1/*
2 * File Name:
3 *   skfddi.c
4 *
5 * Copyright Information:
6 *   Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17 *   familie.
18 *
19 * Maintainers:
20 *   CG    Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 *   DM    David S. Miller
24 *
25 * Address all question to:
26 *   linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 *   The driver architecture is based on the DEC FDDI driver by
34 *   Lawrence V. Stefani and several ethernet drivers.
35 *   I also used an existing Windows NT miniport driver.
36 *   All hardware dependent functions are handled by the SysKonnect
37 *   Hardware Module.
38 *   The only headerfiles that are directly related to this source
39 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 *   The others belong to the SysKonnect FDDI Hardware Module and
41 *   should better not be changed.
42 *
43 * Modification History:
44 *              Date            Name    Description
45 *              02-Mar-98       CG	Created.
46 *
47 *		10-Mar-99	CG	Support for 2.2.x added.
48 *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
49 *		26-Oct-99	CG	Fixed compilation error on 2.2.13
50 *		12-Nov-99	CG	Source code release
51 *		22-Nov-99	CG	Included in kernel source.
52 *		07-May-00	DM	64 bit fixes, new dma interface
53 *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
54 *					  Daniele Bellucci <bellucda@tiscali.it>
55 *		03-Dec-03	SH	Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 *              DRIVERDEBUG     print lots of messages to log file
59 *              DUMPPACKETS     print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 *	- i386
63 *	- sparc64
64 */
65
66/* Version information string - should be updated prior to */
67/* each new release!!! */
68#define VERSION		"2.07"
69
70static const char * const boot_msg =
71	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74/* Include files */
75
76#include <linux/capability.h>
77#include <linux/module.h>
78#include <linux/kernel.h>
79#include <linux/errno.h>
80#include <linux/ioport.h>
81#include <linux/interrupt.h>
82#include <linux/pci.h>
83#include <linux/netdevice.h>
84#include <linux/fddidevice.h>
85#include <linux/skbuff.h>
86#include <linux/bitops.h>
87#include <linux/gfp.h>
88
89#include <asm/byteorder.h>
90#include <asm/io.h>
91#include <asm/uaccess.h>
92
93#include	"h/types.h"
94#undef ADDR			// undo Linux definition
95#include	"h/skfbi.h"
96#include	"h/fddi.h"
97#include	"h/smc.h"
98#include	"h/smtstate.h"
99
100
101// Define module-wide (static) routines
102static int skfp_driver_init(struct net_device *dev);
103static int skfp_open(struct net_device *dev);
104static int skfp_close(struct net_device *dev);
105static irqreturn_t skfp_interrupt(int irq, void *dev_id);
106static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107static void skfp_ctl_set_multicast_list(struct net_device *dev);
108static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112				       struct net_device *dev);
113static void send_queued_packets(struct s_smc *smc);
114static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115static void ResetAdapter(struct s_smc *smc);
116
117
118// Functions needed by the hardware module
119void *mac_drv_get_space(struct s_smc *smc, u_int size);
120void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124		  int flag);
125void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126void llc_restart_tx(struct s_smc *smc);
127void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128			 int frag_count, int len);
129void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130			 int frag_count);
131void mac_drv_fill_rxd(struct s_smc *smc);
132void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133		       int frag_count);
134int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135		    int la_len);
136void dump_data(unsigned char *Data, int length);
137
138// External functions from the hardware module
139extern u_int mac_drv_check_space(void);
140extern int mac_drv_init(struct s_smc *smc);
141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142			int len, int frame_status);
143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144		       int frame_len, int frame_status);
145extern void fddi_isr(struct s_smc *smc);
146extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147			int len, int frame_status);
148extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150extern void enable_tx_irq(struct s_smc *smc, u_short queue);
151
152static const struct pci_device_id skfddi_pci_tbl[] = {
153	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154	{ }			/* Terminating entry */
155};
156MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157MODULE_LICENSE("GPL");
158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159
160// Define module-wide (static) variables
161
162static int num_boards;	/* total number of adapters configured */
163
164static const struct net_device_ops skfp_netdev_ops = {
165	.ndo_open		= skfp_open,
166	.ndo_stop		= skfp_close,
167	.ndo_start_xmit		= skfp_send_pkt,
168	.ndo_get_stats		= skfp_ctl_get_stats,
169	.ndo_change_mtu		= fddi_change_mtu,
170	.ndo_set_rx_mode	= skfp_ctl_set_multicast_list,
171	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
172	.ndo_do_ioctl		= skfp_ioctl,
173};
174
175/*
176 * =================
177 * = skfp_init_one =
178 * =================
179 *
180 * Overview:
181 *   Probes for supported FDDI PCI controllers
182 *
183 * Returns:
184 *   Condition code
185 *
186 * Arguments:
187 *   pdev - pointer to PCI device information
188 *
189 * Functional Description:
190 *   This is now called by PCI driver registration process
191 *   for each board found.
192 *
193 * Return Codes:
194 *   0           - This device (fddi0, fddi1, etc) configured successfully
195 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196 *                         present for this device name
197 *
198 *
199 * Side Effects:
200 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
201 *   initialized and the board resources are read and stored in
202 *   the device structure.
203 */
204static int skfp_init_one(struct pci_dev *pdev,
205				const struct pci_device_id *ent)
206{
207	struct net_device *dev;
208	struct s_smc *smc;	/* board pointer */
209	void __iomem *mem;
210	int err;
211
212	pr_debug("entering skfp_init_one\n");
213
214	if (num_boards == 0)
215		printk("%s\n", boot_msg);
216
217	err = pci_enable_device(pdev);
218	if (err)
219		return err;
220
221	err = pci_request_regions(pdev, "skfddi");
222	if (err)
223		goto err_out1;
224
225	pci_set_master(pdev);
226
227#ifdef MEM_MAPPED_IO
228	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230		err = -EIO;
231		goto err_out2;
232	}
233
234	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235#else
236	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237		printk(KERN_ERR "skfp: region is not PIO resource\n");
238		err = -EIO;
239		goto err_out2;
240	}
241
242	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243#endif
244	if (!mem) {
245		printk(KERN_ERR "skfp:  Unable to map register, "
246				"FDDI adapter will be disabled.\n");
247		err = -EIO;
248		goto err_out2;
249	}
250
251	dev = alloc_fddidev(sizeof(struct s_smc));
252	if (!dev) {
253		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254				"FDDI adapter will be disabled.\n");
255		err = -ENOMEM;
256		goto err_out3;
257	}
258
259	dev->irq = pdev->irq;
260	dev->netdev_ops = &skfp_netdev_ops;
261
262	SET_NETDEV_DEV(dev, &pdev->dev);
263
264	/* Initialize board structure with bus-specific info */
265	smc = netdev_priv(dev);
266	smc->os.dev = dev;
267	smc->os.bus_type = SK_BUS_TYPE_PCI;
268	smc->os.pdev = *pdev;
269	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271	smc->os.dev = dev;
272	smc->hw.slot = -1;
273	smc->hw.iop = mem;
274	smc->os.ResetRequested = FALSE;
275	skb_queue_head_init(&smc->os.SendSkbQueue);
276
277	dev->base_addr = (unsigned long)mem;
278
279	err = skfp_driver_init(dev);
280	if (err)
281		goto err_out4;
282
283	err = register_netdev(dev);
284	if (err)
285		goto err_out5;
286
287	++num_boards;
288	pci_set_drvdata(pdev, dev);
289
290	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291	    (pdev->subsystem_device & 0xff00) == 0x5800)
292		printk("%s: SysKonnect FDDI PCI adapter"
293		       " found (SK-%04X)\n", dev->name,
294		       pdev->subsystem_device);
295	else
296		printk("%s: FDDI PCI adapter found\n", dev->name);
297
298	return 0;
299err_out5:
300	if (smc->os.SharedMemAddr)
301		pci_free_consistent(pdev, smc->os.SharedMemSize,
302				    smc->os.SharedMemAddr,
303				    smc->os.SharedMemDMA);
304	pci_free_consistent(pdev, MAX_FRAME_SIZE,
305			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306err_out4:
307	free_netdev(dev);
308err_out3:
309#ifdef MEM_MAPPED_IO
310	iounmap(mem);
311#else
312	ioport_unmap(mem);
313#endif
314err_out2:
315	pci_release_regions(pdev);
316err_out1:
317	pci_disable_device(pdev);
318	return err;
319}
320
321/*
322 * Called for each adapter board from pci_unregister_driver
323 */
324static void skfp_remove_one(struct pci_dev *pdev)
325{
326	struct net_device *p = pci_get_drvdata(pdev);
327	struct s_smc *lp = netdev_priv(p);
328
329	unregister_netdev(p);
330
331	if (lp->os.SharedMemAddr) {
332		pci_free_consistent(&lp->os.pdev,
333				    lp->os.SharedMemSize,
334				    lp->os.SharedMemAddr,
335				    lp->os.SharedMemDMA);
336		lp->os.SharedMemAddr = NULL;
337	}
338	if (lp->os.LocalRxBuffer) {
339		pci_free_consistent(&lp->os.pdev,
340				    MAX_FRAME_SIZE,
341				    lp->os.LocalRxBuffer,
342				    lp->os.LocalRxBufferDMA);
343		lp->os.LocalRxBuffer = NULL;
344	}
345#ifdef MEM_MAPPED_IO
346	iounmap(lp->hw.iop);
347#else
348	ioport_unmap(lp->hw.iop);
349#endif
350	pci_release_regions(pdev);
351	free_netdev(p);
352
353	pci_disable_device(pdev);
354}
355
356/*
357 * ====================
358 * = skfp_driver_init =
359 * ====================
360 *
361 * Overview:
362 *   Initializes remaining adapter board structure information
363 *   and makes sure adapter is in a safe state prior to skfp_open().
364 *
365 * Returns:
366 *   Condition code
367 *
368 * Arguments:
369 *   dev - pointer to device information
370 *
371 * Functional Description:
372 *   This function allocates additional resources such as the host memory
373 *   blocks needed by the adapter.
374 *   The adapter is also reset. The OS must call skfp_open() to open
375 *   the adapter and bring it on-line.
376 *
377 * Return Codes:
378 *    0 - initialization succeeded
379 *   -1 - initialization failed
380 */
381static  int skfp_driver_init(struct net_device *dev)
382{
383	struct s_smc *smc = netdev_priv(dev);
384	skfddi_priv *bp = &smc->os;
385	int err = -EIO;
386
387	pr_debug("entering skfp_driver_init\n");
388
389	// set the io address in private structures
390	bp->base_addr = dev->base_addr;
391
392	// Get the interrupt level from the PCI Configuration Table
393	smc->hw.irq = dev->irq;
394
395	spin_lock_init(&bp->DriverLock);
396
397	// Allocate invalid frame
398	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
399	if (!bp->LocalRxBuffer) {
400		printk("could not allocate mem for ");
401		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
402		goto fail;
403	}
404
405	// Determine the required size of the 'shared' memory area.
406	bp->SharedMemSize = mac_drv_check_space();
407	pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
408	if (bp->SharedMemSize > 0) {
409		bp->SharedMemSize += 16;	// for descriptor alignment
410
411		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
412							 bp->SharedMemSize,
413							 &bp->SharedMemDMA);
414		if (!bp->SharedMemAddr) {
415			printk("could not allocate mem for ");
416			printk("hardware module: %ld byte\n",
417			       bp->SharedMemSize);
418			goto fail;
419		}
420		bp->SharedMemHeap = 0;	// Nothing used yet.
421
422	} else {
423		bp->SharedMemAddr = NULL;
424		bp->SharedMemHeap = 0;
425	}			// SharedMemSize > 0
426
427	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
428
429	card_stop(smc);		// Reset adapter.
430
431	pr_debug("mac_drv_init()..\n");
432	if (mac_drv_init(smc) != 0) {
433		pr_debug("mac_drv_init() failed\n");
434		goto fail;
435	}
436	read_address(smc, NULL);
437	pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
438	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
439
440	smt_reset_defaults(smc, 0);
441
442	return 0;
443
444fail:
445	if (bp->SharedMemAddr) {
446		pci_free_consistent(&bp->pdev,
447				    bp->SharedMemSize,
448				    bp->SharedMemAddr,
449				    bp->SharedMemDMA);
450		bp->SharedMemAddr = NULL;
451	}
452	if (bp->LocalRxBuffer) {
453		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
454				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
455		bp->LocalRxBuffer = NULL;
456	}
457	return err;
458}				// skfp_driver_init
459
460
461/*
462 * =============
463 * = skfp_open =
464 * =============
465 *
466 * Overview:
467 *   Opens the adapter
468 *
469 * Returns:
470 *   Condition code
471 *
472 * Arguments:
473 *   dev - pointer to device information
474 *
475 * Functional Description:
476 *   This function brings the adapter to an operational state.
477 *
478 * Return Codes:
479 *   0           - Adapter was successfully opened
480 *   -EAGAIN - Could not register IRQ
481 */
482static int skfp_open(struct net_device *dev)
483{
484	struct s_smc *smc = netdev_priv(dev);
485	int err;
486
487	pr_debug("entering skfp_open\n");
488	/* Register IRQ - support shared interrupts by passing device ptr */
489	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
490			  dev->name, dev);
491	if (err)
492		return err;
493
494	/*
495	 * Set current address to factory MAC address
496	 *
497	 * Note: We've already done this step in skfp_driver_init.
498	 *       However, it's possible that a user has set a node
499	 *               address override, then closed and reopened the
500	 *               adapter.  Unless we reset the device address field
501	 *               now, we'll continue to use the existing modified
502	 *               address.
503	 */
504	read_address(smc, NULL);
505	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
506
507	init_smt(smc, NULL);
508	smt_online(smc, 1);
509	STI_FBI();
510
511	/* Clear local multicast address tables */
512	mac_clear_multicast(smc);
513
514	/* Disable promiscuous filter settings */
515	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
516
517	netif_start_queue(dev);
518	return 0;
519}				// skfp_open
520
521
522/*
523 * ==============
524 * = skfp_close =
525 * ==============
526 *
527 * Overview:
528 *   Closes the device/module.
529 *
530 * Returns:
531 *   Condition code
532 *
533 * Arguments:
534 *   dev - pointer to device information
535 *
536 * Functional Description:
537 *   This routine closes the adapter and brings it to a safe state.
538 *   The interrupt service routine is deregistered with the OS.
539 *   The adapter can be opened again with another call to skfp_open().
540 *
541 * Return Codes:
542 *   Always return 0.
543 *
544 * Assumptions:
545 *   No further requests for this adapter are made after this routine is
546 *   called.  skfp_open() can be called to reset and reinitialize the
547 *   adapter.
548 */
549static int skfp_close(struct net_device *dev)
550{
551	struct s_smc *smc = netdev_priv(dev);
552	skfddi_priv *bp = &smc->os;
553
554	CLI_FBI();
555	smt_reset_defaults(smc, 1);
556	card_stop(smc);
557	mac_drv_clear_tx_queue(smc);
558	mac_drv_clear_rx_queue(smc);
559
560	netif_stop_queue(dev);
561	/* Deregister (free) IRQ */
562	free_irq(dev->irq, dev);
563
564	skb_queue_purge(&bp->SendSkbQueue);
565	bp->QueueSkb = MAX_TX_QUEUE_LEN;
566
567	return 0;
568}				// skfp_close
569
570
571/*
572 * ==================
573 * = skfp_interrupt =
574 * ==================
575 *
576 * Overview:
577 *   Interrupt processing routine
578 *
579 * Returns:
580 *   None
581 *
582 * Arguments:
583 *   irq        - interrupt vector
584 *   dev_id     - pointer to device information
585 *
586 * Functional Description:
587 *   This routine calls the interrupt processing routine for this adapter.  It
588 *   disables and reenables adapter interrupts, as appropriate.  We can support
589 *   shared interrupts since the incoming dev_id pointer provides our device
590 *   structure context. All the real work is done in the hardware module.
591 *
592 * Return Codes:
593 *   None
594 *
595 * Assumptions:
596 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
597 *   on Intel-based systems) is done by the operating system outside this
598 *   routine.
599 *
600 *       System interrupts are enabled through this call.
601 *
602 * Side Effects:
603 *   Interrupts are disabled, then reenabled at the adapter.
604 */
605
606static irqreturn_t skfp_interrupt(int irq, void *dev_id)
607{
608	struct net_device *dev = dev_id;
609	struct s_smc *smc;	/* private board structure pointer */
610	skfddi_priv *bp;
611
612	smc = netdev_priv(dev);
613	bp = &smc->os;
614
615	// IRQs enabled or disabled ?
616	if (inpd(ADDR(B0_IMSK)) == 0) {
617		// IRQs are disabled: must be shared interrupt
618		return IRQ_NONE;
619	}
620	// Note: At this point, IRQs are enabled.
621	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
622		// Adapter did not issue an IRQ: must be shared interrupt
623		return IRQ_NONE;
624	}
625	CLI_FBI();		// Disable IRQs from our adapter.
626	spin_lock(&bp->DriverLock);
627
628	// Call interrupt handler in hardware module (HWM).
629	fddi_isr(smc);
630
631	if (smc->os.ResetRequested) {
632		ResetAdapter(smc);
633		smc->os.ResetRequested = FALSE;
634	}
635	spin_unlock(&bp->DriverLock);
636	STI_FBI();		// Enable IRQs from our adapter.
637
638	return IRQ_HANDLED;
639}				// skfp_interrupt
640
641
642/*
643 * ======================
644 * = skfp_ctl_get_stats =
645 * ======================
646 *
647 * Overview:
648 *   Get statistics for FDDI adapter
649 *
650 * Returns:
651 *   Pointer to FDDI statistics structure
652 *
653 * Arguments:
654 *   dev - pointer to device information
655 *
656 * Functional Description:
657 *   Gets current MIB objects from adapter, then
658 *   returns FDDI statistics structure as defined
659 *   in if_fddi.h.
660 *
661 *   Note: Since the FDDI statistics structure is
662 *   still new and the device structure doesn't
663 *   have an FDDI-specific get statistics handler,
664 *   we'll return the FDDI statistics structure as
665 *   a pointer to an Ethernet statistics structure.
666 *   That way, at least the first part of the statistics
667 *   structure can be decoded properly.
668 *   We'll have to pay attention to this routine as the
669 *   device structure becomes more mature and LAN media
670 *   independent.
671 *
672 */
673static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
674{
675	struct s_smc *bp = netdev_priv(dev);
676
677	/* Fill the bp->stats structure with driver-maintained counters */
678
679	bp->os.MacStat.port_bs_flag[0] = 0x1234;
680	bp->os.MacStat.port_bs_flag[1] = 0x5678;
681// goos: need to fill out fddi statistic
682#if 0
683	/* Get FDDI SMT MIB objects */
684
685/* Fill the bp->stats structure with the SMT MIB object values */
686
687	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
688	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
689	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
690	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
691	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
692	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
693	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
694	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
695	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
696	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
697	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
698	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
699	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
700	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
701	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
702	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
703	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
704	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
705	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
706	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
707	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
708	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
709	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
710	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
711	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
712	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
713	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
714	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
715	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
716	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
717	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
718	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
719	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
720	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
721	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
722	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
723	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
724	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
725	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
726	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
727	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
728	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
729	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
730	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
731	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
732	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
733	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
734	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
735	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
736	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
737	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
738	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
739	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
740	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
741	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
742	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
743	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
744	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
745	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
746	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
747	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
748	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
749	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
750	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
751	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
752	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
753	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
754	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
755	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
756	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
757	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
758	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
759	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
760	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
761	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
762	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
763	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
764	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
765	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
766	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
767	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
768	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
769	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
770	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
771	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
772	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
773	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
774	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
775	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
776	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
777	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
778	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
779
780
781	/* Fill the bp->stats structure with the FDDI counter values */
782
783	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
784	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
785	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
786	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
787	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
788	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
789	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
790	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
791	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
792	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
793	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
794
795#endif
796	return (struct net_device_stats *)&bp->os.MacStat;
797}				// ctl_get_stat
798
799
800/*
801 * ==============================
802 * = skfp_ctl_set_multicast_list =
803 * ==============================
804 *
805 * Overview:
806 *   Enable/Disable LLC frame promiscuous mode reception
807 *   on the adapter and/or update multicast address table.
808 *
809 * Returns:
810 *   None
811 *
812 * Arguments:
813 *   dev - pointer to device information
814 *
815 * Functional Description:
816 *   This function acquires the driver lock and only calls
817 *   skfp_ctl_set_multicast_list_wo_lock then.
818 *   This routine follows a fairly simple algorithm for setting the
819 *   adapter filters and CAM:
820 *
821 *      if IFF_PROMISC flag is set
822 *              enable promiscuous mode
823 *      else
824 *              disable promiscuous mode
825 *              if number of multicast addresses <= max. multicast number
826 *                      add mc addresses to adapter table
827 *              else
828 *                      enable promiscuous mode
829 *              update adapter filters
830 *
831 * Assumptions:
832 *   Multicast addresses are presented in canonical (LSB) format.
833 *
834 * Side Effects:
835 *   On-board adapter filters are updated.
836 */
837static void skfp_ctl_set_multicast_list(struct net_device *dev)
838{
839	struct s_smc *smc = netdev_priv(dev);
840	skfddi_priv *bp = &smc->os;
841	unsigned long Flags;
842
843	spin_lock_irqsave(&bp->DriverLock, Flags);
844	skfp_ctl_set_multicast_list_wo_lock(dev);
845	spin_unlock_irqrestore(&bp->DriverLock, Flags);
846}				// skfp_ctl_set_multicast_list
847
848
849
850static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
851{
852	struct s_smc *smc = netdev_priv(dev);
853	struct netdev_hw_addr *ha;
854
855	/* Enable promiscuous mode, if necessary */
856	if (dev->flags & IFF_PROMISC) {
857		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
858		pr_debug("PROMISCUOUS MODE ENABLED\n");
859	}
860	/* Else, update multicast address table */
861	else {
862		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
863		pr_debug("PROMISCUOUS MODE DISABLED\n");
864
865		// Reset all MC addresses
866		mac_clear_multicast(smc);
867		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
868
869		if (dev->flags & IFF_ALLMULTI) {
870			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
871			pr_debug("ENABLE ALL MC ADDRESSES\n");
872		} else if (!netdev_mc_empty(dev)) {
873			if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
874				/* use exact filtering */
875
876				// point to first multicast addr
877				netdev_for_each_mc_addr(ha, dev) {
878					mac_add_multicast(smc,
879						(struct fddi_addr *)ha->addr,
880						1);
881
882					pr_debug("ENABLE MC ADDRESS: %pMF\n",
883						 ha->addr);
884				}
885
886			} else {	// more MC addresses than HW supports
887
888				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
889				pr_debug("ENABLE ALL MC ADDRESSES\n");
890			}
891		} else {	// no MC addresses
892
893			pr_debug("DISABLE ALL MC ADDRESSES\n");
894		}
895
896		/* Update adapter filters */
897		mac_update_multicast(smc);
898	}
899}				// skfp_ctl_set_multicast_list_wo_lock
900
901
902/*
903 * ===========================
904 * = skfp_ctl_set_mac_address =
905 * ===========================
906 *
907 * Overview:
908 *   set new mac address on adapter and update dev_addr field in device table.
909 *
910 * Returns:
911 *   None
912 *
913 * Arguments:
914 *   dev  - pointer to device information
915 *   addr - pointer to sockaddr structure containing unicast address to set
916 *
917 * Assumptions:
918 *   The address pointed to by addr->sa_data is a valid unicast
919 *   address and is presented in canonical (LSB) format.
920 */
921static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
922{
923	struct s_smc *smc = netdev_priv(dev);
924	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
925	skfddi_priv *bp = &smc->os;
926	unsigned long Flags;
927
928
929	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
930	spin_lock_irqsave(&bp->DriverLock, Flags);
931	ResetAdapter(smc);
932	spin_unlock_irqrestore(&bp->DriverLock, Flags);
933
934	return 0;		/* always return zero */
935}				// skfp_ctl_set_mac_address
936
937
938/*
939 * ==============
940 * = skfp_ioctl =
941 * ==============
942 *
943 * Overview:
944 *
945 * Perform IOCTL call functions here. Some are privileged operations and the
946 * effective uid is checked in those cases.
947 *
948 * Returns:
949 *   status value
950 *   0 - success
951 *   other - failure
952 *
953 * Arguments:
954 *   dev  - pointer to device information
955 *   rq - pointer to ioctl request structure
956 *   cmd - ?
957 *
958 */
959
960
961static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
962{
963	struct s_smc *smc = netdev_priv(dev);
964	skfddi_priv *lp = &smc->os;
965	struct s_skfp_ioctl ioc;
966	int status = 0;
967
968	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
969		return -EFAULT;
970
971	switch (ioc.cmd) {
972	case SKFP_GET_STATS:	/* Get the driver statistics */
973		ioc.len = sizeof(lp->MacStat);
974		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
975				? -EFAULT : 0;
976		break;
977	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
978		if (!capable(CAP_NET_ADMIN)) {
979			status = -EPERM;
980		} else {
981			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
982		}
983		break;
984	default:
985		printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
986		status = -EOPNOTSUPP;
987
988	}			// switch
989
990	return status;
991}				// skfp_ioctl
992
993
994/*
995 * =====================
996 * = skfp_send_pkt     =
997 * =====================
998 *
999 * Overview:
1000 *   Queues a packet for transmission and try to transmit it.
1001 *
1002 * Returns:
1003 *   Condition code
1004 *
1005 * Arguments:
1006 *   skb - pointer to sk_buff to queue for transmission
1007 *   dev - pointer to device information
1008 *
1009 * Functional Description:
1010 *   Here we assume that an incoming skb transmit request
1011 *   is contained in a single physically contiguous buffer
1012 *   in which the virtual address of the start of packet
1013 *   (skb->data) can be converted to a physical address
1014 *   by using pci_map_single().
1015 *
1016 *   We have an internal queue for packets we can not send
1017 *   immediately. Packets in this queue can be given to the
1018 *   adapter if transmit buffers are freed.
1019 *
1020 *   We can't free the skb until after it's been DMA'd
1021 *   out by the adapter, so we'll keep it in the driver and
1022 *   return it in mac_drv_tx_complete.
1023 *
1024 * Return Codes:
1025 *   0 - driver has queued and/or sent packet
1026 *       1 - caller should requeue the sk_buff for later transmission
1027 *
1028 * Assumptions:
1029 *   The entire packet is stored in one physically
1030 *   contiguous buffer which is not cached and whose
1031 *   32-bit physical address can be determined.
1032 *
1033 *   It's vital that this routine is NOT reentered for the
1034 *   same board and that the OS is not in another section of
1035 *   code (eg. skfp_interrupt) for the same board on a
1036 *   different thread.
1037 *
1038 * Side Effects:
1039 *   None
1040 */
1041static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1042				       struct net_device *dev)
1043{
1044	struct s_smc *smc = netdev_priv(dev);
1045	skfddi_priv *bp = &smc->os;
1046
1047	pr_debug("skfp_send_pkt\n");
1048
1049	/*
1050	 * Verify that incoming transmit request is OK
1051	 *
1052	 * Note: The packet size check is consistent with other
1053	 *               Linux device drivers, although the correct packet
1054	 *               size should be verified before calling the
1055	 *               transmit routine.
1056	 */
1057
1058	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1059		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1060		// dequeue packets from xmt queue and send them
1061		netif_start_queue(dev);
1062		dev_kfree_skb(skb);
1063		return NETDEV_TX_OK;	/* return "success" */
1064	}
1065	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1066
1067		netif_stop_queue(dev);
1068		return NETDEV_TX_BUSY;
1069	}
1070	bp->QueueSkb--;
1071	skb_queue_tail(&bp->SendSkbQueue, skb);
1072	send_queued_packets(netdev_priv(dev));
1073	if (bp->QueueSkb == 0) {
1074		netif_stop_queue(dev);
1075	}
1076	return NETDEV_TX_OK;
1077
1078}				// skfp_send_pkt
1079
1080
1081/*
1082 * =======================
1083 * = send_queued_packets =
1084 * =======================
1085 *
1086 * Overview:
1087 *   Send packets from the driver queue as long as there are some and
1088 *   transmit resources are available.
1089 *
1090 * Returns:
1091 *   None
1092 *
1093 * Arguments:
1094 *   smc - pointer to smc (adapter) structure
1095 *
1096 * Functional Description:
1097 *   Take a packet from queue if there is any. If not, then we are done.
1098 *   Check if there are resources to send the packet. If not, requeue it
1099 *   and exit.
1100 *   Set packet descriptor flags and give packet to adapter.
1101 *   Check if any send resources can be freed (we do not use the
1102 *   transmit complete interrupt).
1103 */
1104static void send_queued_packets(struct s_smc *smc)
1105{
1106	skfddi_priv *bp = &smc->os;
1107	struct sk_buff *skb;
1108	unsigned char fc;
1109	int queue;
1110	struct s_smt_fp_txd *txd;	// Current TxD.
1111	dma_addr_t dma_address;
1112	unsigned long Flags;
1113
1114	int frame_status;	// HWM tx frame status.
1115
1116	pr_debug("send queued packets\n");
1117	for (;;) {
1118		// send first buffer from queue
1119		skb = skb_dequeue(&bp->SendSkbQueue);
1120
1121		if (!skb) {
1122			pr_debug("queue empty\n");
1123			return;
1124		}		// queue empty !
1125
1126		spin_lock_irqsave(&bp->DriverLock, Flags);
1127		fc = skb->data[0];
1128		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1129#ifdef ESS
1130		// Check if the frame may/must be sent as a synchronous frame.
1131
1132		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1133			// It's an LLC frame.
1134			if (!smc->ess.sync_bw_available)
1135				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1136
1137			else {	// Bandwidth is available.
1138
1139				if (smc->mib.fddiESSSynchTxMode) {
1140					// Send as sync. frame.
1141					fc |= FC_SYNC_BIT;
1142				}
1143			}
1144		}
1145#endif				// ESS
1146		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1147
1148		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1149			// Unable to send the frame.
1150
1151			if ((frame_status & RING_DOWN) != 0) {
1152				// Ring is down.
1153				pr_debug("Tx attempt while ring down.\n");
1154			} else if ((frame_status & OUT_OF_TXD) != 0) {
1155				pr_debug("%s: out of TXDs.\n", bp->dev->name);
1156			} else {
1157				pr_debug("%s: out of transmit resources",
1158					bp->dev->name);
1159			}
1160
1161			// Note: We will retry the operation as soon as
1162			// transmit resources become available.
1163			skb_queue_head(&bp->SendSkbQueue, skb);
1164			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1165			return;	// Packet has been queued.
1166
1167		}		// if (unable to send frame)
1168
1169		bp->QueueSkb++;	// one packet less in local queue
1170
1171		// source address in packet ?
1172		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1173
1174		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1175
1176		dma_address = pci_map_single(&bp->pdev, skb->data,
1177					     skb->len, PCI_DMA_TODEVICE);
1178		if (frame_status & LAN_TX) {
1179			txd->txd_os.skb = skb;			// save skb
1180			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1181		}
1182		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1183                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1184
1185		if (!(frame_status & LAN_TX)) {		// local only frame
1186			pci_unmap_single(&bp->pdev, dma_address,
1187					 skb->len, PCI_DMA_TODEVICE);
1188			dev_kfree_skb_irq(skb);
1189		}
1190		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1191	}			// for
1192
1193	return;			// never reached
1194
1195}				// send_queued_packets
1196
1197
1198/************************
1199 *
1200 * CheckSourceAddress
1201 *
1202 * Verify if the source address is set. Insert it if necessary.
1203 *
1204 ************************/
1205static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1206{
1207	unsigned char SRBit;
1208
1209	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1210
1211		return;
1212	if ((unsigned short) frame[1 + 10] != 0)
1213		return;
1214	SRBit = frame[1 + 6] & 0x01;
1215	memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1216	frame[8] |= SRBit;
1217}				// CheckSourceAddress
1218
1219
1220/************************
1221 *
1222 *	ResetAdapter
1223 *
1224 *	Reset the adapter and bring it back to operational mode.
1225 * Args
1226 *	smc - A pointer to the SMT context struct.
1227 * Out
1228 *	Nothing.
1229 *
1230 ************************/
1231static void ResetAdapter(struct s_smc *smc)
1232{
1233
1234	pr_debug("[fddi: ResetAdapter]\n");
1235
1236	// Stop the adapter.
1237
1238	card_stop(smc);		// Stop all activity.
1239
1240	// Clear the transmit and receive descriptor queues.
1241	mac_drv_clear_tx_queue(smc);
1242	mac_drv_clear_rx_queue(smc);
1243
1244	// Restart the adapter.
1245
1246	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1247
1248	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1249
1250	smt_online(smc, 1);	// Insert into the ring again.
1251	STI_FBI();
1252
1253	// Restore original receive mode (multicasts, promiscuous, etc.).
1254	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1255}				// ResetAdapter
1256
1257
1258//--------------- functions called by hardware module ----------------
1259
1260/************************
1261 *
1262 *	llc_restart_tx
1263 *
1264 *	The hardware driver calls this routine when the transmit complete
1265 *	interrupt bits (end of frame) for the synchronous or asynchronous
1266 *	queue is set.
1267 *
1268 * NOTE The hardware driver calls this function also if no packets are queued.
1269 *	The routine must be able to handle this case.
1270 * Args
1271 *	smc - A pointer to the SMT context struct.
1272 * Out
1273 *	Nothing.
1274 *
1275 ************************/
1276void llc_restart_tx(struct s_smc *smc)
1277{
1278	skfddi_priv *bp = &smc->os;
1279
1280	pr_debug("[llc_restart_tx]\n");
1281
1282	// Try to send queued packets
1283	spin_unlock(&bp->DriverLock);
1284	send_queued_packets(smc);
1285	spin_lock(&bp->DriverLock);
1286	netif_start_queue(bp->dev);// system may send again if it was blocked
1287
1288}				// llc_restart_tx
1289
1290
1291/************************
1292 *
1293 *	mac_drv_get_space
1294 *
1295 *	The hardware module calls this function to allocate the memory
1296 *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1297 * Args
1298 *	smc - A pointer to the SMT context struct.
1299 *
1300 *	size - Size of memory in bytes to allocate.
1301 * Out
1302 *	!= 0	A pointer to the virtual address of the allocated memory.
1303 *	== 0	Allocation error.
1304 *
1305 ************************/
1306void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1307{
1308	void *virt;
1309
1310	pr_debug("mac_drv_get_space (%d bytes), ", size);
1311	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1312
1313	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1314		printk("Unexpected SMT memory size requested: %d\n", size);
1315		return NULL;
1316	}
1317	smc->os.SharedMemHeap += size;	// Move heap pointer.
1318
1319	pr_debug("mac_drv_get_space end\n");
1320	pr_debug("virt addr: %lx\n", (ulong) virt);
1321	pr_debug("bus  addr: %lx\n", (ulong)
1322	       (smc->os.SharedMemDMA +
1323		((char *) virt - (char *)smc->os.SharedMemAddr)));
1324	return virt;
1325}				// mac_drv_get_space
1326
1327
1328/************************
1329 *
1330 *	mac_drv_get_desc_mem
1331 *
1332 *	This function is called by the hardware dependent module.
1333 *	It allocates the memory for the RxD and TxD descriptors.
1334 *
1335 *	This memory must be non-cached, non-movable and non-swappable.
1336 *	This memory should start at a physical page boundary.
1337 * Args
1338 *	smc - A pointer to the SMT context struct.
1339 *
1340 *	size - Size of memory in bytes to allocate.
1341 * Out
1342 *	!= 0	A pointer to the virtual address of the allocated memory.
1343 *	== 0	Allocation error.
1344 *
1345 ************************/
1346void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1347{
1348
1349	char *virt;
1350
1351	pr_debug("mac_drv_get_desc_mem\n");
1352
1353	// Descriptor memory must be aligned on 16-byte boundary.
1354
1355	virt = mac_drv_get_space(smc, size);
1356
1357	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1358	size = size % 16;
1359
1360	pr_debug("Allocate %u bytes alignment gap ", size);
1361	pr_debug("for descriptor memory.\n");
1362
1363	if (!mac_drv_get_space(smc, size)) {
1364		printk("fddi: Unable to align descriptor memory.\n");
1365		return NULL;
1366	}
1367	return virt + size;
1368}				// mac_drv_get_desc_mem
1369
1370
1371/************************
1372 *
1373 *	mac_drv_virt2phys
1374 *
1375 *	Get the physical address of a given virtual address.
1376 * Args
1377 *	smc - A pointer to the SMT context struct.
1378 *
1379 *	virt - A (virtual) pointer into our 'shared' memory area.
1380 * Out
1381 *	Physical address of the given virtual address.
1382 *
1383 ************************/
1384unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1385{
1386	return smc->os.SharedMemDMA +
1387		((char *) virt - (char *)smc->os.SharedMemAddr);
1388}				// mac_drv_virt2phys
1389
1390
1391/************************
1392 *
1393 *	dma_master
1394 *
1395 *	The HWM calls this function, when the driver leads through a DMA
1396 *	transfer. If the OS-specific module must prepare the system hardware
1397 *	for the DMA transfer, it should do it in this function.
1398 *
1399 *	The hardware module calls this dma_master if it wants to send an SMT
1400 *	frame.  This means that the virt address passed in here is part of
1401 *      the 'shared' memory area.
1402 * Args
1403 *	smc - A pointer to the SMT context struct.
1404 *
1405 *	virt - The virtual address of the data.
1406 *
1407 *	len - The length in bytes of the data.
1408 *
1409 *	flag - Indicates the transmit direction and the buffer type:
1410 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1411 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1412 *		SMT_BUF (0x80)	SMT buffer
1413 *
1414 *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1415 * Out
1416 *	Returns the pyhsical address for the DMA transfer.
1417 *
1418 ************************/
1419u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1420{
1421	return smc->os.SharedMemDMA +
1422		((char *) virt - (char *)smc->os.SharedMemAddr);
1423}				// dma_master
1424
1425
1426/************************
1427 *
1428 *	dma_complete
1429 *
1430 *	The hardware module calls this routine when it has completed a DMA
1431 *	transfer. If the operating system dependent module has set up the DMA
1432 *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1433 *	the DMA channel.
1434 * Args
1435 *	smc - A pointer to the SMT context struct.
1436 *
1437 *	descr - A pointer to a TxD or RxD, respectively.
1438 *
1439 *	flag - Indicates the DMA transfer direction / SMT buffer:
1440 *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1441 *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1442 *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1443 * Out
1444 *	Nothing.
1445 *
1446 ************************/
1447void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1448{
1449	/* For TX buffers, there are two cases.  If it is an SMT transmit
1450	 * buffer, there is nothing to do since we use consistent memory
1451	 * for the 'shared' memory area.  The other case is for normal
1452	 * transmit packets given to us by the networking stack, and in
1453	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1454	 * below.
1455	 *
1456	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1457	 * because the hardware module is about to potentially look at
1458	 * the contents of the buffer.  If we did not call the PCI DMA
1459	 * unmap first, the hardware module could read inconsistent data.
1460	 */
1461	if (flag & DMA_WR) {
1462		skfddi_priv *bp = &smc->os;
1463		volatile struct s_smt_fp_rxd *r = &descr->r;
1464
1465		/* If SKB is NULL, we used the local buffer. */
1466		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1467			int MaxFrameSize = bp->MaxFrameSize;
1468
1469			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1470					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1471			r->rxd_os.dma_addr = 0;
1472		}
1473	}
1474}				// dma_complete
1475
1476
1477/************************
1478 *
1479 *	mac_drv_tx_complete
1480 *
1481 *	Transmit of a packet is complete. Release the tx staging buffer.
1482 *
1483 * Args
1484 *	smc - A pointer to the SMT context struct.
1485 *
1486 *	txd - A pointer to the last TxD which is used by the frame.
1487 * Out
1488 *	Returns nothing.
1489 *
1490 ************************/
1491void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1492{
1493	struct sk_buff *skb;
1494
1495	pr_debug("entering mac_drv_tx_complete\n");
1496	// Check if this TxD points to a skb
1497
1498	if (!(skb = txd->txd_os.skb)) {
1499		pr_debug("TXD with no skb assigned.\n");
1500		return;
1501	}
1502	txd->txd_os.skb = NULL;
1503
1504	// release the DMA mapping
1505	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1506			 skb->len, PCI_DMA_TODEVICE);
1507	txd->txd_os.dma_addr = 0;
1508
1509	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1510	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1511
1512	// free the skb
1513	dev_kfree_skb_irq(skb);
1514
1515	pr_debug("leaving mac_drv_tx_complete\n");
1516}				// mac_drv_tx_complete
1517
1518
1519/************************
1520 *
1521 * dump packets to logfile
1522 *
1523 ************************/
1524#ifdef DUMPPACKETS
1525void dump_data(unsigned char *Data, int length)
1526{
1527	int i, j;
1528	unsigned char s[255], sh[10];
1529	if (length > 64) {
1530		length = 64;
1531	}
1532	printk(KERN_INFO "---Packet start---\n");
1533	for (i = 0, j = 0; i < length / 8; i++, j += 8)
1534		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1535		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1536		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1537	strcpy(s, "");
1538	for (i = 0; i < length % 8; i++) {
1539		sprintf(sh, "%02x ", Data[j + i]);
1540		strcat(s, sh);
1541	}
1542	printk(KERN_INFO "%s\n", s);
1543	printk(KERN_INFO "------------------\n");
1544}				// dump_data
1545#else
1546#define dump_data(data,len)
1547#endif				// DUMPPACKETS
1548
1549/************************
1550 *
1551 *	mac_drv_rx_complete
1552 *
1553 *	The hardware module calls this function if an LLC frame is received
1554 *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1555 *	from the network will be passed to the LLC layer by this function
1556 *	if passing is enabled.
1557 *
1558 *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1559 *	be received. It also fills the RxD ring with new receive buffers if
1560 *	some can be queued.
1561 * Args
1562 *	smc - A pointer to the SMT context struct.
1563 *
1564 *	rxd - A pointer to the first RxD which is used by the receive frame.
1565 *
1566 *	frag_count - Count of RxDs used by the received frame.
1567 *
1568 *	len - Frame length.
1569 * Out
1570 *	Nothing.
1571 *
1572 ************************/
1573void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1574			 int frag_count, int len)
1575{
1576	skfddi_priv *bp = &smc->os;
1577	struct sk_buff *skb;
1578	unsigned char *virt, *cp;
1579	unsigned short ri;
1580	u_int RifLength;
1581
1582	pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1583	if (frag_count != 1) {	// This is not allowed to happen.
1584
1585		printk("fddi: Multi-fragment receive!\n");
1586		goto RequeueRxd;	// Re-use the given RXD(s).
1587
1588	}
1589	skb = rxd->rxd_os.skb;
1590	if (!skb) {
1591		pr_debug("No skb in rxd\n");
1592		smc->os.MacStat.gen.rx_errors++;
1593		goto RequeueRxd;
1594	}
1595	virt = skb->data;
1596
1597	// The DMA mapping was released in dma_complete above.
1598
1599	dump_data(skb->data, len);
1600
1601	/*
1602	 * FDDI Frame format:
1603	 * +-------+-------+-------+------------+--------+------------+
1604	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1605	 * +-------+-------+-------+------------+--------+------------+
1606	 *
1607	 * FC = Frame Control
1608	 * DA = Destination Address
1609	 * SA = Source Address
1610	 * RIF = Routing Information Field
1611	 * LLC = Logical Link Control
1612	 */
1613
1614	// Remove Routing Information Field (RIF), if present.
1615
1616	if ((virt[1 + 6] & FDDI_RII) == 0)
1617		RifLength = 0;
1618	else {
1619		int n;
1620// goos: RIF removal has still to be tested
1621		pr_debug("RIF found\n");
1622		// Get RIF length from Routing Control (RC) field.
1623		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1624
1625		ri = ntohs(*((__be16 *) cp));
1626		RifLength = ri & FDDI_RCF_LEN_MASK;
1627		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1628			printk("fddi: Invalid RIF.\n");
1629			goto RequeueRxd;	// Discard the frame.
1630
1631		}
1632		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1633		// regions overlap
1634
1635		virt = cp + RifLength;
1636		for (n = FDDI_MAC_HDR_LEN; n; n--)
1637			*--virt = *--cp;
1638		// adjust sbd->data pointer
1639		skb_pull(skb, RifLength);
1640		len -= RifLength;
1641		RifLength = 0;
1642	}
1643
1644	// Count statistics.
1645	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1646						// packets.
1647	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1648
1649	// virt points to header again
1650	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1651
1652		smc->os.MacStat.gen.multicast++;
1653	}
1654
1655	// deliver frame to system
1656	rxd->rxd_os.skb = NULL;
1657	skb_trim(skb, len);
1658	skb->protocol = fddi_type_trans(skb, bp->dev);
1659
1660	netif_rx(skb);
1661
1662	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1663	return;
1664
1665      RequeueRxd:
1666	pr_debug("Rx: re-queue RXD.\n");
1667	mac_drv_requeue_rxd(smc, rxd, frag_count);
1668	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1669						// not indicated.
1670
1671}				// mac_drv_rx_complete
1672
1673
1674/************************
1675 *
1676 *	mac_drv_requeue_rxd
1677 *
1678 *	The hardware module calls this function to request the OS-specific
1679 *	module to queue the receive buffer(s) represented by the pointer
1680 *	to the RxD and the frag_count into the receive queue again. This
1681 *	buffer was filled with an invalid frame or an SMT frame.
1682 * Args
1683 *	smc - A pointer to the SMT context struct.
1684 *
1685 *	rxd - A pointer to the first RxD which is used by the receive frame.
1686 *
1687 *	frag_count - Count of RxDs used by the received frame.
1688 * Out
1689 *	Nothing.
1690 *
1691 ************************/
1692void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1693			 int frag_count)
1694{
1695	volatile struct s_smt_fp_rxd *next_rxd;
1696	volatile struct s_smt_fp_rxd *src_rxd;
1697	struct sk_buff *skb;
1698	int MaxFrameSize;
1699	unsigned char *v_addr;
1700	dma_addr_t b_addr;
1701
1702	if (frag_count != 1)	// This is not allowed to happen.
1703
1704		printk("fddi: Multi-fragment requeue!\n");
1705
1706	MaxFrameSize = smc->os.MaxFrameSize;
1707	src_rxd = rxd;
1708	for (; frag_count > 0; frag_count--) {
1709		next_rxd = src_rxd->rxd_next;
1710		rxd = HWM_GET_CURR_RXD(smc);
1711
1712		skb = src_rxd->rxd_os.skb;
1713		if (skb == NULL) {	// this should not happen
1714
1715			pr_debug("Requeue with no skb in rxd!\n");
1716			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1717			if (skb) {
1718				// we got a skb
1719				rxd->rxd_os.skb = skb;
1720				skb_reserve(skb, 3);
1721				skb_put(skb, MaxFrameSize);
1722				v_addr = skb->data;
1723				b_addr = pci_map_single(&smc->os.pdev,
1724							v_addr,
1725							MaxFrameSize,
1726							PCI_DMA_FROMDEVICE);
1727				rxd->rxd_os.dma_addr = b_addr;
1728			} else {
1729				// no skb available, use local buffer
1730				pr_debug("Queueing invalid buffer!\n");
1731				rxd->rxd_os.skb = NULL;
1732				v_addr = smc->os.LocalRxBuffer;
1733				b_addr = smc->os.LocalRxBufferDMA;
1734			}
1735		} else {
1736			// we use skb from old rxd
1737			rxd->rxd_os.skb = skb;
1738			v_addr = skb->data;
1739			b_addr = pci_map_single(&smc->os.pdev,
1740						v_addr,
1741						MaxFrameSize,
1742						PCI_DMA_FROMDEVICE);
1743			rxd->rxd_os.dma_addr = b_addr;
1744		}
1745		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1746			    FIRST_FRAG | LAST_FRAG);
1747
1748		src_rxd = next_rxd;
1749	}
1750}				// mac_drv_requeue_rxd
1751
1752
1753/************************
1754 *
1755 *	mac_drv_fill_rxd
1756 *
1757 *	The hardware module calls this function at initialization time
1758 *	to fill the RxD ring with receive buffers. It is also called by
1759 *	mac_drv_rx_complete if rx_free is large enough to queue some new
1760 *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1761 *	receive buffers as long as enough RxDs and receive buffers are
1762 *	available.
1763 * Args
1764 *	smc - A pointer to the SMT context struct.
1765 * Out
1766 *	Nothing.
1767 *
1768 ************************/
1769void mac_drv_fill_rxd(struct s_smc *smc)
1770{
1771	int MaxFrameSize;
1772	unsigned char *v_addr;
1773	unsigned long b_addr;
1774	struct sk_buff *skb;
1775	volatile struct s_smt_fp_rxd *rxd;
1776
1777	pr_debug("entering mac_drv_fill_rxd\n");
1778
1779	// Walk through the list of free receive buffers, passing receive
1780	// buffers to the HWM as long as RXDs are available.
1781
1782	MaxFrameSize = smc->os.MaxFrameSize;
1783	// Check if there is any RXD left.
1784	while (HWM_GET_RX_FREE(smc) > 0) {
1785		pr_debug(".\n");
1786
1787		rxd = HWM_GET_CURR_RXD(smc);
1788		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1789		if (skb) {
1790			// we got a skb
1791			skb_reserve(skb, 3);
1792			skb_put(skb, MaxFrameSize);
1793			v_addr = skb->data;
1794			b_addr = pci_map_single(&smc->os.pdev,
1795						v_addr,
1796						MaxFrameSize,
1797						PCI_DMA_FROMDEVICE);
1798			rxd->rxd_os.dma_addr = b_addr;
1799		} else {
1800			// no skb available, use local buffer
1801			// System has run out of buffer memory, but we want to
1802			// keep the receiver running in hope of better times.
1803			// Multiple descriptors may point to this local buffer,
1804			// so data in it must be considered invalid.
1805			pr_debug("Queueing invalid buffer!\n");
1806			v_addr = smc->os.LocalRxBuffer;
1807			b_addr = smc->os.LocalRxBufferDMA;
1808		}
1809
1810		rxd->rxd_os.skb = skb;
1811
1812		// Pass receive buffer to HWM.
1813		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1814			    FIRST_FRAG | LAST_FRAG);
1815	}
1816	pr_debug("leaving mac_drv_fill_rxd\n");
1817}				// mac_drv_fill_rxd
1818
1819
1820/************************
1821 *
1822 *	mac_drv_clear_rxd
1823 *
1824 *	The hardware module calls this function to release unused
1825 *	receive buffers.
1826 * Args
1827 *	smc - A pointer to the SMT context struct.
1828 *
1829 *	rxd - A pointer to the first RxD which is used by the receive buffer.
1830 *
1831 *	frag_count - Count of RxDs used by the receive buffer.
1832 * Out
1833 *	Nothing.
1834 *
1835 ************************/
1836void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1837		       int frag_count)
1838{
1839
1840	struct sk_buff *skb;
1841
1842	pr_debug("entering mac_drv_clear_rxd\n");
1843
1844	if (frag_count != 1)	// This is not allowed to happen.
1845
1846		printk("fddi: Multi-fragment clear!\n");
1847
1848	for (; frag_count > 0; frag_count--) {
1849		skb = rxd->rxd_os.skb;
1850		if (skb != NULL) {
1851			skfddi_priv *bp = &smc->os;
1852			int MaxFrameSize = bp->MaxFrameSize;
1853
1854			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1855					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1856
1857			dev_kfree_skb(skb);
1858			rxd->rxd_os.skb = NULL;
1859		}
1860		rxd = rxd->rxd_next;	// Next RXD.
1861
1862	}
1863}				// mac_drv_clear_rxd
1864
1865
1866/************************
1867 *
1868 *	mac_drv_rx_init
1869 *
1870 *	The hardware module calls this routine when an SMT or NSA frame of the
1871 *	local SMT should be delivered to the LLC layer.
1872 *
1873 *	It is necessary to have this function, because there is no other way to
1874 *	copy the contents of SMT MBufs into receive buffers.
1875 *
1876 *	mac_drv_rx_init allocates the required target memory for this frame,
1877 *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1878 * Args
1879 *	smc - A pointer to the SMT context struct.
1880 *
1881 *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1882 *
1883 *	fc - The Frame Control field of the received frame.
1884 *
1885 *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1886 *
1887 *	la_len - The length of the lookahead data stored in the lookahead
1888 *	buffer (may be zero).
1889 * Out
1890 *	Always returns zero (0).
1891 *
1892 ************************/
1893int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1894		    char *look_ahead, int la_len)
1895{
1896	struct sk_buff *skb;
1897
1898	pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1899
1900	// "Received" a SMT or NSA frame of the local SMT.
1901
1902	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1903		pr_debug("fddi: Discard invalid local SMT frame\n");
1904		pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1905		       len, la_len, (unsigned long) look_ahead);
1906		return 0;
1907	}
1908	skb = alloc_skb(len + 3, GFP_ATOMIC);
1909	if (!skb) {
1910		pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1911		return 0;
1912	}
1913	skb_reserve(skb, 3);
1914	skb_put(skb, len);
1915	skb_copy_to_linear_data(skb, look_ahead, len);
1916
1917	// deliver frame to system
1918	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1919	netif_rx(skb);
1920
1921	return 0;
1922}				// mac_drv_rx_init
1923
1924
1925/************************
1926 *
1927 *	smt_timer_poll
1928 *
1929 *	This routine is called periodically by the SMT module to clean up the
1930 *	driver.
1931 *
1932 *	Return any queued frames back to the upper protocol layers if the ring
1933 *	is down.
1934 * Args
1935 *	smc - A pointer to the SMT context struct.
1936 * Out
1937 *	Nothing.
1938 *
1939 ************************/
1940void smt_timer_poll(struct s_smc *smc)
1941{
1942}				// smt_timer_poll
1943
1944
1945/************************
1946 *
1947 *	ring_status_indication
1948 *
1949 *	This function indicates a change of the ring state.
1950 * Args
1951 *	smc - A pointer to the SMT context struct.
1952 *
1953 *	status - The current ring status.
1954 * Out
1955 *	Nothing.
1956 *
1957 ************************/
1958void ring_status_indication(struct s_smc *smc, u_long status)
1959{
1960	pr_debug("ring_status_indication( ");
1961	if (status & RS_RES15)
1962		pr_debug("RS_RES15 ");
1963	if (status & RS_HARDERROR)
1964		pr_debug("RS_HARDERROR ");
1965	if (status & RS_SOFTERROR)
1966		pr_debug("RS_SOFTERROR ");
1967	if (status & RS_BEACON)
1968		pr_debug("RS_BEACON ");
1969	if (status & RS_PATHTEST)
1970		pr_debug("RS_PATHTEST ");
1971	if (status & RS_SELFTEST)
1972		pr_debug("RS_SELFTEST ");
1973	if (status & RS_RES9)
1974		pr_debug("RS_RES9 ");
1975	if (status & RS_DISCONNECT)
1976		pr_debug("RS_DISCONNECT ");
1977	if (status & RS_RES7)
1978		pr_debug("RS_RES7 ");
1979	if (status & RS_DUPADDR)
1980		pr_debug("RS_DUPADDR ");
1981	if (status & RS_NORINGOP)
1982		pr_debug("RS_NORINGOP ");
1983	if (status & RS_VERSION)
1984		pr_debug("RS_VERSION ");
1985	if (status & RS_STUCKBYPASSS)
1986		pr_debug("RS_STUCKBYPASSS ");
1987	if (status & RS_EVENT)
1988		pr_debug("RS_EVENT ");
1989	if (status & RS_RINGOPCHANGE)
1990		pr_debug("RS_RINGOPCHANGE ");
1991	if (status & RS_RES0)
1992		pr_debug("RS_RES0 ");
1993	pr_debug("]\n");
1994}				// ring_status_indication
1995
1996
1997/************************
1998 *
1999 *	smt_get_time
2000 *
2001 *	Gets the current time from the system.
2002 * Args
2003 *	None.
2004 * Out
2005 *	The current time in TICKS_PER_SECOND.
2006 *
2007 *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2008 *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2009 *	to the time returned by smt_get_time().
2010 *
2011 ************************/
2012unsigned long smt_get_time(void)
2013{
2014	return jiffies;
2015}				// smt_get_time
2016
2017
2018/************************
2019 *
2020 *	smt_stat_counter
2021 *
2022 *	Status counter update (ring_op, fifo full).
2023 * Args
2024 *	smc - A pointer to the SMT context struct.
2025 *
2026 *	stat -	= 0: A ring operational change occurred.
2027 *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2028 * Out
2029 *	Nothing.
2030 *
2031 ************************/
2032void smt_stat_counter(struct s_smc *smc, int stat)
2033{
2034//      BOOLEAN RingIsUp ;
2035
2036	pr_debug("smt_stat_counter\n");
2037	switch (stat) {
2038	case 0:
2039		pr_debug("Ring operational change.\n");
2040		break;
2041	case 1:
2042		pr_debug("Receive fifo overflow.\n");
2043		smc->os.MacStat.gen.rx_errors++;
2044		break;
2045	default:
2046		pr_debug("Unknown status (%d).\n", stat);
2047		break;
2048	}
2049}				// smt_stat_counter
2050
2051
2052/************************
2053 *
2054 *	cfm_state_change
2055 *
2056 *	Sets CFM state in custom statistics.
2057 * Args
2058 *	smc - A pointer to the SMT context struct.
2059 *
2060 *	c_state - Possible values are:
2061 *
2062 *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2063 *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2064 * Out
2065 *	Nothing.
2066 *
2067 ************************/
2068void cfm_state_change(struct s_smc *smc, int c_state)
2069{
2070#ifdef DRIVERDEBUG
2071	char *s;
2072
2073	switch (c_state) {
2074	case SC0_ISOLATED:
2075		s = "SC0_ISOLATED";
2076		break;
2077	case SC1_WRAP_A:
2078		s = "SC1_WRAP_A";
2079		break;
2080	case SC2_WRAP_B:
2081		s = "SC2_WRAP_B";
2082		break;
2083	case SC4_THRU_A:
2084		s = "SC4_THRU_A";
2085		break;
2086	case SC5_THRU_B:
2087		s = "SC5_THRU_B";
2088		break;
2089	case SC7_WRAP_S:
2090		s = "SC7_WRAP_S";
2091		break;
2092	case SC9_C_WRAP_A:
2093		s = "SC9_C_WRAP_A";
2094		break;
2095	case SC10_C_WRAP_B:
2096		s = "SC10_C_WRAP_B";
2097		break;
2098	case SC11_C_WRAP_S:
2099		s = "SC11_C_WRAP_S";
2100		break;
2101	default:
2102		pr_debug("cfm_state_change: unknown %d\n", c_state);
2103		return;
2104	}
2105	pr_debug("cfm_state_change: %s\n", s);
2106#endif				// DRIVERDEBUG
2107}				// cfm_state_change
2108
2109
2110/************************
2111 *
2112 *	ecm_state_change
2113 *
2114 *	Sets ECM state in custom statistics.
2115 * Args
2116 *	smc - A pointer to the SMT context struct.
2117 *
2118 *	e_state - Possible values are:
2119 *
2120 *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2121 *		SC5_THRU_B (7), SC7_WRAP_S (8)
2122 * Out
2123 *	Nothing.
2124 *
2125 ************************/
2126void ecm_state_change(struct s_smc *smc, int e_state)
2127{
2128#ifdef DRIVERDEBUG
2129	char *s;
2130
2131	switch (e_state) {
2132	case EC0_OUT:
2133		s = "EC0_OUT";
2134		break;
2135	case EC1_IN:
2136		s = "EC1_IN";
2137		break;
2138	case EC2_TRACE:
2139		s = "EC2_TRACE";
2140		break;
2141	case EC3_LEAVE:
2142		s = "EC3_LEAVE";
2143		break;
2144	case EC4_PATH_TEST:
2145		s = "EC4_PATH_TEST";
2146		break;
2147	case EC5_INSERT:
2148		s = "EC5_INSERT";
2149		break;
2150	case EC6_CHECK:
2151		s = "EC6_CHECK";
2152		break;
2153	case EC7_DEINSERT:
2154		s = "EC7_DEINSERT";
2155		break;
2156	default:
2157		s = "unknown";
2158		break;
2159	}
2160	pr_debug("ecm_state_change: %s\n", s);
2161#endif				//DRIVERDEBUG
2162}				// ecm_state_change
2163
2164
2165/************************
2166 *
2167 *	rmt_state_change
2168 *
2169 *	Sets RMT state in custom statistics.
2170 * Args
2171 *	smc - A pointer to the SMT context struct.
2172 *
2173 *	r_state - Possible values are:
2174 *
2175 *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2176 *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2177 * Out
2178 *	Nothing.
2179 *
2180 ************************/
2181void rmt_state_change(struct s_smc *smc, int r_state)
2182{
2183#ifdef DRIVERDEBUG
2184	char *s;
2185
2186	switch (r_state) {
2187	case RM0_ISOLATED:
2188		s = "RM0_ISOLATED";
2189		break;
2190	case RM1_NON_OP:
2191		s = "RM1_NON_OP - not operational";
2192		break;
2193	case RM2_RING_OP:
2194		s = "RM2_RING_OP - ring operational";
2195		break;
2196	case RM3_DETECT:
2197		s = "RM3_DETECT - detect dupl addresses";
2198		break;
2199	case RM4_NON_OP_DUP:
2200		s = "RM4_NON_OP_DUP - dupl. addr detected";
2201		break;
2202	case RM5_RING_OP_DUP:
2203		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2204		break;
2205	case RM6_DIRECTED:
2206		s = "RM6_DIRECTED - sending directed beacons";
2207		break;
2208	case RM7_TRACE:
2209		s = "RM7_TRACE - trace initiated";
2210		break;
2211	default:
2212		s = "unknown";
2213		break;
2214	}
2215	pr_debug("[rmt_state_change: %s]\n", s);
2216#endif				// DRIVERDEBUG
2217}				// rmt_state_change
2218
2219
2220/************************
2221 *
2222 *	drv_reset_indication
2223 *
2224 *	This function is called by the SMT when it has detected a severe
2225 *	hardware problem. The driver should perform a reset on the adapter
2226 *	as soon as possible, but not from within this function.
2227 * Args
2228 *	smc - A pointer to the SMT context struct.
2229 * Out
2230 *	Nothing.
2231 *
2232 ************************/
2233void drv_reset_indication(struct s_smc *smc)
2234{
2235	pr_debug("entering drv_reset_indication\n");
2236
2237	smc->os.ResetRequested = TRUE;	// Set flag.
2238
2239}				// drv_reset_indication
2240
2241static struct pci_driver skfddi_pci_driver = {
2242	.name		= "skfddi",
2243	.id_table	= skfddi_pci_tbl,
2244	.probe		= skfp_init_one,
2245	.remove		= skfp_remove_one,
2246};
2247
2248module_pci_driver(skfddi_pci_driver);
2249