1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11/* Common definitions for all Efx net driver code */
12
13#ifndef EFX_NET_DRIVER_H
14#define EFX_NET_DRIVER_H
15
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/if_vlan.h>
20#include <linux/timer.h>
21#include <linux/mdio.h>
22#include <linux/list.h>
23#include <linux/pci.h>
24#include <linux/device.h>
25#include <linux/highmem.h>
26#include <linux/workqueue.h>
27#include <linux/mutex.h>
28#include <linux/vmalloc.h>
29#include <linux/i2c.h>
30#include <linux/mtd/mtd.h>
31#include <net/busy_poll.h>
32
33#include "enum.h"
34#include "bitfield.h"
35#include "filter.h"
36
37/**************************************************************************
38 *
39 * Build definitions
40 *
41 **************************************************************************/
42
43#define EFX_DRIVER_VERSION	"4.0"
44
45#ifdef DEBUG
46#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
47#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
48#else
49#define EFX_BUG_ON_PARANOID(x) do {} while (0)
50#define EFX_WARN_ON_PARANOID(x) do {} while (0)
51#endif
52
53/**************************************************************************
54 *
55 * Efx data structures
56 *
57 **************************************************************************/
58
59#define EFX_MAX_CHANNELS 32U
60#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
61#define EFX_EXTRA_CHANNEL_IOV	0
62#define EFX_EXTRA_CHANNEL_PTP	1
63#define EFX_MAX_EXTRA_CHANNELS	2U
64
65/* Checksum generation is a per-queue option in hardware, so each
66 * queue visible to the networking core is backed by two hardware TX
67 * queues. */
68#define EFX_MAX_TX_TC		2
69#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
70#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
71#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
72#define EFX_TXQ_TYPES		4
73#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
74
75/* Maximum possible MTU the driver supports */
76#define EFX_MAX_MTU (9 * 1024)
77
78/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
79 * and should be a multiple of the cache line size.
80 */
81#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
82
83/* If possible, we should ensure cache line alignment at start and end
84 * of every buffer.  Otherwise, we just need to ensure 4-byte
85 * alignment of the network header.
86 */
87#if NET_IP_ALIGN == 0
88#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
89#else
90#define EFX_RX_BUF_ALIGNMENT	4
91#endif
92
93/* Forward declare Precision Time Protocol (PTP) support structure. */
94struct efx_ptp_data;
95struct hwtstamp_config;
96
97struct efx_self_tests;
98
99/**
100 * struct efx_buffer - A general-purpose DMA buffer
101 * @addr: host base address of the buffer
102 * @dma_addr: DMA base address of the buffer
103 * @len: Buffer length, in bytes
104 *
105 * The NIC uses these buffers for its interrupt status registers and
106 * MAC stats dumps.
107 */
108struct efx_buffer {
109	void *addr;
110	dma_addr_t dma_addr;
111	unsigned int len;
112};
113
114/**
115 * struct efx_special_buffer - DMA buffer entered into buffer table
116 * @buf: Standard &struct efx_buffer
117 * @index: Buffer index within controller;s buffer table
118 * @entries: Number of buffer table entries
119 *
120 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
121 * Event and descriptor rings are addressed via one or more buffer
122 * table entries (and so can be physically non-contiguous, although we
123 * currently do not take advantage of that).  On Falcon and Siena we
124 * have to take care of allocating and initialising the entries
125 * ourselves.  On later hardware this is managed by the firmware and
126 * @index and @entries are left as 0.
127 */
128struct efx_special_buffer {
129	struct efx_buffer buf;
130	unsigned int index;
131	unsigned int entries;
132};
133
134/**
135 * struct efx_tx_buffer - buffer state for a TX descriptor
136 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
137 *	freed when descriptor completes
138 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
139 *	freed when descriptor completes.
140 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
141 * @dma_addr: DMA address of the fragment.
142 * @flags: Flags for allocation and DMA mapping type
143 * @len: Length of this fragment.
144 *	This field is zero when the queue slot is empty.
145 * @unmap_len: Length of this fragment to unmap
146 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
147 * Only valid if @unmap_len != 0.
148 */
149struct efx_tx_buffer {
150	union {
151		const struct sk_buff *skb;
152		void *heap_buf;
153	};
154	union {
155		efx_qword_t option;
156		dma_addr_t dma_addr;
157	};
158	unsigned short flags;
159	unsigned short len;
160	unsigned short unmap_len;
161	unsigned short dma_offset;
162};
163#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
164#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
165#define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
166#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
167#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
168
169/**
170 * struct efx_tx_queue - An Efx TX queue
171 *
172 * This is a ring buffer of TX fragments.
173 * Since the TX completion path always executes on the same
174 * CPU and the xmit path can operate on different CPUs,
175 * performance is increased by ensuring that the completion
176 * path and the xmit path operate on different cache lines.
177 * This is particularly important if the xmit path is always
178 * executing on one CPU which is different from the completion
179 * path.  There is also a cache line for members which are
180 * read but not written on the fast path.
181 *
182 * @efx: The associated Efx NIC
183 * @queue: DMA queue number
184 * @channel: The associated channel
185 * @core_txq: The networking core TX queue structure
186 * @buffer: The software buffer ring
187 * @tsoh_page: Array of pages of TSO header buffers
188 * @txd: The hardware descriptor ring
189 * @ptr_mask: The size of the ring minus 1.
190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191 *	Size of the region is efx_piobuf_size.
192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193 * @initialised: Has hardware queue been initialised?
194 * @read_count: Current read pointer.
195 *	This is the number of buffers that have been removed from both rings.
196 * @old_write_count: The value of @write_count when last checked.
197 *	This is here for performance reasons.  The xmit path will
198 *	only get the up-to-date value of @write_count if this
199 *	variable indicates that the queue is empty.  This is to
200 *	avoid cache-line ping-pong between the xmit path and the
201 *	completion path.
202 * @merge_events: Number of TX merged completion events
203 * @insert_count: Current insert pointer
204 *	This is the number of buffers that have been added to the
205 *	software ring.
206 * @write_count: Current write pointer
207 *	This is the number of buffers that have been added to the
208 *	hardware ring.
209 * @old_read_count: The value of read_count when last checked.
210 *	This is here for performance reasons.  The xmit path will
211 *	only get the up-to-date value of read_count if this
212 *	variable indicates that the queue is full.  This is to
213 *	avoid cache-line ping-pong between the xmit path and the
214 *	completion path.
215 * @tso_bursts: Number of times TSO xmit invoked by kernel
216 * @tso_long_headers: Number of packets with headers too long for standard
217 *	blocks
218 * @tso_packets: Number of packets via the TSO xmit path
219 * @pushes: Number of times the TX push feature has been used
220 * @pio_packets: Number of times the TX PIO feature has been used
221 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
222 * @empty_read_count: If the completion path has seen the queue as empty
223 *	and the transmission path has not yet checked this, the value of
224 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
225 */
226struct efx_tx_queue {
227	/* Members which don't change on the fast path */
228	struct efx_nic *efx ____cacheline_aligned_in_smp;
229	unsigned queue;
230	struct efx_channel *channel;
231	struct netdev_queue *core_txq;
232	struct efx_tx_buffer *buffer;
233	struct efx_buffer *tsoh_page;
234	struct efx_special_buffer txd;
235	unsigned int ptr_mask;
236	void __iomem *piobuf;
237	unsigned int piobuf_offset;
238	bool initialised;
239
240	/* Members used mainly on the completion path */
241	unsigned int read_count ____cacheline_aligned_in_smp;
242	unsigned int old_write_count;
243	unsigned int merge_events;
244
245	/* Members used only on the xmit path */
246	unsigned int insert_count ____cacheline_aligned_in_smp;
247	unsigned int write_count;
248	unsigned int old_read_count;
249	unsigned int tso_bursts;
250	unsigned int tso_long_headers;
251	unsigned int tso_packets;
252	unsigned int pushes;
253	unsigned int pio_packets;
254	bool xmit_more_available;
255	/* Statistics to supplement MAC stats */
256	unsigned long tx_packets;
257
258	/* Members shared between paths and sometimes updated */
259	unsigned int empty_read_count ____cacheline_aligned_in_smp;
260#define EFX_EMPTY_COUNT_VALID 0x80000000
261	atomic_t flush_outstanding;
262};
263
264/**
265 * struct efx_rx_buffer - An Efx RX data buffer
266 * @dma_addr: DMA base address of the buffer
267 * @page: The associated page buffer.
268 *	Will be %NULL if the buffer slot is currently free.
269 * @page_offset: If pending: offset in @page of DMA base address.
270 *	If completed: offset in @page of Ethernet header.
271 * @len: If pending: length for DMA descriptor.
272 *	If completed: received length, excluding hash prefix.
273 * @flags: Flags for buffer and packet state.  These are only set on the
274 *	first buffer of a scattered packet.
275 */
276struct efx_rx_buffer {
277	dma_addr_t dma_addr;
278	struct page *page;
279	u16 page_offset;
280	u16 len;
281	u16 flags;
282};
283#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
284#define EFX_RX_PKT_CSUMMED	0x0002
285#define EFX_RX_PKT_DISCARD	0x0004
286#define EFX_RX_PKT_TCP		0x0040
287#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
288
289/**
290 * struct efx_rx_page_state - Page-based rx buffer state
291 *
292 * Inserted at the start of every page allocated for receive buffers.
293 * Used to facilitate sharing dma mappings between recycled rx buffers
294 * and those passed up to the kernel.
295 *
296 * @dma_addr: The dma address of this page.
297 */
298struct efx_rx_page_state {
299	dma_addr_t dma_addr;
300
301	unsigned int __pad[0] ____cacheline_aligned;
302};
303
304/**
305 * struct efx_rx_queue - An Efx RX queue
306 * @efx: The associated Efx NIC
307 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
308 *	is associated with a real RX queue.
309 * @buffer: The software buffer ring
310 * @rxd: The hardware descriptor ring
311 * @ptr_mask: The size of the ring minus 1.
312 * @refill_enabled: Enable refill whenever fill level is low
313 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
314 *	@rxq_flush_pending.
315 * @added_count: Number of buffers added to the receive queue.
316 * @notified_count: Number of buffers given to NIC (<= @added_count).
317 * @removed_count: Number of buffers removed from the receive queue.
318 * @scatter_n: Used by NIC specific receive code.
319 * @scatter_len: Used by NIC specific receive code.
320 * @page_ring: The ring to store DMA mapped pages for reuse.
321 * @page_add: Counter to calculate the write pointer for the recycle ring.
322 * @page_remove: Counter to calculate the read pointer for the recycle ring.
323 * @page_recycle_count: The number of pages that have been recycled.
324 * @page_recycle_failed: The number of pages that couldn't be recycled because
325 *      the kernel still held a reference to them.
326 * @page_recycle_full: The number of pages that were released because the
327 *      recycle ring was full.
328 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
329 * @max_fill: RX descriptor maximum fill level (<= ring size)
330 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
331 *	(<= @max_fill)
332 * @min_fill: RX descriptor minimum non-zero fill level.
333 *	This records the minimum fill level observed when a ring
334 *	refill was triggered.
335 * @recycle_count: RX buffer recycle counter.
336 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
337 */
338struct efx_rx_queue {
339	struct efx_nic *efx;
340	int core_index;
341	struct efx_rx_buffer *buffer;
342	struct efx_special_buffer rxd;
343	unsigned int ptr_mask;
344	bool refill_enabled;
345	bool flush_pending;
346
347	unsigned int added_count;
348	unsigned int notified_count;
349	unsigned int removed_count;
350	unsigned int scatter_n;
351	unsigned int scatter_len;
352	struct page **page_ring;
353	unsigned int page_add;
354	unsigned int page_remove;
355	unsigned int page_recycle_count;
356	unsigned int page_recycle_failed;
357	unsigned int page_recycle_full;
358	unsigned int page_ptr_mask;
359	unsigned int max_fill;
360	unsigned int fast_fill_trigger;
361	unsigned int min_fill;
362	unsigned int min_overfill;
363	unsigned int recycle_count;
364	struct timer_list slow_fill;
365	unsigned int slow_fill_count;
366	/* Statistics to supplement MAC stats */
367	unsigned long rx_packets;
368};
369
370enum efx_sync_events_state {
371	SYNC_EVENTS_DISABLED = 0,
372	SYNC_EVENTS_QUIESCENT,
373	SYNC_EVENTS_REQUESTED,
374	SYNC_EVENTS_VALID,
375};
376
377/**
378 * struct efx_channel - An Efx channel
379 *
380 * A channel comprises an event queue, at least one TX queue, at least
381 * one RX queue, and an associated tasklet for processing the event
382 * queue.
383 *
384 * @efx: Associated Efx NIC
385 * @channel: Channel instance number
386 * @type: Channel type definition
387 * @eventq_init: Event queue initialised flag
388 * @enabled: Channel enabled indicator
389 * @irq: IRQ number (MSI and MSI-X only)
390 * @irq_moderation: IRQ moderation value (in hardware ticks)
391 * @napi_dev: Net device used with NAPI
392 * @napi_str: NAPI control structure
393 * @state: state for NAPI vs busy polling
394 * @state_lock: lock protecting @state
395 * @eventq: Event queue buffer
396 * @eventq_mask: Event queue pointer mask
397 * @eventq_read_ptr: Event queue read pointer
398 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
399 * @irq_count: Number of IRQs since last adaptive moderation decision
400 * @irq_mod_score: IRQ moderation score
401 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
402 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
403 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
404 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
405 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
406 * @n_rx_overlength: Count of RX_OVERLENGTH errors
407 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
408 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
409 *	lack of descriptors
410 * @n_rx_merge_events: Number of RX merged completion events
411 * @n_rx_merge_packets: Number of RX packets completed by merged events
412 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
413 *	__efx_rx_packet(), or zero if there is none
414 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
415 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
416 * @rx_queue: RX queue for this channel
417 * @tx_queue: TX queues for this channel
418 * @sync_events_state: Current state of sync events on this channel
419 * @sync_timestamp_major: Major part of the last ptp sync event
420 * @sync_timestamp_minor: Minor part of the last ptp sync event
421 */
422struct efx_channel {
423	struct efx_nic *efx;
424	int channel;
425	const struct efx_channel_type *type;
426	bool eventq_init;
427	bool enabled;
428	int irq;
429	unsigned int irq_moderation;
430	struct net_device *napi_dev;
431	struct napi_struct napi_str;
432#ifdef CONFIG_NET_RX_BUSY_POLL
433	unsigned int state;
434	spinlock_t state_lock;
435#define EFX_CHANNEL_STATE_IDLE		0
436#define EFX_CHANNEL_STATE_NAPI		(1 << 0)  /* NAPI owns this channel */
437#define EFX_CHANNEL_STATE_POLL		(1 << 1)  /* poll owns this channel */
438#define EFX_CHANNEL_STATE_DISABLED	(1 << 2)  /* channel is disabled */
439#define EFX_CHANNEL_STATE_NAPI_YIELD	(1 << 3)  /* NAPI yielded this channel */
440#define EFX_CHANNEL_STATE_POLL_YIELD	(1 << 4)  /* poll yielded this channel */
441#define EFX_CHANNEL_OWNED \
442	(EFX_CHANNEL_STATE_NAPI | EFX_CHANNEL_STATE_POLL)
443#define EFX_CHANNEL_LOCKED \
444	(EFX_CHANNEL_OWNED | EFX_CHANNEL_STATE_DISABLED)
445#define EFX_CHANNEL_USER_PEND \
446	(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_POLL_YIELD)
447#endif /* CONFIG_NET_RX_BUSY_POLL */
448	struct efx_special_buffer eventq;
449	unsigned int eventq_mask;
450	unsigned int eventq_read_ptr;
451	int event_test_cpu;
452
453	unsigned int irq_count;
454	unsigned int irq_mod_score;
455#ifdef CONFIG_RFS_ACCEL
456	unsigned int rfs_filters_added;
457#endif
458
459	unsigned n_rx_tobe_disc;
460	unsigned n_rx_ip_hdr_chksum_err;
461	unsigned n_rx_tcp_udp_chksum_err;
462	unsigned n_rx_mcast_mismatch;
463	unsigned n_rx_frm_trunc;
464	unsigned n_rx_overlength;
465	unsigned n_skbuff_leaks;
466	unsigned int n_rx_nodesc_trunc;
467	unsigned int n_rx_merge_events;
468	unsigned int n_rx_merge_packets;
469
470	unsigned int rx_pkt_n_frags;
471	unsigned int rx_pkt_index;
472
473	struct efx_rx_queue rx_queue;
474	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
475
476	enum efx_sync_events_state sync_events_state;
477	u32 sync_timestamp_major;
478	u32 sync_timestamp_minor;
479};
480
481#ifdef CONFIG_NET_RX_BUSY_POLL
482static inline void efx_channel_init_lock(struct efx_channel *channel)
483{
484	spin_lock_init(&channel->state_lock);
485}
486
487/* Called from the device poll routine to get ownership of a channel. */
488static inline bool efx_channel_lock_napi(struct efx_channel *channel)
489{
490	bool rc = true;
491
492	spin_lock_bh(&channel->state_lock);
493	if (channel->state & EFX_CHANNEL_LOCKED) {
494		WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
495		channel->state |= EFX_CHANNEL_STATE_NAPI_YIELD;
496		rc = false;
497	} else {
498		/* we don't care if someone yielded */
499		channel->state = EFX_CHANNEL_STATE_NAPI;
500	}
501	spin_unlock_bh(&channel->state_lock);
502	return rc;
503}
504
505static inline void efx_channel_unlock_napi(struct efx_channel *channel)
506{
507	spin_lock_bh(&channel->state_lock);
508	WARN_ON(channel->state &
509		(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_YIELD));
510
511	channel->state &= EFX_CHANNEL_STATE_DISABLED;
512	spin_unlock_bh(&channel->state_lock);
513}
514
515/* Called from efx_busy_poll(). */
516static inline bool efx_channel_lock_poll(struct efx_channel *channel)
517{
518	bool rc = true;
519
520	spin_lock_bh(&channel->state_lock);
521	if ((channel->state & EFX_CHANNEL_LOCKED)) {
522		channel->state |= EFX_CHANNEL_STATE_POLL_YIELD;
523		rc = false;
524	} else {
525		/* preserve yield marks */
526		channel->state |= EFX_CHANNEL_STATE_POLL;
527	}
528	spin_unlock_bh(&channel->state_lock);
529	return rc;
530}
531
532/* Returns true if NAPI tried to get the channel while it was locked. */
533static inline void efx_channel_unlock_poll(struct efx_channel *channel)
534{
535	spin_lock_bh(&channel->state_lock);
536	WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
537
538	/* will reset state to idle, unless channel is disabled */
539	channel->state &= EFX_CHANNEL_STATE_DISABLED;
540	spin_unlock_bh(&channel->state_lock);
541}
542
543/* True if a socket is polling, even if it did not get the lock. */
544static inline bool efx_channel_busy_polling(struct efx_channel *channel)
545{
546	WARN_ON(!(channel->state & EFX_CHANNEL_OWNED));
547	return channel->state & EFX_CHANNEL_USER_PEND;
548}
549
550static inline void efx_channel_enable(struct efx_channel *channel)
551{
552	spin_lock_bh(&channel->state_lock);
553	channel->state = EFX_CHANNEL_STATE_IDLE;
554	spin_unlock_bh(&channel->state_lock);
555}
556
557/* False if the channel is currently owned. */
558static inline bool efx_channel_disable(struct efx_channel *channel)
559{
560	bool rc = true;
561
562	spin_lock_bh(&channel->state_lock);
563	if (channel->state & EFX_CHANNEL_OWNED)
564		rc = false;
565	channel->state |= EFX_CHANNEL_STATE_DISABLED;
566	spin_unlock_bh(&channel->state_lock);
567
568	return rc;
569}
570
571#else /* CONFIG_NET_RX_BUSY_POLL */
572
573static inline void efx_channel_init_lock(struct efx_channel *channel)
574{
575}
576
577static inline bool efx_channel_lock_napi(struct efx_channel *channel)
578{
579	return true;
580}
581
582static inline void efx_channel_unlock_napi(struct efx_channel *channel)
583{
584}
585
586static inline bool efx_channel_lock_poll(struct efx_channel *channel)
587{
588	return false;
589}
590
591static inline void efx_channel_unlock_poll(struct efx_channel *channel)
592{
593}
594
595static inline bool efx_channel_busy_polling(struct efx_channel *channel)
596{
597	return false;
598}
599
600static inline void efx_channel_enable(struct efx_channel *channel)
601{
602}
603
604static inline bool efx_channel_disable(struct efx_channel *channel)
605{
606	return true;
607}
608#endif /* CONFIG_NET_RX_BUSY_POLL */
609
610/**
611 * struct efx_msi_context - Context for each MSI
612 * @efx: The associated NIC
613 * @index: Index of the channel/IRQ
614 * @name: Name of the channel/IRQ
615 *
616 * Unlike &struct efx_channel, this is never reallocated and is always
617 * safe for the IRQ handler to access.
618 */
619struct efx_msi_context {
620	struct efx_nic *efx;
621	unsigned int index;
622	char name[IFNAMSIZ + 6];
623};
624
625/**
626 * struct efx_channel_type - distinguishes traffic and extra channels
627 * @handle_no_channel: Handle failure to allocate an extra channel
628 * @pre_probe: Set up extra state prior to initialisation
629 * @post_remove: Tear down extra state after finalisation, if allocated.
630 *	May be called on channels that have not been probed.
631 * @get_name: Generate the channel's name (used for its IRQ handler)
632 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
633 *	reallocation is not supported.
634 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
635 * @keep_eventq: Flag for whether event queue should be kept initialised
636 *	while the device is stopped
637 */
638struct efx_channel_type {
639	void (*handle_no_channel)(struct efx_nic *);
640	int (*pre_probe)(struct efx_channel *);
641	void (*post_remove)(struct efx_channel *);
642	void (*get_name)(struct efx_channel *, char *buf, size_t len);
643	struct efx_channel *(*copy)(const struct efx_channel *);
644	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
645	bool keep_eventq;
646};
647
648enum efx_led_mode {
649	EFX_LED_OFF	= 0,
650	EFX_LED_ON	= 1,
651	EFX_LED_DEFAULT	= 2
652};
653
654#define STRING_TABLE_LOOKUP(val, member) \
655	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
656
657extern const char *const efx_loopback_mode_names[];
658extern const unsigned int efx_loopback_mode_max;
659#define LOOPBACK_MODE(efx) \
660	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
661
662extern const char *const efx_reset_type_names[];
663extern const unsigned int efx_reset_type_max;
664#define RESET_TYPE(type) \
665	STRING_TABLE_LOOKUP(type, efx_reset_type)
666
667enum efx_int_mode {
668	/* Be careful if altering to correct macro below */
669	EFX_INT_MODE_MSIX = 0,
670	EFX_INT_MODE_MSI = 1,
671	EFX_INT_MODE_LEGACY = 2,
672	EFX_INT_MODE_MAX	/* Insert any new items before this */
673};
674#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
675
676enum nic_state {
677	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
678	STATE_READY = 1,	/* hardware ready and netdev registered */
679	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
680	STATE_RECOVERY = 3,	/* device recovering from PCI error */
681};
682
683/* Forward declaration */
684struct efx_nic;
685
686/* Pseudo bit-mask flow control field */
687#define EFX_FC_RX	FLOW_CTRL_RX
688#define EFX_FC_TX	FLOW_CTRL_TX
689#define EFX_FC_AUTO	4
690
691/**
692 * struct efx_link_state - Current state of the link
693 * @up: Link is up
694 * @fd: Link is full-duplex
695 * @fc: Actual flow control flags
696 * @speed: Link speed (Mbps)
697 */
698struct efx_link_state {
699	bool up;
700	bool fd;
701	u8 fc;
702	unsigned int speed;
703};
704
705static inline bool efx_link_state_equal(const struct efx_link_state *left,
706					const struct efx_link_state *right)
707{
708	return left->up == right->up && left->fd == right->fd &&
709		left->fc == right->fc && left->speed == right->speed;
710}
711
712/**
713 * struct efx_phy_operations - Efx PHY operations table
714 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
715 *	efx->loopback_modes.
716 * @init: Initialise PHY
717 * @fini: Shut down PHY
718 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
719 * @poll: Update @link_state and report whether it changed.
720 *	Serialised by the mac_lock.
721 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
722 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
723 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
724 *	(only needed where AN bit is set in mmds)
725 * @test_alive: Test that PHY is 'alive' (online)
726 * @test_name: Get the name of a PHY-specific test/result
727 * @run_tests: Run tests and record results as appropriate (offline).
728 *	Flags are the ethtool tests flags.
729 */
730struct efx_phy_operations {
731	int (*probe) (struct efx_nic *efx);
732	int (*init) (struct efx_nic *efx);
733	void (*fini) (struct efx_nic *efx);
734	void (*remove) (struct efx_nic *efx);
735	int (*reconfigure) (struct efx_nic *efx);
736	bool (*poll) (struct efx_nic *efx);
737	void (*get_settings) (struct efx_nic *efx,
738			      struct ethtool_cmd *ecmd);
739	int (*set_settings) (struct efx_nic *efx,
740			     struct ethtool_cmd *ecmd);
741	void (*set_npage_adv) (struct efx_nic *efx, u32);
742	int (*test_alive) (struct efx_nic *efx);
743	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
744	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
745	int (*get_module_eeprom) (struct efx_nic *efx,
746			       struct ethtool_eeprom *ee,
747			       u8 *data);
748	int (*get_module_info) (struct efx_nic *efx,
749				struct ethtool_modinfo *modinfo);
750};
751
752/**
753 * enum efx_phy_mode - PHY operating mode flags
754 * @PHY_MODE_NORMAL: on and should pass traffic
755 * @PHY_MODE_TX_DISABLED: on with TX disabled
756 * @PHY_MODE_LOW_POWER: set to low power through MDIO
757 * @PHY_MODE_OFF: switched off through external control
758 * @PHY_MODE_SPECIAL: on but will not pass traffic
759 */
760enum efx_phy_mode {
761	PHY_MODE_NORMAL		= 0,
762	PHY_MODE_TX_DISABLED	= 1,
763	PHY_MODE_LOW_POWER	= 2,
764	PHY_MODE_OFF		= 4,
765	PHY_MODE_SPECIAL	= 8,
766};
767
768static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
769{
770	return !!(mode & ~PHY_MODE_TX_DISABLED);
771}
772
773/**
774 * struct efx_hw_stat_desc - Description of a hardware statistic
775 * @name: Name of the statistic as visible through ethtool, or %NULL if
776 *	it should not be exposed
777 * @dma_width: Width in bits (0 for non-DMA statistics)
778 * @offset: Offset within stats (ignored for non-DMA statistics)
779 */
780struct efx_hw_stat_desc {
781	const char *name;
782	u16 dma_width;
783	u16 offset;
784};
785
786/* Number of bits used in a multicast filter hash address */
787#define EFX_MCAST_HASH_BITS 8
788
789/* Number of (single-bit) entries in a multicast filter hash */
790#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
791
792/* An Efx multicast filter hash */
793union efx_multicast_hash {
794	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
795	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
796};
797
798struct efx_vf;
799struct vfdi_status;
800
801/**
802 * struct efx_nic - an Efx NIC
803 * @name: Device name (net device name or bus id before net device registered)
804 * @pci_dev: The PCI device
805 * @node: List node for maintaning primary/secondary function lists
806 * @primary: &struct efx_nic instance for the primary function of this
807 *	controller.  May be the same structure, and may be %NULL if no
808 *	primary function is bound.  Serialised by rtnl_lock.
809 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
810 *	functions of the controller, if this is for the primary function.
811 *	Serialised by rtnl_lock.
812 * @type: Controller type attributes
813 * @legacy_irq: IRQ number
814 * @workqueue: Workqueue for port reconfigures and the HW monitor.
815 *	Work items do not hold and must not acquire RTNL.
816 * @workqueue_name: Name of workqueue
817 * @reset_work: Scheduled reset workitem
818 * @membase_phys: Memory BAR value as physical address
819 * @membase: Memory BAR value
820 * @interrupt_mode: Interrupt mode
821 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
822 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
823 * @irq_rx_moderation: IRQ moderation time for RX event queues
824 * @msg_enable: Log message enable flags
825 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
826 * @reset_pending: Bitmask for pending resets
827 * @tx_queue: TX DMA queues
828 * @rx_queue: RX DMA queues
829 * @channel: Channels
830 * @msi_context: Context for each MSI
831 * @extra_channel_types: Types of extra (non-traffic) channels that
832 *	should be allocated for this NIC
833 * @rxq_entries: Size of receive queues requested by user.
834 * @txq_entries: Size of transmit queues requested by user.
835 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
836 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
837 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
838 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
839 * @sram_lim_qw: Qword address limit of SRAM
840 * @next_buffer_table: First available buffer table id
841 * @n_channels: Number of channels in use
842 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
843 * @n_tx_channels: Number of channels used for TX
844 * @rx_ip_align: RX DMA address offset to have IP header aligned in
845 *	in accordance with NET_IP_ALIGN
846 * @rx_dma_len: Current maximum RX DMA length
847 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
848 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
849 *	for use in sk_buff::truesize
850 * @rx_prefix_size: Size of RX prefix before packet data
851 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
852 *	(valid only if @rx_prefix_size != 0; always negative)
853 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
854 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
855 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
856 *	(valid only if channel->sync_timestamps_enabled; always negative)
857 * @rx_hash_key: Toeplitz hash key for RSS
858 * @rx_indir_table: Indirection table for RSS
859 * @rx_scatter: Scatter mode enabled for receives
860 * @int_error_count: Number of internal errors seen recently
861 * @int_error_expire: Time at which error count will be expired
862 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
863 *	acknowledge but do nothing else.
864 * @irq_status: Interrupt status buffer
865 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
866 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
867 * @selftest_work: Work item for asynchronous self-test
868 * @mtd_list: List of MTDs attached to the NIC
869 * @nic_data: Hardware dependent state
870 * @mcdi: Management-Controller-to-Driver Interface state
871 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
872 *	efx_monitor() and efx_reconfigure_port()
873 * @port_enabled: Port enabled indicator.
874 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
875 *	efx_mac_work() with kernel interfaces. Safe to read under any
876 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
877 *	be held to modify it.
878 * @port_initialized: Port initialized?
879 * @net_dev: Operating system network device. Consider holding the rtnl lock
880 * @stats_buffer: DMA buffer for statistics
881 * @phy_type: PHY type
882 * @phy_op: PHY interface
883 * @phy_data: PHY private data (including PHY-specific stats)
884 * @mdio: PHY MDIO interface
885 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
886 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
887 * @link_advertising: Autonegotiation advertising flags
888 * @link_state: Current state of the link
889 * @n_link_state_changes: Number of times the link has changed state
890 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
891 *	Protected by @mac_lock.
892 * @multicast_hash: Multicast hash table for Falcon-arch.
893 *	Protected by @mac_lock.
894 * @wanted_fc: Wanted flow control flags
895 * @fc_disable: When non-zero flow control is disabled. Typically used to
896 *	ensure that network back pressure doesn't delay dma queue flushes.
897 *	Serialised by the rtnl lock.
898 * @mac_work: Work item for changing MAC promiscuity and multicast hash
899 * @loopback_mode: Loopback status
900 * @loopback_modes: Supported loopback mode bitmask
901 * @loopback_selftest: Offline self-test private state
902 * @filter_lock: Filter table lock
903 * @filter_state: Architecture-dependent filter table state
904 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
905 *	indexed by filter ID
906 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
907 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
908 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
909 *	Decremented when the efx_flush_rx_queue() is called.
910 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
911 *	completed (either success or failure). Not used when MCDI is used to
912 *	flush receive queues.
913 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
914 * @vf: Array of &struct efx_vf objects.
915 * @vf_count: Number of VFs intended to be enabled.
916 * @vf_init_count: Number of VFs that have been fully initialised.
917 * @vi_scale: log2 number of vnics per VF.
918 * @ptp_data: PTP state data
919 * @vpd_sn: Serial number read from VPD
920 * @monitor_work: Hardware monitor workitem
921 * @biu_lock: BIU (bus interface unit) lock
922 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
923 *	field is used by efx_test_interrupts() to verify that an
924 *	interrupt has occurred.
925 * @stats_lock: Statistics update lock. Must be held when calling
926 *	efx_nic_type::{update,start,stop}_stats.
927 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
928 *
929 * This is stored in the private area of the &struct net_device.
930 */
931struct efx_nic {
932	/* The following fields should be written very rarely */
933
934	char name[IFNAMSIZ];
935	struct list_head node;
936	struct efx_nic *primary;
937	struct list_head secondary_list;
938	struct pci_dev *pci_dev;
939	unsigned int port_num;
940	const struct efx_nic_type *type;
941	int legacy_irq;
942	bool eeh_disabled_legacy_irq;
943	struct workqueue_struct *workqueue;
944	char workqueue_name[16];
945	struct work_struct reset_work;
946	resource_size_t membase_phys;
947	void __iomem *membase;
948
949	enum efx_int_mode interrupt_mode;
950	unsigned int timer_quantum_ns;
951	bool irq_rx_adaptive;
952	unsigned int irq_rx_moderation;
953	u32 msg_enable;
954
955	enum nic_state state;
956	unsigned long reset_pending;
957
958	struct efx_channel *channel[EFX_MAX_CHANNELS];
959	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
960	const struct efx_channel_type *
961	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
962
963	unsigned rxq_entries;
964	unsigned txq_entries;
965	unsigned int txq_stop_thresh;
966	unsigned int txq_wake_thresh;
967
968	unsigned tx_dc_base;
969	unsigned rx_dc_base;
970	unsigned sram_lim_qw;
971	unsigned next_buffer_table;
972
973	unsigned int max_channels;
974	unsigned n_channels;
975	unsigned n_rx_channels;
976	unsigned rss_spread;
977	unsigned tx_channel_offset;
978	unsigned n_tx_channels;
979	unsigned int rx_ip_align;
980	unsigned int rx_dma_len;
981	unsigned int rx_buffer_order;
982	unsigned int rx_buffer_truesize;
983	unsigned int rx_page_buf_step;
984	unsigned int rx_bufs_per_page;
985	unsigned int rx_pages_per_batch;
986	unsigned int rx_prefix_size;
987	int rx_packet_hash_offset;
988	int rx_packet_len_offset;
989	int rx_packet_ts_offset;
990	u8 rx_hash_key[40];
991	u32 rx_indir_table[128];
992	bool rx_scatter;
993
994	unsigned int_error_count;
995	unsigned long int_error_expire;
996
997	bool irq_soft_enabled;
998	struct efx_buffer irq_status;
999	unsigned irq_zero_count;
1000	unsigned irq_level;
1001	struct delayed_work selftest_work;
1002
1003#ifdef CONFIG_SFC_MTD
1004	struct list_head mtd_list;
1005#endif
1006
1007	void *nic_data;
1008	struct efx_mcdi_data *mcdi;
1009
1010	struct mutex mac_lock;
1011	struct work_struct mac_work;
1012	bool port_enabled;
1013
1014	bool mc_bist_for_other_fn;
1015	bool port_initialized;
1016	struct net_device *net_dev;
1017
1018	struct efx_buffer stats_buffer;
1019	u64 rx_nodesc_drops_total;
1020	u64 rx_nodesc_drops_while_down;
1021	bool rx_nodesc_drops_prev_state;
1022
1023	unsigned int phy_type;
1024	const struct efx_phy_operations *phy_op;
1025	void *phy_data;
1026	struct mdio_if_info mdio;
1027	unsigned int mdio_bus;
1028	enum efx_phy_mode phy_mode;
1029
1030	u32 link_advertising;
1031	struct efx_link_state link_state;
1032	unsigned int n_link_state_changes;
1033
1034	bool unicast_filter;
1035	union efx_multicast_hash multicast_hash;
1036	u8 wanted_fc;
1037	unsigned fc_disable;
1038
1039	atomic_t rx_reset;
1040	enum efx_loopback_mode loopback_mode;
1041	u64 loopback_modes;
1042
1043	void *loopback_selftest;
1044
1045	spinlock_t filter_lock;
1046	void *filter_state;
1047#ifdef CONFIG_RFS_ACCEL
1048	u32 *rps_flow_id;
1049	unsigned int rps_expire_index;
1050#endif
1051
1052	atomic_t active_queues;
1053	atomic_t rxq_flush_pending;
1054	atomic_t rxq_flush_outstanding;
1055	wait_queue_head_t flush_wq;
1056
1057#ifdef CONFIG_SFC_SRIOV
1058	struct efx_vf *vf;
1059	unsigned vf_count;
1060	unsigned vf_init_count;
1061	unsigned vi_scale;
1062#endif
1063
1064	struct efx_ptp_data *ptp_data;
1065
1066	char *vpd_sn;
1067
1068	/* The following fields may be written more often */
1069
1070	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1071	spinlock_t biu_lock;
1072	int last_irq_cpu;
1073	spinlock_t stats_lock;
1074	atomic_t n_rx_noskb_drops;
1075};
1076
1077static inline int efx_dev_registered(struct efx_nic *efx)
1078{
1079	return efx->net_dev->reg_state == NETREG_REGISTERED;
1080}
1081
1082static inline unsigned int efx_port_num(struct efx_nic *efx)
1083{
1084	return efx->port_num;
1085}
1086
1087struct efx_mtd_partition {
1088	struct list_head node;
1089	struct mtd_info mtd;
1090	const char *dev_type_name;
1091	const char *type_name;
1092	char name[IFNAMSIZ + 20];
1093};
1094
1095/**
1096 * struct efx_nic_type - Efx device type definition
1097 * @mem_map_size: Get memory BAR mapped size
1098 * @probe: Probe the controller
1099 * @remove: Free resources allocated by probe()
1100 * @init: Initialise the controller
1101 * @dimension_resources: Dimension controller resources (buffer table,
1102 *	and VIs once the available interrupt resources are clear)
1103 * @fini: Shut down the controller
1104 * @monitor: Periodic function for polling link state and hardware monitor
1105 * @map_reset_reason: Map ethtool reset reason to a reset method
1106 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1107 * @reset: Reset the controller hardware and possibly the PHY.  This will
1108 *	be called while the controller is uninitialised.
1109 * @probe_port: Probe the MAC and PHY
1110 * @remove_port: Free resources allocated by probe_port()
1111 * @handle_global_event: Handle a "global" event (may be %NULL)
1112 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1113 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1114 *	(for Falcon architecture)
1115 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1116 *	architecture)
1117 * @prepare_flr: Prepare for an FLR
1118 * @finish_flr: Clean up after an FLR
1119 * @describe_stats: Describe statistics for ethtool
1120 * @update_stats: Update statistics not provided by event handling.
1121 *	Either argument may be %NULL.
1122 * @start_stats: Start the regular fetching of statistics
1123 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1124 * @stop_stats: Stop the regular fetching of statistics
1125 * @set_id_led: Set state of identifying LED or revert to automatic function
1126 * @push_irq_moderation: Apply interrupt moderation value
1127 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1128 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1129 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1130 *	to the hardware.  Serialised by the mac_lock.
1131 * @check_mac_fault: Check MAC fault state. True if fault present.
1132 * @get_wol: Get WoL configuration from driver state
1133 * @set_wol: Push WoL configuration to the NIC
1134 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1135 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1136 *	expected to reset the NIC.
1137 * @test_nvram: Test validity of NVRAM contents
1138 * @mcdi_request: Send an MCDI request with the given header and SDU.
1139 *	The SDU length may be any value from 0 up to the protocol-
1140 *	defined maximum, but its buffer will be padded to a multiple
1141 *	of 4 bytes.
1142 * @mcdi_poll_response: Test whether an MCDI response is available.
1143 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1144 *	be a multiple of 4.  The length may not be, but the buffer
1145 *	will be padded so it is safe to round up.
1146 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1147 *	return an appropriate error code for aborting any current
1148 *	request; otherwise return 0.
1149 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1150 *	be separately enabled after this.
1151 * @irq_test_generate: Generate a test IRQ
1152 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1153 *	queue must be separately disabled before this.
1154 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1155 *	a pointer to the &struct efx_msi_context for the channel.
1156 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1157 *	is a pointer to the &struct efx_nic.
1158 * @tx_probe: Allocate resources for TX queue
1159 * @tx_init: Initialise TX queue on the NIC
1160 * @tx_remove: Free resources for TX queue
1161 * @tx_write: Write TX descriptors and doorbell
1162 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1163 * @rx_probe: Allocate resources for RX queue
1164 * @rx_init: Initialise RX queue on the NIC
1165 * @rx_remove: Free resources for RX queue
1166 * @rx_write: Write RX descriptors and doorbell
1167 * @rx_defer_refill: Generate a refill reminder event
1168 * @ev_probe: Allocate resources for event queue
1169 * @ev_init: Initialise event queue on the NIC
1170 * @ev_fini: Deinitialise event queue on the NIC
1171 * @ev_remove: Free resources for event queue
1172 * @ev_process: Process events for a queue, up to the given NAPI quota
1173 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1174 * @ev_test_generate: Generate a test event
1175 * @filter_table_probe: Probe filter capabilities and set up filter software state
1176 * @filter_table_restore: Restore filters removed from hardware
1177 * @filter_table_remove: Remove filters from hardware and tear down software state
1178 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1179 * @filter_insert: add or replace a filter
1180 * @filter_remove_safe: remove a filter by ID, carefully
1181 * @filter_get_safe: retrieve a filter by ID, carefully
1182 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1183 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1184 * @filter_count_rx_used: Get the number of filters in use at a given priority
1185 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1186 * @filter_get_rx_ids: Get list of RX filters at a given priority
1187 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1188 *	atomic.  The hardware change may be asynchronous but should
1189 *	not be delayed for long.  It may fail if this can't be done
1190 *	atomically.
1191 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1192 *	This must check whether the specified table entry is used by RFS
1193 *	and that rps_may_expire_flow() returns true for it.
1194 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1195 *	 using efx_mtd_add()
1196 * @mtd_rename: Set an MTD partition name using the net device name
1197 * @mtd_read: Read from an MTD partition
1198 * @mtd_erase: Erase part of an MTD partition
1199 * @mtd_write: Write to an MTD partition
1200 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1201 *	also notifies the driver that a writer has finished using this
1202 *	partition.
1203 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1204 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1205 *	timestamping, possibly only temporarily for the purposes of a reset.
1206 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1207 *	and tx_type will already have been validated but this operation
1208 *	must validate and update rx_filter.
1209 * @revision: Hardware architecture revision
1210 * @txd_ptr_tbl_base: TX descriptor ring base address
1211 * @rxd_ptr_tbl_base: RX descriptor ring base address
1212 * @buf_tbl_base: Buffer table base address
1213 * @evq_ptr_tbl_base: Event queue pointer table base address
1214 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1215 * @max_dma_mask: Maximum possible DMA mask
1216 * @rx_prefix_size: Size of RX prefix before packet data
1217 * @rx_hash_offset: Offset of RX flow hash within prefix
1218 * @rx_ts_offset: Offset of timestamp within prefix
1219 * @rx_buffer_padding: Size of padding at end of RX packet
1220 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1221 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1222 * @max_interrupt_mode: Highest capability interrupt mode supported
1223 *	from &enum efx_init_mode.
1224 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1225 * @offload_features: net_device feature flags for protocol offload
1226 *	features implemented in hardware
1227 * @mcdi_max_ver: Maximum MCDI version supported
1228 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1229 */
1230struct efx_nic_type {
1231	unsigned int (*mem_map_size)(struct efx_nic *efx);
1232	int (*probe)(struct efx_nic *efx);
1233	void (*remove)(struct efx_nic *efx);
1234	int (*init)(struct efx_nic *efx);
1235	int (*dimension_resources)(struct efx_nic *efx);
1236	void (*fini)(struct efx_nic *efx);
1237	void (*monitor)(struct efx_nic *efx);
1238	enum reset_type (*map_reset_reason)(enum reset_type reason);
1239	int (*map_reset_flags)(u32 *flags);
1240	int (*reset)(struct efx_nic *efx, enum reset_type method);
1241	int (*probe_port)(struct efx_nic *efx);
1242	void (*remove_port)(struct efx_nic *efx);
1243	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1244	int (*fini_dmaq)(struct efx_nic *efx);
1245	void (*prepare_flush)(struct efx_nic *efx);
1246	void (*finish_flush)(struct efx_nic *efx);
1247	void (*prepare_flr)(struct efx_nic *efx);
1248	void (*finish_flr)(struct efx_nic *efx);
1249	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1250	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1251			       struct rtnl_link_stats64 *core_stats);
1252	void (*start_stats)(struct efx_nic *efx);
1253	void (*pull_stats)(struct efx_nic *efx);
1254	void (*stop_stats)(struct efx_nic *efx);
1255	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1256	void (*push_irq_moderation)(struct efx_channel *channel);
1257	int (*reconfigure_port)(struct efx_nic *efx);
1258	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1259	int (*reconfigure_mac)(struct efx_nic *efx);
1260	bool (*check_mac_fault)(struct efx_nic *efx);
1261	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1262	int (*set_wol)(struct efx_nic *efx, u32 type);
1263	void (*resume_wol)(struct efx_nic *efx);
1264	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1265	int (*test_nvram)(struct efx_nic *efx);
1266	void (*mcdi_request)(struct efx_nic *efx,
1267			     const efx_dword_t *hdr, size_t hdr_len,
1268			     const efx_dword_t *sdu, size_t sdu_len);
1269	bool (*mcdi_poll_response)(struct efx_nic *efx);
1270	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1271				   size_t pdu_offset, size_t pdu_len);
1272	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1273	void (*irq_enable_master)(struct efx_nic *efx);
1274	void (*irq_test_generate)(struct efx_nic *efx);
1275	void (*irq_disable_non_ev)(struct efx_nic *efx);
1276	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1277	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1278	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1279	void (*tx_init)(struct efx_tx_queue *tx_queue);
1280	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1281	void (*tx_write)(struct efx_tx_queue *tx_queue);
1282	void (*rx_push_rss_config)(struct efx_nic *efx);
1283	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1284	void (*rx_init)(struct efx_rx_queue *rx_queue);
1285	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1286	void (*rx_write)(struct efx_rx_queue *rx_queue);
1287	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1288	int (*ev_probe)(struct efx_channel *channel);
1289	int (*ev_init)(struct efx_channel *channel);
1290	void (*ev_fini)(struct efx_channel *channel);
1291	void (*ev_remove)(struct efx_channel *channel);
1292	int (*ev_process)(struct efx_channel *channel, int quota);
1293	void (*ev_read_ack)(struct efx_channel *channel);
1294	void (*ev_test_generate)(struct efx_channel *channel);
1295	int (*filter_table_probe)(struct efx_nic *efx);
1296	void (*filter_table_restore)(struct efx_nic *efx);
1297	void (*filter_table_remove)(struct efx_nic *efx);
1298	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1299	s32 (*filter_insert)(struct efx_nic *efx,
1300			     struct efx_filter_spec *spec, bool replace);
1301	int (*filter_remove_safe)(struct efx_nic *efx,
1302				  enum efx_filter_priority priority,
1303				  u32 filter_id);
1304	int (*filter_get_safe)(struct efx_nic *efx,
1305			       enum efx_filter_priority priority,
1306			       u32 filter_id, struct efx_filter_spec *);
1307	int (*filter_clear_rx)(struct efx_nic *efx,
1308			       enum efx_filter_priority priority);
1309	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1310				    enum efx_filter_priority priority);
1311	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1312	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1313				 enum efx_filter_priority priority,
1314				 u32 *buf, u32 size);
1315#ifdef CONFIG_RFS_ACCEL
1316	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1317				 struct efx_filter_spec *spec);
1318	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1319				      unsigned int index);
1320#endif
1321#ifdef CONFIG_SFC_MTD
1322	int (*mtd_probe)(struct efx_nic *efx);
1323	void (*mtd_rename)(struct efx_mtd_partition *part);
1324	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1325			size_t *retlen, u8 *buffer);
1326	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1327	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1328			 size_t *retlen, const u8 *buffer);
1329	int (*mtd_sync)(struct mtd_info *mtd);
1330#endif
1331	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1332	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1333	int (*ptp_set_ts_config)(struct efx_nic *efx,
1334				 struct hwtstamp_config *init);
1335	int (*sriov_init)(struct efx_nic *efx);
1336	void (*sriov_fini)(struct efx_nic *efx);
1337	void (*sriov_mac_address_changed)(struct efx_nic *efx);
1338	bool (*sriov_wanted)(struct efx_nic *efx);
1339	void (*sriov_reset)(struct efx_nic *efx);
1340
1341	int revision;
1342	unsigned int txd_ptr_tbl_base;
1343	unsigned int rxd_ptr_tbl_base;
1344	unsigned int buf_tbl_base;
1345	unsigned int evq_ptr_tbl_base;
1346	unsigned int evq_rptr_tbl_base;
1347	u64 max_dma_mask;
1348	unsigned int rx_prefix_size;
1349	unsigned int rx_hash_offset;
1350	unsigned int rx_ts_offset;
1351	unsigned int rx_buffer_padding;
1352	bool can_rx_scatter;
1353	bool always_rx_scatter;
1354	unsigned int max_interrupt_mode;
1355	unsigned int timer_period_max;
1356	netdev_features_t offload_features;
1357	int mcdi_max_ver;
1358	unsigned int max_rx_ip_filters;
1359	u32 hwtstamp_filters;
1360};
1361
1362/**************************************************************************
1363 *
1364 * Prototypes and inline functions
1365 *
1366 *************************************************************************/
1367
1368static inline struct efx_channel *
1369efx_get_channel(struct efx_nic *efx, unsigned index)
1370{
1371	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1372	return efx->channel[index];
1373}
1374
1375/* Iterate over all used channels */
1376#define efx_for_each_channel(_channel, _efx)				\
1377	for (_channel = (_efx)->channel[0];				\
1378	     _channel;							\
1379	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1380		     (_efx)->channel[_channel->channel + 1] : NULL)
1381
1382/* Iterate over all used channels in reverse */
1383#define efx_for_each_channel_rev(_channel, _efx)			\
1384	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1385	     _channel;							\
1386	     _channel = _channel->channel ?				\
1387		     (_efx)->channel[_channel->channel - 1] : NULL)
1388
1389static inline struct efx_tx_queue *
1390efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1391{
1392	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1393			    type >= EFX_TXQ_TYPES);
1394	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1395}
1396
1397static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1398{
1399	return channel->channel - channel->efx->tx_channel_offset <
1400		channel->efx->n_tx_channels;
1401}
1402
1403static inline struct efx_tx_queue *
1404efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1405{
1406	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1407			    type >= EFX_TXQ_TYPES);
1408	return &channel->tx_queue[type];
1409}
1410
1411static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1412{
1413	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1414		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1415}
1416
1417/* Iterate over all TX queues belonging to a channel */
1418#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1419	if (!efx_channel_has_tx_queues(_channel))			\
1420		;							\
1421	else								\
1422		for (_tx_queue = (_channel)->tx_queue;			\
1423		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1424			     efx_tx_queue_used(_tx_queue);		\
1425		     _tx_queue++)
1426
1427/* Iterate over all possible TX queues belonging to a channel */
1428#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1429	if (!efx_channel_has_tx_queues(_channel))			\
1430		;							\
1431	else								\
1432		for (_tx_queue = (_channel)->tx_queue;			\
1433		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1434		     _tx_queue++)
1435
1436static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1437{
1438	return channel->rx_queue.core_index >= 0;
1439}
1440
1441static inline struct efx_rx_queue *
1442efx_channel_get_rx_queue(struct efx_channel *channel)
1443{
1444	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1445	return &channel->rx_queue;
1446}
1447
1448/* Iterate over all RX queues belonging to a channel */
1449#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1450	if (!efx_channel_has_rx_queue(_channel))			\
1451		;							\
1452	else								\
1453		for (_rx_queue = &(_channel)->rx_queue;			\
1454		     _rx_queue;						\
1455		     _rx_queue = NULL)
1456
1457static inline struct efx_channel *
1458efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1459{
1460	return container_of(rx_queue, struct efx_channel, rx_queue);
1461}
1462
1463static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1464{
1465	return efx_rx_queue_channel(rx_queue)->channel;
1466}
1467
1468/* Returns a pointer to the specified receive buffer in the RX
1469 * descriptor queue.
1470 */
1471static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1472						  unsigned int index)
1473{
1474	return &rx_queue->buffer[index];
1475}
1476
1477/**
1478 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1479 *
1480 * This calculates the maximum frame length that will be used for a
1481 * given MTU.  The frame length will be equal to the MTU plus a
1482 * constant amount of header space and padding.  This is the quantity
1483 * that the net driver will program into the MAC as the maximum frame
1484 * length.
1485 *
1486 * The 10G MAC requires 8-byte alignment on the frame
1487 * length, so we round up to the nearest 8.
1488 *
1489 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1490 * XGMII cycle).  If the frame length reaches the maximum value in the
1491 * same cycle, the XMAC can miss the IPG altogether.  We work around
1492 * this by adding a further 16 bytes.
1493 */
1494#define EFX_MAX_FRAME_LEN(mtu) \
1495	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1496
1497static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1498{
1499	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1500}
1501static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1502{
1503	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1504}
1505
1506#endif /* EFX_NET_DRIVER_H */
1507