
921			disable = true;
922			tmp++;
923		} else {
924			enable = false;
925			disable = false;
926		}
927
928		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
929			if (!strcasecmp(tmp, proto_names[i].name)) {
930				mask = proto_names[i].type;
931				break;
932			}
933		}
934
935		if (i == ARRAY_SIZE(proto_names)) {
936			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
937			return -EINVAL;
938		}
939
940		count++;
941
942		if (enable)
943			*protocols |= mask;
944		else if (disable)
945			*protocols &= ~mask;
946		else
947			*protocols = mask;
948	}
949
950	if (!count) {
951		IR_dprintk(1, "Protocol not specified\n");
952		return -EINVAL;
953	}
954
955	return count;
956}
957
958/**
959 * store_protocols() - changes the current/wakeup IR protocol(s)
960 * @device:	the device descriptor
961 * @mattr:	the device attribute struct
962 * @buf:	a pointer to the input buffer
963 * @len:	length of the input buffer
964 *
965 * This routine is for changing the IR protocol type.
966 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
967 * See parse_protocol_change() for the valid commands.
968 * Returns @len on success or a negative error code.
969 *
970 * dev->lock is taken to guard against races between device
971 * registration, store_protocols and show_protocols.
972 */
973static ssize_t store_protocols(struct device *device,
974			       struct device_attribute *mattr,
975			       const char *buf, size_t len)
976{
977	struct rc_dev *dev = to_rc_dev(device);
978	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
979	u64 *current_protocols;
980	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
981	struct rc_scancode_filter *filter;
982	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
983	u64 old_protocols, new_protocols;
984	ssize_t rc;
985
986	/* Device is being removed */
987	if (!dev)
988		return -EINVAL;
989
990	if (fattr->type == RC_FILTER_NORMAL) {
991		IR_dprintk(1, "Normal protocol change requested\n");
992		current_protocols = &dev->enabled_protocols;
993		change_protocol = dev->change_protocol;
994		filter = &dev->scancode_filter;
995		set_filter = dev->s_filter;
996	} else {
997		IR_dprintk(1, "Wakeup protocol change requested\n");
998		current_protocols = &dev->enabled_wakeup_protocols;
999		change_protocol = dev->change_wakeup_protocol;
1000		filter = &dev->scancode_wakeup_filter;
1001		set_filter = dev->s_wakeup_filter;
1002	}
1003
1004	if (!change_protocol) {
1005		IR_dprintk(1, "Protocol switching not supported\n");
1006		return -EINVAL;
1007	}
1008
1009	mutex_lock(&dev->lock);
1010
1011	old_protocols = *current_protocols;
1012	new_protocols = old_protocols;
1013	rc = parse_protocol_change(&new_protocols, buf);
1014	if (rc < 0)
1015		goto out;
1016
1017	rc = change_protocol(dev, &new_protocols);
1018	if (rc < 0) {
1019		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1020			   (long long)new_protocols);
1021		goto out;
1022	}
1023
1024	if (new_protocols != old_protocols) {
1025		*current_protocols = new_protocols;
1026		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1027			   (long long)new_protocols);
1028	}
1029
1030	/*
1031	 * If a protocol change was attempted the filter may need updating, even
1032	 * if the actual protocol mask hasn't changed (since the driver may have
1033	 * cleared the filter).
1034	 * Try setting the same filter with the new protocol (if any).
1035	 * Fall back to clearing the filter.
1036	 */
1037	if (set_filter && filter->mask) {
1038		if (new_protocols)
1039			rc = set_filter(dev, filter);
1040		else
1041			rc = -1;
1042
1043		if (rc < 0) {
1044			filter->data = 0;
1045			filter->mask = 0;
1046			set_filter(dev, filter);
1047		}
1048	}
1049
1050	rc = len;
1051
1052out:
1053	mutex_unlock(&dev->lock);
1054	return rc;
1055}
1056
1057/**
1058 * show_filter() - shows the current scancode filter value or mask
1059 * @device:	the device descriptor
1060 * @attr:	the device attribute struct
1061 * @buf:	a pointer to the output buffer
1062 *
1063 * This routine is a callback routine to read a scancode filter value or mask.
1064 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1065 * It prints the current scancode filter value or mask of the appropriate filter
1066 * type in hexadecimal into @buf and returns the size of the buffer.
1067 *
1068 * Bits of the filter value corresponding to set bits in the filter mask are
1069 * compared against input scancodes and non-matching scancodes are discarded.
1070 *
1071 * dev->lock is taken to guard against races between device registration,
1072 * store_filter and show_filter.
1073 */
1074static ssize_t show_filter(struct device *device,
1075			   struct device_attribute *attr,
1076			   char *buf)
1077{
1078	struct rc_dev *dev = to_rc_dev(device);
1079	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1080	struct rc_scancode_filter *filter;
1081	u32 val;
1082
1083	/* Device is being removed */
1084	if (!dev)
1085		return -EINVAL;
1086
1087	if (fattr->type == RC_FILTER_NORMAL)
1088		filter = &dev->scancode_filter;
1089	else
1090		filter = &dev->scancode_wakeup_filter;
1091
1092	mutex_lock(&dev->lock);
1093	if (fattr->mask)
1094		val = filter->mask;
1095	else
1096		val = filter->data;
1097	mutex_unlock(&dev->lock);
1098
1099	return sprintf(buf, "%#x\n", val);
1100}
1101
1102/**
1103 * store_filter() - changes the scancode filter value
1104 * @device:	the device descriptor
1105 * @attr:	the device attribute struct
1106 * @buf:	a pointer to the input buffer
1107 * @len:	length of the input buffer
1108 *
1109 * This routine is for changing a scancode filter value or mask.
1110 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1111 * Returns -EINVAL if an invalid filter value for the current protocol was
1112 * specified or if scancode filtering is not supported by the driver, otherwise
1113 * returns @len.
1114 *
1115 * Bits of the filter value corresponding to set bits in the filter mask are
1116 * compared against input scancodes and non-matching scancodes are discarded.
1117 *
1118 * dev->lock is taken to guard against races between device registration,
1119 * store_filter and show_filter.
1120 */
1121static ssize_t store_filter(struct device *device,
1122			    struct device_attribute *attr,
1123			    const char *buf, size_t len)
1124{
1125	struct rc_dev *dev = to_rc_dev(device);
1126	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1127	struct rc_scancode_filter new_filter, *filter;
1128	int ret;
1129	unsigned long val;
1130	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1131	u64 *enabled_protocols;
1132
1133	/* Device is being removed */
1134	if (!dev)
1135		return -EINVAL;
1136
1137	ret = kstrtoul(buf, 0, &val);
1138	if (ret < 0)
1139		return ret;
1140
1141	if (fattr->type == RC_FILTER_NORMAL) {
1142		set_filter = dev->s_filter;
1143		enabled_protocols = &dev->enabled_protocols;
1144		filter = &dev->scancode_filter;
1145	} else {
1146		set_filter = dev->s_wakeup_filter;
1147		enabled_protocols = &dev->enabled_wakeup_protocols;
1148		filter = &dev->scancode_wakeup_filter;
1149	}
1150
1151	if (!set_filter)
1152		return -EINVAL;
1153
1154	mutex_lock(&dev->lock);
1155
1156	new_filter = *filter;
1157	if (fattr->mask)
1158		new_filter.mask = val;
1159	else
1160		new_filter.data = val;
1161
1162	if (!*enabled_protocols && val) {
1163		/* refuse to set a filter unless a protocol is enabled */
1164		ret = -EINVAL;
1165		goto unlock;
1166	}
1167
1168	ret = set_filter(dev, &new_filter);
1169	if (ret < 0)
1170		goto unlock;
1171
1172	*filter = new_filter;
1173
1174unlock:
1175	mutex_unlock(&dev->lock);
1176	return (ret < 0) ? ret : len;
1177}
1178
1179static void rc_dev_release(struct device *device)
1180{
1181}
1182
1183#define ADD_HOTPLUG_VAR(fmt, val...)					\
1184	do {								\
1185		int err = add_uevent_var(env, fmt, val);		\
1186		if (err)						\
1187			return err;					\
1188	} while (0)
1189
1190static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1191{
1192	struct rc_dev *dev = to_rc_dev(device);
1193
1194	if (dev->rc_map.name)
1195		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1196	if (dev->driver_name)
1197		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1198
1199	return 0;
1200}
1201
1202/*
1203 * Static device attribute struct with the sysfs attributes for IR's
1204 */
1205static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1206		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1207static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1208		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1209static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1210		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1211static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1212		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1213static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1214		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1215static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1216		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1217
1218static struct attribute *rc_dev_protocol_attrs[] = {
1219	&dev_attr_protocols.attr.attr,
1220	NULL,
1221};
1222
1223static struct attribute_group rc_dev_protocol_attr_grp = {
1224	.attrs	= rc_dev_protocol_attrs,
1225};
1226
1227static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1228	&dev_attr_wakeup_protocols.attr.attr,
1229	NULL,
1230};
1231
1232static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1233	.attrs	= rc_dev_wakeup_protocol_attrs,
1234};
1235
1236static struct attribute *rc_dev_filter_attrs[] = {
1237	&dev_attr_filter.attr.attr,
1238	&dev_attr_filter_mask.attr.attr,
1239	NULL,
1240};
1241
1242static struct attribute_group rc_dev_filter_attr_grp = {
1243	.attrs	= rc_dev_filter_attrs,
1244};
1245
1246static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1247	&dev_attr_wakeup_filter.attr.attr,
1248	&dev_attr_wakeup_filter_mask.attr.attr,
1249	NULL,
1250};
1251
1252static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1253	.attrs	= rc_dev_wakeup_filter_attrs,
1254};
1255
1256static struct device_type rc_dev_type = {
1257	.release	= rc_dev_release,
1258	.uevent		= rc_dev_uevent,
1259};
1260
1261struct rc_dev *rc_allocate_device(void)
1262{
1263	struct rc_dev *dev;
1264
1265	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1266	if (!dev)
1267		return NULL;
1268
1269	dev->input_dev = input_allocate_device();
1270	if (!dev->input_dev) {
1271		kfree(dev);
1272		return NULL;
1273	}
1274
1275	dev->input_dev->getkeycode = ir_getkeycode;
1276	dev->input_dev->setkeycode = ir_setkeycode;
1277	input_set_drvdata(dev->input_dev, dev);
1278
1279	spin_lock_init(&dev->rc_map.lock);
1280	spin_lock_init(&dev->keylock);
1281	mutex_init(&dev->lock);
1282	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1283
1284	dev->dev.type = &rc_dev_type;
1285	dev->dev.class = &rc_class;
1286	device_initialize(&dev->dev);
1287
1288	__module_get(THIS_MODULE);
1289	return dev;
1290}
1291EXPORT_SYMBOL_GPL(rc_allocate_device);
1292
1293void rc_free_device(struct rc_dev *dev)
1294{
1295	if (!dev)
1296		return;
1297
1298	input_free_device(dev->input_dev);
1299
1300	put_device(&dev->dev);
1301
1302	kfree(dev);
1303	module_put(THIS_MODULE);
1304}
1305EXPORT_SYMBOL_GPL(rc_free_device);
1306
1307int rc_register_device(struct rc_dev *dev)
1308{
1309	static bool raw_init = false; /* raw decoders loaded? */
1310	struct rc_map *rc_map;
1311	const char *path;
1312	int rc, devno, attr = 0;
1313
1314	if (!dev || !dev->map_name)
1315		return -EINVAL;
1316
1317	rc_map = rc_map_get(dev->map_name);
1318	if (!rc_map)
1319		rc_map = rc_map_get(RC_MAP_EMPTY);
1320	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1321		return -EINVAL;
1322
1323	set_bit(EV_KEY, dev->input_dev->evbit);
1324	set_bit(EV_REP, dev->input_dev->evbit);
1325	set_bit(EV_MSC, dev->input_dev->evbit);
1326	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1327	if (dev->open)
1328		dev->input_dev->open = ir_open;
1329	if (dev->close)
1330		dev->input_dev->close = ir_close;
1331
1332	do {
1333		devno = find_first_zero_bit(ir_core_dev_number,
1334					    IRRCV_NUM_DEVICES);
1335		/* No free device slots */
1336		if (devno >= IRRCV_NUM_DEVICES)
1337			return -ENOMEM;
1338	} while (test_and_set_bit(devno, ir_core_dev_number));
1339
1340	dev->dev.groups = dev->sysfs_groups;
1341	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1342	if (dev->s_filter)
1343		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1344	if (dev->s_wakeup_filter)
1345		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1346	if (dev->change_wakeup_protocol)
1347		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1348	dev->sysfs_groups[attr++] = NULL;
1349
1350	/*
1351	 * Take the lock here, as the device sysfs node will appear
1352	 * when device_add() is called, which may trigger an ir-keytable udev
1353	 * rule, which will in turn call show_protocols and access
1354	 * dev->enabled_protocols before it has been initialized.
1355	 */
1356	mutex_lock(&dev->lock);
1357
1358	dev->devno = devno;
1359	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1360	dev_set_drvdata(&dev->dev, dev);
1361	rc = device_add(&dev->dev);
1362	if (rc)
1363		goto out_unlock;
1364
1365	rc = ir_setkeytable(dev, rc_map);
1366	if (rc)
1367		goto out_dev;
1368
1369	dev->input_dev->dev.parent = &dev->dev;
1370	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1371	dev->input_dev->phys = dev->input_phys;
1372	dev->input_dev->name = dev->input_name;
1373
1374	/* input_register_device can call ir_open, so unlock mutex here */
1375	mutex_unlock(&dev->lock);
1376
1377	rc = input_register_device(dev->input_dev);
1378
1379	mutex_lock(&dev->lock);
1380
1381	if (rc)
1382		goto out_table;
1383
1384	/*
1385	 * Default delay of 250ms is too short for some protocols, especially
1386	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1387	 * to avoid wrong repetition of the keycodes. Note that this must be
1388	 * set after the call to input_register_device().
1389	 */
1390	dev->input_dev->rep[REP_DELAY] = 500;
1391
1392	/*
1393	 * As a repeat event on protocols like RC-5 and NEC take as long as
1394	 * 110/114ms, using 33ms as a repeat period is not the right thing
1395	 * to do.
1396	 */
1397	dev->input_dev->rep[REP_PERIOD] = 125;
1398
1399	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1400	printk(KERN_INFO "%s: %s as %s\n",
1401		dev_name(&dev->dev),
1402		dev->input_name ? dev->input_name : "Unspecified device",
1403		path ? path : "N/A");
1404	kfree(path);
1405
1406	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1407		/* Load raw decoders, if they aren't already */
1408		if (!raw_init) {
1409			IR_dprintk(1, "Loading raw decoders\n");
1410			ir_raw_init();
1411			raw_init = true;
1412		}
1413		/* calls ir_register_device so unlock mutex here*/
1414		mutex_unlock(&dev->lock);
1415		rc = ir_raw_event_register(dev);
1416		mutex_lock(&dev->lock);
1417		if (rc < 0)
1418			goto out_input;
1419	}
1420
1421	if (dev->change_protocol) {
1422		u64 rc_type = (1ll << rc_map->rc_type);
1423		if (dev->driver_type == RC_DRIVER_IR_RAW)
1424			rc_type |= RC_BIT_LIRC;
1425		rc = dev->change_protocol(dev, &rc_type);
1426		if (rc < 0)
1427			goto out_raw;
1428		dev->enabled_protocols = rc_type;
1429	}
1430
1431	mutex_unlock(&dev->lock);
1432
1433	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1434		   dev->devno,
1435		   dev->driver_name ? dev->driver_name : "unknown",
1436		   rc_map->name ? rc_map->name : "unknown",
1437		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1438
1439	return 0;
1440
1441out_raw:
1442	if (dev->driver_type == RC_DRIVER_IR_RAW)
1443		ir_raw_event_unregister(dev);
1444out_input:
1445	input_unregister_device(dev->input_dev);
1446	dev->input_dev = NULL;
1447out_table:
1448	ir_free_table(&dev->rc_map);
1449out_dev:
1450	device_del(&dev->dev);
1451out_unlock:
1452	mutex_unlock(&dev->lock);
1453	clear_bit(dev->devno, ir_core_dev_number);
1454	return rc;
1455}
1456EXPORT_SYMBOL_GPL(rc_register_device);
1457
1458void rc_unregister_device(struct rc_dev *dev)
1459{
1460	if (!dev)
1461		return;
1462
1463	del_timer_sync(&dev->timer_keyup);
1464
1465	clear_bit(dev->devno, ir_core_dev_number);
1466
1467	if (dev->driver_type == RC_DRIVER_IR_RAW)
1468		ir_raw_event_unregister(dev);
1469
1470	/* Freeing the table should also call the stop callback */
1471	ir_free_table(&dev->rc_map);
1472	IR_dprintk(1, "Freed keycode table\n");
1473
1474	input_unregister_device(dev->input_dev);
1475	dev->input_dev = NULL;
1476
1477	device_del(&dev->dev);
1478
1479	rc_free_device(dev);
1480}
1481
1482EXPORT_SYMBOL_GPL(rc_unregister_device);
1483
1484/*
1485 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1486 */
1487
1488static int __init rc_core_init(void)
1489{
1490	int rc = class_register(&rc_class);
1491	if (rc) {
1492		printk(KERN_ERR "rc_core: unable to register rc class\n");
1493		return rc;
1494	}
1495
1496	led_trigger_register_simple("rc-feedback", &led_feedback);
1497	rc_map_register(&empty_map);
1498
1499	return 0;
1500}
1501
1502static void __exit rc_core_exit(void)
1503{
1504	class_unregister(&rc_class);
1505	led_trigger_unregister_simple(led_feedback);
1506	rc_map_unregister(&empty_map);
1507}
1508
1509subsys_initcall(rc_core_init);
1510module_exit(rc_core_exit);
1511
1512int rc_core_debug;    /* ir_debug level (0,1,2) */
1513EXPORT_SYMBOL_GPL(rc_core_debug);
1514module_param_named(debug, rc_core_debug, int, 0644);
1515
1516MODULE_AUTHOR("Mauro Carvalho Chehab");
1517MODULE_LICENSE("GPL");
1518