1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 *  - Add Axi Fifo support.
16 *  - Factor out Axi DMA code into separate driver.
17 *  - Test and fix basic multicast filtering.
18 *  - Add support for extended multicast filtering.
19 *  - Test basic VLAN support.
20 *  - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of_mdio.h>
28#include <linux/of_platform.h>
29#include <linux/of_irq.h>
30#include <linux/of_address.h>
31#include <linux/skbuff.h>
32#include <linux/spinlock.h>
33#include <linux/phy.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36
37#include "xilinx_axienet.h"
38
39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40#define TX_BD_NUM		64
41#define RX_BD_NUM		128
42
43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44#define DRIVER_NAME		"xaxienet"
45#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
46#define DRIVER_VERSION		"1.00a"
47
48#define AXIENET_REGS_N		32
49
50/* Match table for of_platform binding */
51static const struct of_device_id axienet_of_match[] = {
52	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
53	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
54	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
55	{},
56};
57
58MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60/* Option table for setting up Axi Ethernet hardware options */
61static struct axienet_option axienet_options[] = {
62	/* Turn on jumbo packet support for both Rx and Tx */
63	{
64		.opt = XAE_OPTION_JUMBO,
65		.reg = XAE_TC_OFFSET,
66		.m_or = XAE_TC_JUM_MASK,
67	}, {
68		.opt = XAE_OPTION_JUMBO,
69		.reg = XAE_RCW1_OFFSET,
70		.m_or = XAE_RCW1_JUM_MASK,
71	}, { /* Turn on VLAN packet support for both Rx and Tx */
72		.opt = XAE_OPTION_VLAN,
73		.reg = XAE_TC_OFFSET,
74		.m_or = XAE_TC_VLAN_MASK,
75	}, {
76		.opt = XAE_OPTION_VLAN,
77		.reg = XAE_RCW1_OFFSET,
78		.m_or = XAE_RCW1_VLAN_MASK,
79	}, { /* Turn on FCS stripping on receive packets */
80		.opt = XAE_OPTION_FCS_STRIP,
81		.reg = XAE_RCW1_OFFSET,
82		.m_or = XAE_RCW1_FCS_MASK,
83	}, { /* Turn on FCS insertion on transmit packets */
84		.opt = XAE_OPTION_FCS_INSERT,
85		.reg = XAE_TC_OFFSET,
86		.m_or = XAE_TC_FCS_MASK,
87	}, { /* Turn off length/type field checking on receive packets */
88		.opt = XAE_OPTION_LENTYPE_ERR,
89		.reg = XAE_RCW1_OFFSET,
90		.m_or = XAE_RCW1_LT_DIS_MASK,
91	}, { /* Turn on Rx flow control */
92		.opt = XAE_OPTION_FLOW_CONTROL,
93		.reg = XAE_FCC_OFFSET,
94		.m_or = XAE_FCC_FCRX_MASK,
95	}, { /* Turn on Tx flow control */
96		.opt = XAE_OPTION_FLOW_CONTROL,
97		.reg = XAE_FCC_OFFSET,
98		.m_or = XAE_FCC_FCTX_MASK,
99	}, { /* Turn on promiscuous frame filtering */
100		.opt = XAE_OPTION_PROMISC,
101		.reg = XAE_FMI_OFFSET,
102		.m_or = XAE_FMI_PM_MASK,
103	}, { /* Enable transmitter */
104		.opt = XAE_OPTION_TXEN,
105		.reg = XAE_TC_OFFSET,
106		.m_or = XAE_TC_TX_MASK,
107	}, { /* Enable receiver */
108		.opt = XAE_OPTION_RXEN,
109		.reg = XAE_RCW1_OFFSET,
110		.m_or = XAE_RCW1_RX_MASK,
111	},
112	{}
113};
114
115/**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp:		Pointer to axienet local structure
118 * @reg:	Address offset from the base address of the Axi DMA core
119 *
120 * returns: The contents of the Axi DMA register
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125{
126	return in_be32(lp->dma_regs + reg);
127}
128
129/**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp:		Pointer to axienet local structure
132 * @reg:	Address offset from the base address of the Axi DMA core
133 * @value:	Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138static inline void axienet_dma_out32(struct axienet_local *lp,
139				     off_t reg, u32 value)
140{
141	out_be32((lp->dma_regs + reg), value);
142}
143
144/**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev:	Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152static void axienet_dma_bd_release(struct net_device *ndev)
153{
154	int i;
155	struct axienet_local *lp = netdev_priv(ndev);
156
157	for (i = 0; i < RX_BD_NUM; i++) {
158		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159				 lp->max_frm_size, DMA_FROM_DEVICE);
160		dev_kfree_skb((struct sk_buff *)
161			      (lp->rx_bd_v[i].sw_id_offset));
162	}
163
164	if (lp->rx_bd_v) {
165		dma_free_coherent(ndev->dev.parent,
166				  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167				  lp->rx_bd_v,
168				  lp->rx_bd_p);
169	}
170	if (lp->tx_bd_v) {
171		dma_free_coherent(ndev->dev.parent,
172				  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173				  lp->tx_bd_v,
174				  lp->tx_bd_p);
175	}
176}
177
178/**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev:	Pointer to the net_device structure
181 *
182 * returns: 0, on success
183 *	    -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191	u32 cr;
192	int i;
193	struct sk_buff *skb;
194	struct axienet_local *lp = netdev_priv(ndev);
195
196	/* Reset the indexes which are used for accessing the BDs */
197	lp->tx_bd_ci = 0;
198	lp->tx_bd_tail = 0;
199	lp->rx_bd_ci = 0;
200
201	/*
202	 * Allocate the Tx and Rx buffer descriptors.
203	 */
204	lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
205					  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206					  &lp->tx_bd_p, GFP_KERNEL);
207	if (!lp->tx_bd_v)
208		goto out;
209
210	lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
211					  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
212					  &lp->rx_bd_p, GFP_KERNEL);
213	if (!lp->rx_bd_v)
214		goto out;
215
216	for (i = 0; i < TX_BD_NUM; i++) {
217		lp->tx_bd_v[i].next = lp->tx_bd_p +
218				      sizeof(*lp->tx_bd_v) *
219				      ((i + 1) % TX_BD_NUM);
220	}
221
222	for (i = 0; i < RX_BD_NUM; i++) {
223		lp->rx_bd_v[i].next = lp->rx_bd_p +
224				      sizeof(*lp->rx_bd_v) *
225				      ((i + 1) % RX_BD_NUM);
226
227		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
228		if (!skb)
229			goto out;
230
231		lp->rx_bd_v[i].sw_id_offset = (u32) skb;
232		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
233						     skb->data,
234						     lp->max_frm_size,
235						     DMA_FROM_DEVICE);
236		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
237	}
238
239	/* Start updating the Rx channel control register */
240	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
241	/* Update the interrupt coalesce count */
242	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
243	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
244	/* Update the delay timer count */
245	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
246	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
247	/* Enable coalesce, delay timer and error interrupts */
248	cr |= XAXIDMA_IRQ_ALL_MASK;
249	/* Write to the Rx channel control register */
250	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
251
252	/* Start updating the Tx channel control register */
253	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
254	/* Update the interrupt coalesce count */
255	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
256	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
257	/* Update the delay timer count */
258	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
259	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
260	/* Enable coalesce, delay timer and error interrupts */
261	cr |= XAXIDMA_IRQ_ALL_MASK;
262	/* Write to the Tx channel control register */
263	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
264
265	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
266	 * halted state. This will make the Rx side ready for reception.*/
267	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
268	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
269	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
270			  cr | XAXIDMA_CR_RUNSTOP_MASK);
271	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
272			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
273
274	/* Write to the RS (Run-stop) bit in the Tx channel control register.
275	 * Tx channel is now ready to run. But only after we write to the
276	 * tail pointer register that the Tx channel will start transmitting */
277	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280			  cr | XAXIDMA_CR_RUNSTOP_MASK);
281
282	return 0;
283out:
284	axienet_dma_bd_release(ndev);
285	return -ENOMEM;
286}
287
288/**
289 * axienet_set_mac_address - Write the MAC address
290 * @ndev:	Pointer to the net_device structure
291 * @address:	6 byte Address to be written as MAC address
292 *
293 * This function is called to initialize the MAC address of the Axi Ethernet
294 * core. It writes to the UAW0 and UAW1 registers of the core.
295 */
296static void axienet_set_mac_address(struct net_device *ndev, void *address)
297{
298	struct axienet_local *lp = netdev_priv(ndev);
299
300	if (address)
301		memcpy(ndev->dev_addr, address, ETH_ALEN);
302	if (!is_valid_ether_addr(ndev->dev_addr))
303		eth_random_addr(ndev->dev_addr);
304
305	/* Set up unicast MAC address filter set its mac address */
306	axienet_iow(lp, XAE_UAW0_OFFSET,
307		    (ndev->dev_addr[0]) |
308		    (ndev->dev_addr[1] << 8) |
309		    (ndev->dev_addr[2] << 16) |
310		    (ndev->dev_addr[3] << 24));
311	axienet_iow(lp, XAE_UAW1_OFFSET,
312		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
313		      ~XAE_UAW1_UNICASTADDR_MASK) |
314		     (ndev->dev_addr[4] |
315		     (ndev->dev_addr[5] << 8))));
316}
317
318/**
319 * netdev_set_mac_address - Write the MAC address (from outside the driver)
320 * @ndev:	Pointer to the net_device structure
321 * @p:		6 byte Address to be written as MAC address
322 *
323 * returns: 0 for all conditions. Presently, there is no failure case.
324 *
325 * This function is called to initialize the MAC address of the Axi Ethernet
326 * core. It calls the core specific axienet_set_mac_address. This is the
327 * function that goes into net_device_ops structure entry ndo_set_mac_address.
328 */
329static int netdev_set_mac_address(struct net_device *ndev, void *p)
330{
331	struct sockaddr *addr = p;
332	axienet_set_mac_address(ndev, addr->sa_data);
333	return 0;
334}
335
336/**
337 * axienet_set_multicast_list - Prepare the multicast table
338 * @ndev:	Pointer to the net_device structure
339 *
340 * This function is called to initialize the multicast table during
341 * initialization. The Axi Ethernet basic multicast support has a four-entry
342 * multicast table which is initialized here. Additionally this function
343 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
344 * means whenever the multicast table entries need to be updated this
345 * function gets called.
346 */
347static void axienet_set_multicast_list(struct net_device *ndev)
348{
349	int i;
350	u32 reg, af0reg, af1reg;
351	struct axienet_local *lp = netdev_priv(ndev);
352
353	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
354	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
355		/* We must make the kernel realize we had to move into
356		 * promiscuous mode. If it was a promiscuous mode request
357		 * the flag is already set. If not we set it. */
358		ndev->flags |= IFF_PROMISC;
359		reg = axienet_ior(lp, XAE_FMI_OFFSET);
360		reg |= XAE_FMI_PM_MASK;
361		axienet_iow(lp, XAE_FMI_OFFSET, reg);
362		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363	} else if (!netdev_mc_empty(ndev)) {
364		struct netdev_hw_addr *ha;
365
366		i = 0;
367		netdev_for_each_mc_addr(ha, ndev) {
368			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369				break;
370
371			af0reg = (ha->addr[0]);
372			af0reg |= (ha->addr[1] << 8);
373			af0reg |= (ha->addr[2] << 16);
374			af0reg |= (ha->addr[3] << 24);
375
376			af1reg = (ha->addr[4]);
377			af1reg |= (ha->addr[5] << 8);
378
379			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380			reg |= i;
381
382			axienet_iow(lp, XAE_FMI_OFFSET, reg);
383			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385			i++;
386		}
387	} else {
388		reg = axienet_ior(lp, XAE_FMI_OFFSET);
389		reg &= ~XAE_FMI_PM_MASK;
390
391		axienet_iow(lp, XAE_FMI_OFFSET, reg);
392
393		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395			reg |= i;
396
397			axienet_iow(lp, XAE_FMI_OFFSET, reg);
398			axienet_iow(lp, XAE_AF0_OFFSET, 0);
399			axienet_iow(lp, XAE_AF1_OFFSET, 0);
400		}
401
402		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
403	}
404}
405
406/**
407 * axienet_setoptions - Set an Axi Ethernet option
408 * @ndev:	Pointer to the net_device structure
409 * @options:	Option to be enabled/disabled
410 *
411 * The Axi Ethernet core has multiple features which can be selectively turned
412 * on or off. The typical options could be jumbo frame option, basic VLAN
413 * option, promiscuous mode option etc. This function is used to set or clear
414 * these options in the Axi Ethernet hardware. This is done through
415 * axienet_option structure .
416 */
417static void axienet_setoptions(struct net_device *ndev, u32 options)
418{
419	int reg;
420	struct axienet_local *lp = netdev_priv(ndev);
421	struct axienet_option *tp = &axienet_options[0];
422
423	while (tp->opt) {
424		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425		if (options & tp->opt)
426			reg |= tp->m_or;
427		axienet_iow(lp, tp->reg, reg);
428		tp++;
429	}
430
431	lp->options |= options;
432}
433
434static void __axienet_device_reset(struct axienet_local *lp,
435				   struct device *dev, off_t offset)
436{
437	u32 timeout;
438	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
439	 * process of Axi DMA takes a while to complete as all pending
440	 * commands/transfers will be flushed or completed during this
441	 * reset process. */
442	axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
443	timeout = DELAY_OF_ONE_MILLISEC;
444	while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
445		udelay(1);
446		if (--timeout == 0) {
447			dev_err(dev, "axienet_device_reset DMA "
448				"reset timeout!\n");
449			break;
450		}
451	}
452}
453
454/**
455 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
456 * @ndev:	Pointer to the net_device structure
457 *
458 * This function is called to reset and initialize the Axi Ethernet core. This
459 * is typically called during initialization. It does a reset of the Axi DMA
460 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
461 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
462 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
463 * core.
464 */
465static void axienet_device_reset(struct net_device *ndev)
466{
467	u32 axienet_status;
468	struct axienet_local *lp = netdev_priv(ndev);
469
470	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
471	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
472
473	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
474	lp->options &= (~XAE_OPTION_JUMBO);
475
476	if ((ndev->mtu > XAE_MTU) &&
477	    (ndev->mtu <= XAE_JUMBO_MTU) &&
478	    (lp->jumbo_support)) {
479		lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
480				   XAE_TRL_SIZE;
481		lp->options |= XAE_OPTION_JUMBO;
482	}
483
484	if (axienet_dma_bd_init(ndev)) {
485		dev_err(&ndev->dev, "axienet_device_reset descriptor "
486			"allocation failed\n");
487	}
488
489	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
490	axienet_status &= ~XAE_RCW1_RX_MASK;
491	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
492
493	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
494	if (axienet_status & XAE_INT_RXRJECT_MASK)
495		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
496
497	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
498
499	/* Sync default options with HW but leave receiver and
500	 * transmitter disabled.*/
501	axienet_setoptions(ndev, lp->options &
502			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
503	axienet_set_mac_address(ndev, NULL);
504	axienet_set_multicast_list(ndev);
505	axienet_setoptions(ndev, lp->options);
506
507	ndev->trans_start = jiffies;
508}
509
510/**
511 * axienet_adjust_link - Adjust the PHY link speed/duplex.
512 * @ndev:	Pointer to the net_device structure
513 *
514 * This function is called to change the speed and duplex setting after
515 * auto negotiation is done by the PHY. This is the function that gets
516 * registered with the PHY interface through the "of_phy_connect" call.
517 */
518static void axienet_adjust_link(struct net_device *ndev)
519{
520	u32 emmc_reg;
521	u32 link_state;
522	u32 setspeed = 1;
523	struct axienet_local *lp = netdev_priv(ndev);
524	struct phy_device *phy = lp->phy_dev;
525
526	link_state = phy->speed | (phy->duplex << 1) | phy->link;
527	if (lp->last_link != link_state) {
528		if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
529			if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
530				setspeed = 0;
531		} else {
532			if ((phy->speed == SPEED_1000) &&
533			    (lp->phy_type == XAE_PHY_TYPE_MII))
534				setspeed = 0;
535		}
536
537		if (setspeed == 1) {
538			emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
539			emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
540
541			switch (phy->speed) {
542			case SPEED_1000:
543				emmc_reg |= XAE_EMMC_LINKSPD_1000;
544				break;
545			case SPEED_100:
546				emmc_reg |= XAE_EMMC_LINKSPD_100;
547				break;
548			case SPEED_10:
549				emmc_reg |= XAE_EMMC_LINKSPD_10;
550				break;
551			default:
552				dev_err(&ndev->dev, "Speed other than 10, 100 "
553					"or 1Gbps is not supported\n");
554				break;
555			}
556
557			axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
558			lp->last_link = link_state;
559			phy_print_status(phy);
560		} else {
561			dev_err(&ndev->dev, "Error setting Axi Ethernet "
562				"mac speed\n");
563		}
564	}
565}
566
567/**
568 * axienet_start_xmit_done - Invoked once a transmit is completed by the
569 * Axi DMA Tx channel.
570 * @ndev:	Pointer to the net_device structure
571 *
572 * This function is invoked from the Axi DMA Tx isr to notify the completion
573 * of transmit operation. It clears fields in the corresponding Tx BDs and
574 * unmaps the corresponding buffer so that CPU can regain ownership of the
575 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
576 * required.
577 */
578static void axienet_start_xmit_done(struct net_device *ndev)
579{
580	u32 size = 0;
581	u32 packets = 0;
582	struct axienet_local *lp = netdev_priv(ndev);
583	struct axidma_bd *cur_p;
584	unsigned int status = 0;
585
586	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
587	status = cur_p->status;
588	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
589		dma_unmap_single(ndev->dev.parent, cur_p->phys,
590				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
591				DMA_TO_DEVICE);
592		if (cur_p->app4)
593			dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
594		/*cur_p->phys = 0;*/
595		cur_p->app0 = 0;
596		cur_p->app1 = 0;
597		cur_p->app2 = 0;
598		cur_p->app4 = 0;
599		cur_p->status = 0;
600
601		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
602		packets++;
603
604		++lp->tx_bd_ci;
605		lp->tx_bd_ci %= TX_BD_NUM;
606		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
607		status = cur_p->status;
608	}
609
610	ndev->stats.tx_packets += packets;
611	ndev->stats.tx_bytes += size;
612	netif_wake_queue(ndev);
613}
614
615/**
616 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
617 * @lp:		Pointer to the axienet_local structure
618 * @num_frag:	The number of BDs to check for
619 *
620 * returns: 0, on success
621 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
622 *
623 * This function is invoked before BDs are allocated and transmission starts.
624 * This function returns 0 if a BD or group of BDs can be allocated for
625 * transmission. If the BD or any of the BDs are not free the function
626 * returns a busy status. This is invoked from axienet_start_xmit.
627 */
628static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
629					    int num_frag)
630{
631	struct axidma_bd *cur_p;
632	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
633	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
634		return NETDEV_TX_BUSY;
635	return 0;
636}
637
638/**
639 * axienet_start_xmit - Starts the transmission.
640 * @skb:	sk_buff pointer that contains data to be Txed.
641 * @ndev:	Pointer to net_device structure.
642 *
643 * returns: NETDEV_TX_OK, on success
644 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
645 *
646 * This function is invoked from upper layers to initiate transmission. The
647 * function uses the next available free BDs and populates their fields to
648 * start the transmission. Additionally if checksum offloading is supported,
649 * it populates AXI Stream Control fields with appropriate values.
650 */
651static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
652{
653	u32 ii;
654	u32 num_frag;
655	u32 csum_start_off;
656	u32 csum_index_off;
657	skb_frag_t *frag;
658	dma_addr_t tail_p;
659	struct axienet_local *lp = netdev_priv(ndev);
660	struct axidma_bd *cur_p;
661
662	num_frag = skb_shinfo(skb)->nr_frags;
663	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
664
665	if (axienet_check_tx_bd_space(lp, num_frag)) {
666		if (!netif_queue_stopped(ndev))
667			netif_stop_queue(ndev);
668		return NETDEV_TX_BUSY;
669	}
670
671	if (skb->ip_summed == CHECKSUM_PARTIAL) {
672		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
673			/* Tx Full Checksum Offload Enabled */
674			cur_p->app0 |= 2;
675		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
676			csum_start_off = skb_transport_offset(skb);
677			csum_index_off = csum_start_off + skb->csum_offset;
678			/* Tx Partial Checksum Offload Enabled */
679			cur_p->app0 |= 1;
680			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
681		}
682	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
683		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
684	}
685
686	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
687	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
688				     skb_headlen(skb), DMA_TO_DEVICE);
689
690	for (ii = 0; ii < num_frag; ii++) {
691		++lp->tx_bd_tail;
692		lp->tx_bd_tail %= TX_BD_NUM;
693		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
694		frag = &skb_shinfo(skb)->frags[ii];
695		cur_p->phys = dma_map_single(ndev->dev.parent,
696					     skb_frag_address(frag),
697					     skb_frag_size(frag),
698					     DMA_TO_DEVICE);
699		cur_p->cntrl = skb_frag_size(frag);
700	}
701
702	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
703	cur_p->app4 = (unsigned long)skb;
704
705	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
706	/* Start the transfer */
707	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
708	++lp->tx_bd_tail;
709	lp->tx_bd_tail %= TX_BD_NUM;
710
711	return NETDEV_TX_OK;
712}
713
714/**
715 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
716 *		  BD processing.
717 * @ndev:	Pointer to net_device structure.
718 *
719 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
720 * does minimal processing and invokes "netif_rx" to complete further
721 * processing.
722 */
723static void axienet_recv(struct net_device *ndev)
724{
725	u32 length;
726	u32 csumstatus;
727	u32 size = 0;
728	u32 packets = 0;
729	dma_addr_t tail_p;
730	struct axienet_local *lp = netdev_priv(ndev);
731	struct sk_buff *skb, *new_skb;
732	struct axidma_bd *cur_p;
733
734	tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
735	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
736
737	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
738		skb = (struct sk_buff *) (cur_p->sw_id_offset);
739		length = cur_p->app4 & 0x0000FFFF;
740
741		dma_unmap_single(ndev->dev.parent, cur_p->phys,
742				 lp->max_frm_size,
743				 DMA_FROM_DEVICE);
744
745		skb_put(skb, length);
746		skb->protocol = eth_type_trans(skb, ndev);
747		/*skb_checksum_none_assert(skb);*/
748		skb->ip_summed = CHECKSUM_NONE;
749
750		/* if we're doing Rx csum offload, set it up */
751		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
752			csumstatus = (cur_p->app2 &
753				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
754			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
755			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
756				skb->ip_summed = CHECKSUM_UNNECESSARY;
757			}
758		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
759			   skb->protocol == htons(ETH_P_IP) &&
760			   skb->len > 64) {
761			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
762			skb->ip_summed = CHECKSUM_COMPLETE;
763		}
764
765		netif_rx(skb);
766
767		size += length;
768		packets++;
769
770		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
771		if (!new_skb)
772			return;
773
774		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
775					     lp->max_frm_size,
776					     DMA_FROM_DEVICE);
777		cur_p->cntrl = lp->max_frm_size;
778		cur_p->status = 0;
779		cur_p->sw_id_offset = (u32) new_skb;
780
781		++lp->rx_bd_ci;
782		lp->rx_bd_ci %= RX_BD_NUM;
783		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
784	}
785
786	ndev->stats.rx_packets += packets;
787	ndev->stats.rx_bytes += size;
788
789	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
790}
791
792/**
793 * axienet_tx_irq - Tx Done Isr.
794 * @irq:	irq number
795 * @_ndev:	net_device pointer
796 *
797 * returns: IRQ_HANDLED for all cases.
798 *
799 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
800 * to complete the BD processing.
801 */
802static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
803{
804	u32 cr;
805	unsigned int status;
806	struct net_device *ndev = _ndev;
807	struct axienet_local *lp = netdev_priv(ndev);
808
809	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
810	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
811		axienet_start_xmit_done(lp->ndev);
812		goto out;
813	}
814	if (!(status & XAXIDMA_IRQ_ALL_MASK))
815		dev_err(&ndev->dev, "No interrupts asserted in Tx path");
816	if (status & XAXIDMA_IRQ_ERROR_MASK) {
817		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
818		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
819			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
820
821		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
822		/* Disable coalesce, delay timer and error interrupts */
823		cr &= (~XAXIDMA_IRQ_ALL_MASK);
824		/* Write to the Tx channel control register */
825		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
826
827		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
828		/* Disable coalesce, delay timer and error interrupts */
829		cr &= (~XAXIDMA_IRQ_ALL_MASK);
830		/* Write to the Rx channel control register */
831		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
832
833		tasklet_schedule(&lp->dma_err_tasklet);
834	}
835out:
836	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
837	return IRQ_HANDLED;
838}
839
840/**
841 * axienet_rx_irq - Rx Isr.
842 * @irq:	irq number
843 * @_ndev:	net_device pointer
844 *
845 * returns: IRQ_HANDLED for all cases.
846 *
847 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
848 * processing.
849 */
850static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
851{
852	u32 cr;
853	unsigned int status;
854	struct net_device *ndev = _ndev;
855	struct axienet_local *lp = netdev_priv(ndev);
856
857	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
858	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
859		axienet_recv(lp->ndev);
860		goto out;
861	}
862	if (!(status & XAXIDMA_IRQ_ALL_MASK))
863		dev_err(&ndev->dev, "No interrupts asserted in Rx path");
864	if (status & XAXIDMA_IRQ_ERROR_MASK) {
865		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
866		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
867			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
868
869		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
870		/* Disable coalesce, delay timer and error interrupts */
871		cr &= (~XAXIDMA_IRQ_ALL_MASK);
872		/* Finally write to the Tx channel control register */
873		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
874
875		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
876		/* Disable coalesce, delay timer and error interrupts */
877		cr &= (~XAXIDMA_IRQ_ALL_MASK);
878		/* write to the Rx channel control register */
879		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
880
881		tasklet_schedule(&lp->dma_err_tasklet);
882	}
883out:
884	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
885	return IRQ_HANDLED;
886}
887
888static void axienet_dma_err_handler(unsigned long data);
889
890/**
891 * axienet_open - Driver open routine.
892 * @ndev:	Pointer to net_device structure
893 *
894 * returns: 0, on success.
895 *	    -ENODEV, if PHY cannot be connected to
896 *	    non-zero error value on failure
897 *
898 * This is the driver open routine. It calls phy_start to start the PHY device.
899 * It also allocates interrupt service routines, enables the interrupt lines
900 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
901 * descriptors are initialized.
902 */
903static int axienet_open(struct net_device *ndev)
904{
905	int ret, mdio_mcreg;
906	struct axienet_local *lp = netdev_priv(ndev);
907
908	dev_dbg(&ndev->dev, "axienet_open()\n");
909
910	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
911	ret = axienet_mdio_wait_until_ready(lp);
912	if (ret < 0)
913		return ret;
914	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
915	 * When we do an Axi Ethernet reset, it resets the complete core
916	 * including the MDIO. If MDIO is not disabled when the reset
917	 * process is started, MDIO will be broken afterwards. */
918	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
919		    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
920	axienet_device_reset(ndev);
921	/* Enable the MDIO */
922	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
923	ret = axienet_mdio_wait_until_ready(lp);
924	if (ret < 0)
925		return ret;
926
927	if (lp->phy_node) {
928		lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
929					     axienet_adjust_link, 0,
930					     PHY_INTERFACE_MODE_GMII);
931		if (!lp->phy_dev) {
932			dev_err(lp->dev, "of_phy_connect() failed\n");
933			return -ENODEV;
934		}
935		phy_start(lp->phy_dev);
936	}
937
938	/* Enable tasklets for Axi DMA error handling */
939	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
940		     (unsigned long) lp);
941
942	/* Enable interrupts for Axi DMA Tx */
943	ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
944	if (ret)
945		goto err_tx_irq;
946	/* Enable interrupts for Axi DMA Rx */
947	ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
948	if (ret)
949		goto err_rx_irq;
950
951	return 0;
952
953err_rx_irq:
954	free_irq(lp->tx_irq, ndev);
955err_tx_irq:
956	if (lp->phy_dev)
957		phy_disconnect(lp->phy_dev);
958	lp->phy_dev = NULL;
959	tasklet_kill(&lp->dma_err_tasklet);
960	dev_err(lp->dev, "request_irq() failed\n");
961	return ret;
962}
963
964/**
965 * axienet_stop - Driver stop routine.
966 * @ndev:	Pointer to net_device structure
967 *
968 * returns: 0, on success.
969 *
970 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
971 * device. It also removes the interrupt handlers and disables the interrupts.
972 * The Axi DMA Tx/Rx BDs are released.
973 */
974static int axienet_stop(struct net_device *ndev)
975{
976	u32 cr;
977	struct axienet_local *lp = netdev_priv(ndev);
978
979	dev_dbg(&ndev->dev, "axienet_close()\n");
980
981	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
982	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
983			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
984	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
985	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
986			  cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987	axienet_setoptions(ndev, lp->options &
988			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
989
990	tasklet_kill(&lp->dma_err_tasklet);
991
992	free_irq(lp->tx_irq, ndev);
993	free_irq(lp->rx_irq, ndev);
994
995	if (lp->phy_dev)
996		phy_disconnect(lp->phy_dev);
997	lp->phy_dev = NULL;
998
999	axienet_dma_bd_release(ndev);
1000	return 0;
1001}
1002
1003/**
1004 * axienet_change_mtu - Driver change mtu routine.
1005 * @ndev:	Pointer to net_device structure
1006 * @new_mtu:	New mtu value to be applied
1007 *
1008 * returns: Always returns 0 (success).
1009 *
1010 * This is the change mtu driver routine. It checks if the Axi Ethernet
1011 * hardware supports jumbo frames before changing the mtu. This can be
1012 * called only when the device is not up.
1013 */
1014static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1015{
1016	struct axienet_local *lp = netdev_priv(ndev);
1017
1018	if (netif_running(ndev))
1019		return -EBUSY;
1020	if (lp->jumbo_support) {
1021		if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1022			return -EINVAL;
1023		ndev->mtu = new_mtu;
1024	} else {
1025		if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1026			return -EINVAL;
1027		ndev->mtu = new_mtu;
1028	}
1029
1030	return 0;
1031}
1032
1033#ifdef CONFIG_NET_POLL_CONTROLLER
1034/**
1035 * axienet_poll_controller - Axi Ethernet poll mechanism.
1036 * @ndev:	Pointer to net_device structure
1037 *
1038 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1039 * to polling the ISRs and are enabled back after the polling is done.
1040 */
1041static void axienet_poll_controller(struct net_device *ndev)
1042{
1043	struct axienet_local *lp = netdev_priv(ndev);
1044	disable_irq(lp->tx_irq);
1045	disable_irq(lp->rx_irq);
1046	axienet_rx_irq(lp->tx_irq, ndev);
1047	axienet_tx_irq(lp->rx_irq, ndev);
1048	enable_irq(lp->tx_irq);
1049	enable_irq(lp->rx_irq);
1050}
1051#endif
1052
1053static const struct net_device_ops axienet_netdev_ops = {
1054	.ndo_open = axienet_open,
1055	.ndo_stop = axienet_stop,
1056	.ndo_start_xmit = axienet_start_xmit,
1057	.ndo_change_mtu	= axienet_change_mtu,
1058	.ndo_set_mac_address = netdev_set_mac_address,
1059	.ndo_validate_addr = eth_validate_addr,
1060	.ndo_set_rx_mode = axienet_set_multicast_list,
1061#ifdef CONFIG_NET_POLL_CONTROLLER
1062	.ndo_poll_controller = axienet_poll_controller,
1063#endif
1064};
1065
1066/**
1067 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1068 * @ndev:	Pointer to net_device structure
1069 * @ecmd:	Pointer to ethtool_cmd structure
1070 *
1071 * This implements ethtool command for getting PHY settings. If PHY could
1072 * not be found, the function returns -ENODEV. This function calls the
1073 * relevant PHY ethtool API to get the PHY settings.
1074 * Issue "ethtool ethX" under linux prompt to execute this function.
1075 */
1076static int axienet_ethtools_get_settings(struct net_device *ndev,
1077					 struct ethtool_cmd *ecmd)
1078{
1079	struct axienet_local *lp = netdev_priv(ndev);
1080	struct phy_device *phydev = lp->phy_dev;
1081	if (!phydev)
1082		return -ENODEV;
1083	return phy_ethtool_gset(phydev, ecmd);
1084}
1085
1086/**
1087 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1088 * @ndev:	Pointer to net_device structure
1089 * @ecmd:	Pointer to ethtool_cmd structure
1090 *
1091 * This implements ethtool command for setting various PHY settings. If PHY
1092 * could not be found, the function returns -ENODEV. This function calls the
1093 * relevant PHY ethtool API to set the PHY.
1094 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1095 * function.
1096 */
1097static int axienet_ethtools_set_settings(struct net_device *ndev,
1098					 struct ethtool_cmd *ecmd)
1099{
1100	struct axienet_local *lp = netdev_priv(ndev);
1101	struct phy_device *phydev = lp->phy_dev;
1102	if (!phydev)
1103		return -ENODEV;
1104	return phy_ethtool_sset(phydev, ecmd);
1105}
1106
1107/**
1108 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1109 * @ndev:	Pointer to net_device structure
1110 * @ed:		Pointer to ethtool_drvinfo structure
1111 *
1112 * This implements ethtool command for getting the driver information.
1113 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1114 */
1115static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1116					 struct ethtool_drvinfo *ed)
1117{
1118	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1119	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1120	ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1121}
1122
1123/**
1124 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1125 *				   AxiEthernet core.
1126 * @ndev:	Pointer to net_device structure
1127 *
1128 * This implements ethtool command for getting the total register length
1129 * information.
1130 */
1131static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1132{
1133	return sizeof(u32) * AXIENET_REGS_N;
1134}
1135
1136/**
1137 * axienet_ethtools_get_regs - Dump the contents of all registers present
1138 *			       in AxiEthernet core.
1139 * @ndev:	Pointer to net_device structure
1140 * @regs:	Pointer to ethtool_regs structure
1141 * @ret:	Void pointer used to return the contents of the registers.
1142 *
1143 * This implements ethtool command for getting the Axi Ethernet register dump.
1144 * Issue "ethtool -d ethX" to execute this function.
1145 */
1146static void axienet_ethtools_get_regs(struct net_device *ndev,
1147				      struct ethtool_regs *regs, void *ret)
1148{
1149	u32 *data = (u32 *) ret;
1150	size_t len = sizeof(u32) * AXIENET_REGS_N;
1151	struct axienet_local *lp = netdev_priv(ndev);
1152
1153	regs->version = 0;
1154	regs->len = len;
1155
1156	memset(data, 0, len);
1157	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1158	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1159	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1160	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1161	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1162	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1163	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1164	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1165	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1166	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1167	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1168	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1169	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1170	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1171	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1172	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1173	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1174	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1175	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1176	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1177	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1178	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1179	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1180	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1181	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1182	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1183	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1184	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1185	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1186	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1187	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1188	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1189}
1190
1191/**
1192 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1193 *				     Tx and Rx paths.
1194 * @ndev:	Pointer to net_device structure
1195 * @epauseparm:	Pointer to ethtool_pauseparam structure.
1196 *
1197 * This implements ethtool command for getting axi ethernet pause frame
1198 * setting. Issue "ethtool -a ethX" to execute this function.
1199 */
1200static void
1201axienet_ethtools_get_pauseparam(struct net_device *ndev,
1202				struct ethtool_pauseparam *epauseparm)
1203{
1204	u32 regval;
1205	struct axienet_local *lp = netdev_priv(ndev);
1206	epauseparm->autoneg  = 0;
1207	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1208	epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1209	epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1210}
1211
1212/**
1213 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1214 *				     settings.
1215 * @ndev:	Pointer to net_device structure
1216 * @epauseparam:Pointer to ethtool_pauseparam structure
1217 *
1218 * This implements ethtool command for enabling flow control on Rx and Tx
1219 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1220 * function.
1221 */
1222static int
1223axienet_ethtools_set_pauseparam(struct net_device *ndev,
1224				struct ethtool_pauseparam *epauseparm)
1225{
1226	u32 regval = 0;
1227	struct axienet_local *lp = netdev_priv(ndev);
1228
1229	if (netif_running(ndev)) {
1230		printk(KERN_ERR	"%s: Please stop netif before applying "
1231		       "configruation\n", ndev->name);
1232		return -EFAULT;
1233	}
1234
1235	regval = axienet_ior(lp, XAE_FCC_OFFSET);
1236	if (epauseparm->tx_pause)
1237		regval |= XAE_FCC_FCTX_MASK;
1238	else
1239		regval &= ~XAE_FCC_FCTX_MASK;
1240	if (epauseparm->rx_pause)
1241		regval |= XAE_FCC_FCRX_MASK;
1242	else
1243		regval &= ~XAE_FCC_FCRX_MASK;
1244	axienet_iow(lp, XAE_FCC_OFFSET, regval);
1245
1246	return 0;
1247}
1248
1249/**
1250 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1251 * @ndev:	Pointer to net_device structure
1252 * @ecoalesce:	Pointer to ethtool_coalesce structure
1253 *
1254 * This implements ethtool command for getting the DMA interrupt coalescing
1255 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1256 * execute this function.
1257 */
1258static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1259					 struct ethtool_coalesce *ecoalesce)
1260{
1261	u32 regval = 0;
1262	struct axienet_local *lp = netdev_priv(ndev);
1263	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1264	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1265					     >> XAXIDMA_COALESCE_SHIFT;
1266	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1267	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1268					     >> XAXIDMA_COALESCE_SHIFT;
1269	return 0;
1270}
1271
1272/**
1273 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1274 * @ndev:	Pointer to net_device structure
1275 * @ecoalesce:	Pointer to ethtool_coalesce structure
1276 *
1277 * This implements ethtool command for setting the DMA interrupt coalescing
1278 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1279 * prompt to execute this function.
1280 */
1281static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1282					 struct ethtool_coalesce *ecoalesce)
1283{
1284	struct axienet_local *lp = netdev_priv(ndev);
1285
1286	if (netif_running(ndev)) {
1287		printk(KERN_ERR	"%s: Please stop netif before applying "
1288		       "configruation\n", ndev->name);
1289		return -EFAULT;
1290	}
1291
1292	if ((ecoalesce->rx_coalesce_usecs) ||
1293	    (ecoalesce->rx_coalesce_usecs_irq) ||
1294	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1295	    (ecoalesce->tx_coalesce_usecs) ||
1296	    (ecoalesce->tx_coalesce_usecs_irq) ||
1297	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1298	    (ecoalesce->stats_block_coalesce_usecs) ||
1299	    (ecoalesce->use_adaptive_rx_coalesce) ||
1300	    (ecoalesce->use_adaptive_tx_coalesce) ||
1301	    (ecoalesce->pkt_rate_low) ||
1302	    (ecoalesce->rx_coalesce_usecs_low) ||
1303	    (ecoalesce->rx_max_coalesced_frames_low) ||
1304	    (ecoalesce->tx_coalesce_usecs_low) ||
1305	    (ecoalesce->tx_max_coalesced_frames_low) ||
1306	    (ecoalesce->pkt_rate_high) ||
1307	    (ecoalesce->rx_coalesce_usecs_high) ||
1308	    (ecoalesce->rx_max_coalesced_frames_high) ||
1309	    (ecoalesce->tx_coalesce_usecs_high) ||
1310	    (ecoalesce->tx_max_coalesced_frames_high) ||
1311	    (ecoalesce->rate_sample_interval))
1312		return -EOPNOTSUPP;
1313	if (ecoalesce->rx_max_coalesced_frames)
1314		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1315	if (ecoalesce->tx_max_coalesced_frames)
1316		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1317
1318	return 0;
1319}
1320
1321static struct ethtool_ops axienet_ethtool_ops = {
1322	.get_settings   = axienet_ethtools_get_settings,
1323	.set_settings   = axienet_ethtools_set_settings,
1324	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1325	.get_regs_len   = axienet_ethtools_get_regs_len,
1326	.get_regs       = axienet_ethtools_get_regs,
1327	.get_link       = ethtool_op_get_link,
1328	.get_pauseparam = axienet_ethtools_get_pauseparam,
1329	.set_pauseparam = axienet_ethtools_set_pauseparam,
1330	.get_coalesce   = axienet_ethtools_get_coalesce,
1331	.set_coalesce   = axienet_ethtools_set_coalesce,
1332};
1333
1334/**
1335 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1336 * @data:	Data passed
1337 *
1338 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1339 * Tx/Rx BDs.
1340 */
1341static void axienet_dma_err_handler(unsigned long data)
1342{
1343	u32 axienet_status;
1344	u32 cr, i;
1345	int mdio_mcreg;
1346	struct axienet_local *lp = (struct axienet_local *) data;
1347	struct net_device *ndev = lp->ndev;
1348	struct axidma_bd *cur_p;
1349
1350	axienet_setoptions(ndev, lp->options &
1351			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1352	mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1353	axienet_mdio_wait_until_ready(lp);
1354	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1355	 * When we do an Axi Ethernet reset, it resets the complete core
1356	 * including the MDIO. So if MDIO is not disabled when the reset
1357	 * process is started, MDIO will be broken afterwards. */
1358	axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1359		    ~XAE_MDIO_MC_MDIOEN_MASK));
1360
1361	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1362	__axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1363
1364	axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1365	axienet_mdio_wait_until_ready(lp);
1366
1367	for (i = 0; i < TX_BD_NUM; i++) {
1368		cur_p = &lp->tx_bd_v[i];
1369		if (cur_p->phys)
1370			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1371					 (cur_p->cntrl &
1372					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1373					 DMA_TO_DEVICE);
1374		if (cur_p->app4)
1375			dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1376		cur_p->phys = 0;
1377		cur_p->cntrl = 0;
1378		cur_p->status = 0;
1379		cur_p->app0 = 0;
1380		cur_p->app1 = 0;
1381		cur_p->app2 = 0;
1382		cur_p->app3 = 0;
1383		cur_p->app4 = 0;
1384		cur_p->sw_id_offset = 0;
1385	}
1386
1387	for (i = 0; i < RX_BD_NUM; i++) {
1388		cur_p = &lp->rx_bd_v[i];
1389		cur_p->status = 0;
1390		cur_p->app0 = 0;
1391		cur_p->app1 = 0;
1392		cur_p->app2 = 0;
1393		cur_p->app3 = 0;
1394		cur_p->app4 = 0;
1395	}
1396
1397	lp->tx_bd_ci = 0;
1398	lp->tx_bd_tail = 0;
1399	lp->rx_bd_ci = 0;
1400
1401	/* Start updating the Rx channel control register */
1402	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403	/* Update the interrupt coalesce count */
1404	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1405	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1406	/* Update the delay timer count */
1407	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1408	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1409	/* Enable coalesce, delay timer and error interrupts */
1410	cr |= XAXIDMA_IRQ_ALL_MASK;
1411	/* Finally write to the Rx channel control register */
1412	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1413
1414	/* Start updating the Tx channel control register */
1415	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1416	/* Update the interrupt coalesce count */
1417	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1418	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1419	/* Update the delay timer count */
1420	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1421	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1422	/* Enable coalesce, delay timer and error interrupts */
1423	cr |= XAXIDMA_IRQ_ALL_MASK;
1424	/* Finally write to the Tx channel control register */
1425	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1426
1427	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1428	 * halted state. This will make the Rx side ready for reception.*/
1429	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1430	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1431	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1432			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1433	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1434			  (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1435
1436	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1437	 * Tx channel is now ready to run. But only after we write to the
1438	 * tail pointer register that the Tx channel will start transmitting */
1439	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1440	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1441	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1442			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1443
1444	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1445	axienet_status &= ~XAE_RCW1_RX_MASK;
1446	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1447
1448	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1449	if (axienet_status & XAE_INT_RXRJECT_MASK)
1450		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1451	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1452
1453	/* Sync default options with HW but leave receiver and
1454	 * transmitter disabled.*/
1455	axienet_setoptions(ndev, lp->options &
1456			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1457	axienet_set_mac_address(ndev, NULL);
1458	axienet_set_multicast_list(ndev);
1459	axienet_setoptions(ndev, lp->options);
1460}
1461
1462/**
1463 * axienet_of_probe - Axi Ethernet probe function.
1464 * @op:		Pointer to platform device structure.
1465 * @match:	Pointer to device id structure
1466 *
1467 * returns: 0, on success
1468 *	    Non-zero error value on failure.
1469 *
1470 * This is the probe routine for Axi Ethernet driver. This is called before
1471 * any other driver routines are invoked. It allocates and sets up the Ethernet
1472 * device. Parses through device tree and populates fields of
1473 * axienet_local. It registers the Ethernet device.
1474 */
1475static int axienet_of_probe(struct platform_device *op)
1476{
1477	__be32 *p;
1478	int size, ret = 0;
1479	struct device_node *np;
1480	struct axienet_local *lp;
1481	struct net_device *ndev;
1482	const void *addr;
1483
1484	ndev = alloc_etherdev(sizeof(*lp));
1485	if (!ndev)
1486		return -ENOMEM;
1487
1488	platform_set_drvdata(op, ndev);
1489
1490	SET_NETDEV_DEV(ndev, &op->dev);
1491	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1492	ndev->features = NETIF_F_SG;
1493	ndev->netdev_ops = &axienet_netdev_ops;
1494	ndev->ethtool_ops = &axienet_ethtool_ops;
1495
1496	lp = netdev_priv(ndev);
1497	lp->ndev = ndev;
1498	lp->dev = &op->dev;
1499	lp->options = XAE_OPTION_DEFAULTS;
1500	/* Map device registers */
1501	lp->regs = of_iomap(op->dev.of_node, 0);
1502	if (!lp->regs) {
1503		dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1504		ret = -ENOMEM;
1505		goto nodev;
1506	}
1507	/* Setup checksum offload, but default to off if not specified */
1508	lp->features = 0;
1509
1510	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1511	if (p) {
1512		switch (be32_to_cpup(p)) {
1513		case 1:
1514			lp->csum_offload_on_tx_path =
1515				XAE_FEATURE_PARTIAL_TX_CSUM;
1516			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1517			/* Can checksum TCP/UDP over IPv4. */
1518			ndev->features |= NETIF_F_IP_CSUM;
1519			break;
1520		case 2:
1521			lp->csum_offload_on_tx_path =
1522				XAE_FEATURE_FULL_TX_CSUM;
1523			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1524			/* Can checksum TCP/UDP over IPv4. */
1525			ndev->features |= NETIF_F_IP_CSUM;
1526			break;
1527		default:
1528			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1529		}
1530	}
1531	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1532	if (p) {
1533		switch (be32_to_cpup(p)) {
1534		case 1:
1535			lp->csum_offload_on_rx_path =
1536				XAE_FEATURE_PARTIAL_RX_CSUM;
1537			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1538			break;
1539		case 2:
1540			lp->csum_offload_on_rx_path =
1541				XAE_FEATURE_FULL_RX_CSUM;
1542			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1543			break;
1544		default:
1545			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1546		}
1547	}
1548	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1549	 * a larger Rx/Tx Memory. Typically, the size must be more than or
1550	 * equal to 16384 bytes, so that we can enable jumbo option and start
1551	 * supporting jumbo frames. Here we check for memory allocated for
1552	 * Rx/Tx in the hardware from the device-tree and accordingly set
1553	 * flags. */
1554	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1555	if (p) {
1556		if ((be32_to_cpup(p)) >= 0x4000)
1557			lp->jumbo_support = 1;
1558	}
1559	p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1560	if (p)
1561		lp->phy_type = be32_to_cpup(p);
1562
1563	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1564	np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1565	if (!np) {
1566		dev_err(&op->dev, "could not find DMA node\n");
1567		ret = -ENODEV;
1568		goto err_iounmap;
1569	}
1570	lp->dma_regs = of_iomap(np, 0);
1571	if (lp->dma_regs) {
1572		dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1573	} else {
1574		dev_err(&op->dev, "unable to map DMA registers\n");
1575		of_node_put(np);
1576	}
1577	lp->rx_irq = irq_of_parse_and_map(np, 1);
1578	lp->tx_irq = irq_of_parse_and_map(np, 0);
1579	of_node_put(np);
1580	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1581		dev_err(&op->dev, "could not determine irqs\n");
1582		ret = -ENOMEM;
1583		goto err_iounmap_2;
1584	}
1585
1586	/* Retrieve the MAC address */
1587	addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1588	if ((!addr) || (size != 6)) {
1589		dev_err(&op->dev, "could not find MAC address\n");
1590		ret = -ENODEV;
1591		goto err_iounmap_2;
1592	}
1593	axienet_set_mac_address(ndev, (void *) addr);
1594
1595	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1596	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1597
1598	lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1599	ret = axienet_mdio_setup(lp, op->dev.of_node);
1600	if (ret)
1601		dev_warn(&op->dev, "error registering MDIO bus\n");
1602
1603	ret = register_netdev(lp->ndev);
1604	if (ret) {
1605		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1606		goto err_iounmap_2;
1607	}
1608
1609	return 0;
1610
1611err_iounmap_2:
1612	if (lp->dma_regs)
1613		iounmap(lp->dma_regs);
1614err_iounmap:
1615	iounmap(lp->regs);
1616nodev:
1617	free_netdev(ndev);
1618	ndev = NULL;
1619	return ret;
1620}
1621
1622static int axienet_of_remove(struct platform_device *op)
1623{
1624	struct net_device *ndev = platform_get_drvdata(op);
1625	struct axienet_local *lp = netdev_priv(ndev);
1626
1627	axienet_mdio_teardown(lp);
1628	unregister_netdev(ndev);
1629
1630	of_node_put(lp->phy_node);
1631	lp->phy_node = NULL;
1632
1633	iounmap(lp->regs);
1634	if (lp->dma_regs)
1635		iounmap(lp->dma_regs);
1636	free_netdev(ndev);
1637
1638	return 0;
1639}
1640
1641static struct platform_driver axienet_of_driver = {
1642	.probe = axienet_of_probe,
1643	.remove = axienet_of_remove,
1644	.driver = {
1645		 .name = "xilinx_axienet",
1646		 .of_match_table = axienet_of_match,
1647	},
1648};
1649
1650module_platform_driver(axienet_of_driver);
1651
1652MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1653MODULE_AUTHOR("Xilinx");
1654MODULE_LICENSE("GPL");
1655