1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "hw-ops.h"
19#include <linux/export.h>
20
21static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22					struct ath9k_tx_queue_info *qi)
23{
24	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28		ah->txurn_interrupt_mask);
29
30	ENABLE_REGWRITE_BUFFER(ah);
31
32	REG_WRITE(ah, AR_IMR_S0,
33		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35	REG_WRITE(ah, AR_IMR_S1,
36		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38
39	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42
43	REGWRITE_BUFFER_FLUSH(ah);
44}
45
46u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47{
48	return REG_READ(ah, AR_QTXDP(q));
49}
50EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51
52void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53{
54	REG_WRITE(ah, AR_QTXDP(q), txdp);
55}
56EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57
58void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59{
60	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62}
63EXPORT_SYMBOL(ath9k_hw_txstart);
64
65u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66{
67	u32 npend;
68
69	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70	if (npend == 0) {
71
72		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73			npend = 1;
74	}
75
76	return npend;
77}
78EXPORT_SYMBOL(ath9k_hw_numtxpending);
79
80/**
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82 *
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
85 *
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91 * first)
92 *
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
99 *
100 * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
104 */
105bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106{
107	u32 txcfg, curLevel, newLevel;
108
109	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110		return false;
111
112	ath9k_hw_disable_interrupts(ah);
113
114	txcfg = REG_READ(ah, AR_TXCFG);
115	curLevel = MS(txcfg, AR_FTRIG);
116	newLevel = curLevel;
117	if (bIncTrigLevel) {
118		if (curLevel < ah->config.max_txtrig_level)
119			newLevel++;
120	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121		newLevel--;
122	if (newLevel != curLevel)
123		REG_WRITE(ah, AR_TXCFG,
124			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125
126	ath9k_hw_enable_interrupts(ah);
127
128	ah->tx_trig_level = newLevel;
129
130	return newLevel != curLevel;
131}
132EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133
134void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135{
136	int maxdelay = 1000;
137	int i, q;
138
139	if (ah->curchan) {
140		if (IS_CHAN_HALF_RATE(ah->curchan))
141			maxdelay *= 2;
142		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143			maxdelay *= 4;
144	}
145
146	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147
148	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151
152	for (q = 0; q < AR_NUM_QCU; q++) {
153		for (i = 0; i < maxdelay; i++) {
154			if (i)
155				udelay(5);
156
157			if (!ath9k_hw_numtxpending(ah, q))
158				break;
159		}
160	}
161
162	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165
166	REG_WRITE(ah, AR_Q_TXD, 0);
167}
168EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169
170bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171{
172#define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
173#define ATH9K_TIME_QUANTUM		100     /* usec */
174	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175	int wait;
176
177	REG_WRITE(ah, AR_Q_TXD, 1 << q);
178
179	for (wait = wait_time; wait != 0; wait--) {
180		if (wait != wait_time)
181			udelay(ATH9K_TIME_QUANTUM);
182
183		if (ath9k_hw_numtxpending(ah, q) == 0)
184			break;
185	}
186
187	REG_WRITE(ah, AR_Q_TXD, 0);
188
189	return wait != 0;
190
191#undef ATH9K_TX_STOP_DMA_TIMEOUT
192#undef ATH9K_TIME_QUANTUM
193}
194EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195
196bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197			    const struct ath9k_tx_queue_info *qinfo)
198{
199	u32 cw;
200	struct ath_common *common = ath9k_hw_common(ah);
201	struct ath9k_tx_queue_info *qi;
202
203	qi = &ah->txq[q];
204	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205		ath_dbg(common, QUEUE,
206			"Set TXQ properties, inactive queue: %u\n", q);
207		return false;
208	}
209
210	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211
212	qi->tqi_ver = qinfo->tqi_ver;
213	qi->tqi_subtype = qinfo->tqi_subtype;
214	qi->tqi_qflags = qinfo->tqi_qflags;
215	qi->tqi_priority = qinfo->tqi_priority;
216	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218	else
219		qi->tqi_aifs = INIT_AIFS;
220	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221		cw = min(qinfo->tqi_cwmin, 1024U);
222		qi->tqi_cwmin = 1;
223		while (qi->tqi_cwmin < cw)
224			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225	} else
226		qi->tqi_cwmin = qinfo->tqi_cwmin;
227	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228		cw = min(qinfo->tqi_cwmax, 1024U);
229		qi->tqi_cwmax = 1;
230		while (qi->tqi_cwmax < cw)
231			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232	} else
233		qi->tqi_cwmax = INIT_CWMAX;
234
235	if (qinfo->tqi_shretry != 0)
236		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237	else
238		qi->tqi_shretry = INIT_SH_RETRY;
239	if (qinfo->tqi_lgretry != 0)
240		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241	else
242		qi->tqi_lgretry = INIT_LG_RETRY;
243	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245	qi->tqi_burstTime = qinfo->tqi_burstTime;
246	qi->tqi_readyTime = qinfo->tqi_readyTime;
247
248	switch (qinfo->tqi_subtype) {
249	case ATH9K_WME_UPSD:
250		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252		break;
253	default:
254		break;
255	}
256
257	return true;
258}
259EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260
261bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262			    struct ath9k_tx_queue_info *qinfo)
263{
264	struct ath_common *common = ath9k_hw_common(ah);
265	struct ath9k_tx_queue_info *qi;
266
267	qi = &ah->txq[q];
268	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269		ath_dbg(common, QUEUE,
270			"Get TXQ properties, inactive queue: %u\n", q);
271		return false;
272	}
273
274	qinfo->tqi_qflags = qi->tqi_qflags;
275	qinfo->tqi_ver = qi->tqi_ver;
276	qinfo->tqi_subtype = qi->tqi_subtype;
277	qinfo->tqi_qflags = qi->tqi_qflags;
278	qinfo->tqi_priority = qi->tqi_priority;
279	qinfo->tqi_aifs = qi->tqi_aifs;
280	qinfo->tqi_cwmin = qi->tqi_cwmin;
281	qinfo->tqi_cwmax = qi->tqi_cwmax;
282	qinfo->tqi_shretry = qi->tqi_shretry;
283	qinfo->tqi_lgretry = qi->tqi_lgretry;
284	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286	qinfo->tqi_burstTime = qi->tqi_burstTime;
287	qinfo->tqi_readyTime = qi->tqi_readyTime;
288
289	return true;
290}
291EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292
293int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294			  const struct ath9k_tx_queue_info *qinfo)
295{
296	struct ath_common *common = ath9k_hw_common(ah);
297	struct ath9k_tx_queue_info *qi;
298	int q;
299
300	switch (type) {
301	case ATH9K_TX_QUEUE_BEACON:
302		q = ATH9K_NUM_TX_QUEUES - 1;
303		break;
304	case ATH9K_TX_QUEUE_CAB:
305		q = ATH9K_NUM_TX_QUEUES - 2;
306		break;
307	case ATH9K_TX_QUEUE_PSPOLL:
308		q = 1;
309		break;
310	case ATH9K_TX_QUEUE_UAPSD:
311		q = ATH9K_NUM_TX_QUEUES - 3;
312		break;
313	case ATH9K_TX_QUEUE_DATA:
314		q = qinfo->tqi_subtype;
315		break;
316	default:
317		ath_err(common, "Invalid TX queue type: %u\n", type);
318		return -1;
319	}
320
321	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
322
323	qi = &ah->txq[q];
324	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
325		ath_err(common, "TX queue: %u already active\n", q);
326		return -1;
327	}
328	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
329	qi->tqi_type = type;
330	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
331	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
332
333	return q;
334}
335EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
336
337static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
338{
339	ah->txok_interrupt_mask &= ~(1 << q);
340	ah->txerr_interrupt_mask &= ~(1 << q);
341	ah->txdesc_interrupt_mask &= ~(1 << q);
342	ah->txeol_interrupt_mask &= ~(1 << q);
343	ah->txurn_interrupt_mask &= ~(1 << q);
344}
345
346bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
347{
348	struct ath_common *common = ath9k_hw_common(ah);
349	struct ath9k_tx_queue_info *qi;
350
351	qi = &ah->txq[q];
352	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
353		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
354		return false;
355	}
356
357	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
358
359	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
360	ath9k_hw_clear_queue_interrupts(ah, q);
361	ath9k_hw_set_txq_interrupts(ah, qi);
362
363	return true;
364}
365EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
366
367bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
368{
369	struct ath_common *common = ath9k_hw_common(ah);
370	struct ath9k_tx_queue_info *qi;
371	u32 cwMin, chanCwMin, value;
372
373	qi = &ah->txq[q];
374	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
376		return true;
377	}
378
379	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
380
381	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
382		chanCwMin = INIT_CWMIN;
383
384		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
385	} else
386		cwMin = qi->tqi_cwmin;
387
388	ENABLE_REGWRITE_BUFFER(ah);
389
390	REG_WRITE(ah, AR_DLCL_IFS(q),
391		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
392		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
393		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
394
395	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
396		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
397		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
398		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
399
400	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
401
402	if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
403		REG_WRITE(ah, AR_DMISC(q),
404			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
405	else
406		REG_WRITE(ah, AR_DMISC(q),
407			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
408
409	if (qi->tqi_cbrPeriod) {
410		REG_WRITE(ah, AR_QCBRCFG(q),
411			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
412			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
413		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
414			    (qi->tqi_cbrOverflowLimit ?
415			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
416	}
417	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
418		REG_WRITE(ah, AR_QRDYTIMECFG(q),
419			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
420			  AR_Q_RDYTIMECFG_EN);
421	}
422
423	REG_WRITE(ah, AR_DCHNTIME(q),
424		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
425		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
426
427	if (qi->tqi_burstTime
428	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
429		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
430
431	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
432		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
433
434	REGWRITE_BUFFER_FLUSH(ah);
435
436	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
437		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
438
439	switch (qi->tqi_type) {
440	case ATH9K_TX_QUEUE_BEACON:
441		ENABLE_REGWRITE_BUFFER(ah);
442
443		REG_SET_BIT(ah, AR_QMISC(q),
444			    AR_Q_MISC_FSP_DBA_GATED
445			    | AR_Q_MISC_BEACON_USE
446			    | AR_Q_MISC_CBR_INCR_DIS1);
447
448		REG_SET_BIT(ah, AR_DMISC(q),
449			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
450			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
451			    | AR_D_MISC_BEACON_USE
452			    | AR_D_MISC_POST_FR_BKOFF_DIS);
453
454		REGWRITE_BUFFER_FLUSH(ah);
455
456		/*
457		 * cwmin and cwmax should be 0 for beacon queue
458		 * but not for IBSS as we would create an imbalance
459		 * on beaconing fairness for participating nodes.
460		 */
461		if (AR_SREV_9300_20_OR_LATER(ah) &&
462		    ah->opmode != NL80211_IFTYPE_ADHOC) {
463			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
464				  | SM(0, AR_D_LCL_IFS_CWMAX)
465				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
466		}
467		break;
468	case ATH9K_TX_QUEUE_CAB:
469		ENABLE_REGWRITE_BUFFER(ah);
470
471		REG_SET_BIT(ah, AR_QMISC(q),
472			    AR_Q_MISC_FSP_DBA_GATED
473			    | AR_Q_MISC_CBR_INCR_DIS1
474			    | AR_Q_MISC_CBR_INCR_DIS0);
475		value = (qi->tqi_readyTime -
476			 (ah->config.sw_beacon_response_time -
477			  ah->config.dma_beacon_response_time)) * 1024;
478		REG_WRITE(ah, AR_QRDYTIMECFG(q),
479			  value | AR_Q_RDYTIMECFG_EN);
480		REG_SET_BIT(ah, AR_DMISC(q),
481			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
483
484		REGWRITE_BUFFER_FLUSH(ah);
485
486		break;
487	case ATH9K_TX_QUEUE_PSPOLL:
488		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
489		break;
490	case ATH9K_TX_QUEUE_UAPSD:
491		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
492		break;
493	default:
494		break;
495	}
496
497	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
498		REG_SET_BIT(ah, AR_DMISC(q),
499			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
500			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
501			    AR_D_MISC_POST_FR_BKOFF_DIS);
502	}
503
504	if (AR_SREV_9300_20_OR_LATER(ah))
505		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
506
507	ath9k_hw_clear_queue_interrupts(ah, q);
508	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
509		ah->txok_interrupt_mask |= 1 << q;
510		ah->txerr_interrupt_mask |= 1 << q;
511	}
512	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
513		ah->txdesc_interrupt_mask |= 1 << q;
514	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
515		ah->txeol_interrupt_mask |= 1 << q;
516	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
517		ah->txurn_interrupt_mask |= 1 << q;
518	ath9k_hw_set_txq_interrupts(ah, qi);
519
520	return true;
521}
522EXPORT_SYMBOL(ath9k_hw_resettxqueue);
523
524int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
525			struct ath_rx_status *rs)
526{
527	struct ar5416_desc ads;
528	struct ar5416_desc *adsp = AR5416DESC(ds);
529	u32 phyerr;
530
531	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
532		return -EINPROGRESS;
533
534	ads.u.rx = adsp->u.rx;
535
536	rs->rs_status = 0;
537	rs->rs_flags = 0;
538	rs->flag = 0;
539
540	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
541	rs->rs_tstamp = ads.AR_RcvTimestamp;
542
543	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
544		rs->rs_rssi = ATH9K_RSSI_BAD;
545		rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
546		rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
547		rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
548		rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
549		rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
550		rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
551	} else {
552		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
553		rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
554						AR_RxRSSIAnt00);
555		rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
556						AR_RxRSSIAnt01);
557		rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
558						AR_RxRSSIAnt02);
559		rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
560						AR_RxRSSIAnt10);
561		rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
562						AR_RxRSSIAnt11);
563		rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
564						AR_RxRSSIAnt12);
565	}
566	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
567		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
568	else
569		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
570
571	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
572	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
573
574	rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
575	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
576	rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
577	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
578
579	/* directly mapped flags for ieee80211_rx_status */
580	rs->flag |=
581		(ads.ds_rxstatus3 & AR_GI) ? RX_FLAG_SHORT_GI : 0;
582	rs->flag |=
583		(ads.ds_rxstatus3 & AR_2040) ? RX_FLAG_40MHZ : 0;
584	if (AR_SREV_9280_20_OR_LATER(ah))
585		rs->flag |=
586			(ads.ds_rxstatus3 & AR_STBC) ?
587				/* we can only Nss=1 STBC */
588				(1 << RX_FLAG_STBC_SHIFT) : 0;
589
590	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
591		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
592	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
593		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
594	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
595		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
596
597	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
598		/*
599		 * Treat these errors as mutually exclusive to avoid spurious
600		 * extra error reports from the hardware. If a CRC error is
601		 * reported, then decryption and MIC errors are irrelevant,
602		 * the frame is going to be dropped either way
603		 */
604		if (ads.ds_rxstatus8 & AR_PHYErr) {
605			rs->rs_status |= ATH9K_RXERR_PHY;
606			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
607			rs->rs_phyerr = phyerr;
608		} else if (ads.ds_rxstatus8 & AR_CRCErr)
609			rs->rs_status |= ATH9K_RXERR_CRC;
610		else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
611			rs->rs_status |= ATH9K_RXERR_DECRYPT;
612		else if (ads.ds_rxstatus8 & AR_MichaelErr)
613			rs->rs_status |= ATH9K_RXERR_MIC;
614	} else {
615		if (ads.ds_rxstatus8 &
616		    (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
617			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
618
619		/* Only up to MCS16 supported, everything above is invalid */
620		if (rs->rs_rate >= 0x90)
621			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
622	}
623
624	if (ads.ds_rxstatus8 & AR_KeyMiss)
625		rs->rs_status |= ATH9K_RXERR_KEYMISS;
626
627	return 0;
628}
629EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
630
631/*
632 * This can stop or re-enables RX.
633 *
634 * If bool is set this will kill any frame which is currently being
635 * transferred between the MAC and baseband and also prevent any new
636 * frames from getting started.
637 */
638bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
639{
640	u32 reg;
641
642	if (set) {
643		REG_SET_BIT(ah, AR_DIAG_SW,
644			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
645
646		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
647				   0, AH_WAIT_TIMEOUT)) {
648			REG_CLR_BIT(ah, AR_DIAG_SW,
649				    (AR_DIAG_RX_DIS |
650				     AR_DIAG_RX_ABORT));
651
652			reg = REG_READ(ah, AR_OBS_BUS_1);
653			ath_err(ath9k_hw_common(ah),
654				"RX failed to go idle in 10 ms RXSM=0x%x\n",
655				reg);
656
657			return false;
658		}
659	} else {
660		REG_CLR_BIT(ah, AR_DIAG_SW,
661			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
662	}
663
664	return true;
665}
666EXPORT_SYMBOL(ath9k_hw_setrxabort);
667
668void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
669{
670	REG_WRITE(ah, AR_RXDP, rxdp);
671}
672EXPORT_SYMBOL(ath9k_hw_putrxbuf);
673
674void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
675{
676	ath9k_enable_mib_counters(ah);
677
678	ath9k_ani_reset(ah, is_scanning);
679
680	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
681}
682EXPORT_SYMBOL(ath9k_hw_startpcureceive);
683
684void ath9k_hw_abortpcurecv(struct ath_hw *ah)
685{
686	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
687
688	ath9k_hw_disable_mib_counters(ah);
689}
690EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
691
692bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
693{
694#define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
695	struct ath_common *common = ath9k_hw_common(ah);
696	u32 mac_status, last_mac_status = 0;
697	int i;
698
699	/* Enable access to the DMA observation bus */
700	REG_WRITE(ah, AR_MACMISC,
701		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
702		   (AR_MACMISC_MISC_OBS_BUS_1 <<
703		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
704
705	REG_WRITE(ah, AR_CR, AR_CR_RXD);
706
707	/* Wait for rx enable bit to go low */
708	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
709		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
710			break;
711
712		if (!AR_SREV_9300_20_OR_LATER(ah)) {
713			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
714			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
715				*reset = true;
716				break;
717			}
718
719			last_mac_status = mac_status;
720		}
721
722		udelay(AH_TIME_QUANTUM);
723	}
724
725	if (i == 0) {
726		ath_err(common,
727			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
728			AH_RX_STOP_DMA_TIMEOUT / 1000,
729			REG_READ(ah, AR_CR),
730			REG_READ(ah, AR_DIAG_SW),
731			REG_READ(ah, AR_DMADBG_7));
732		return false;
733	} else {
734		return true;
735	}
736
737#undef AH_RX_STOP_DMA_TIMEOUT
738}
739EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
740
741int ath9k_hw_beaconq_setup(struct ath_hw *ah)
742{
743	struct ath9k_tx_queue_info qi;
744
745	memset(&qi, 0, sizeof(qi));
746	qi.tqi_aifs = 1;
747	qi.tqi_cwmin = 0;
748	qi.tqi_cwmax = 0;
749
750	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
751		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
752
753	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
754}
755EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
756
757bool ath9k_hw_intrpend(struct ath_hw *ah)
758{
759	u32 host_isr;
760
761	if (AR_SREV_9100(ah))
762		return true;
763
764	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
765
766	if (((host_isr & AR_INTR_MAC_IRQ) ||
767	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
768	    (host_isr != AR_INTR_SPURIOUS))
769		return true;
770
771	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
772	if ((host_isr & AR_INTR_SYNC_DEFAULT)
773	    && (host_isr != AR_INTR_SPURIOUS))
774		return true;
775
776	return false;
777}
778EXPORT_SYMBOL(ath9k_hw_intrpend);
779
780void ath9k_hw_kill_interrupts(struct ath_hw *ah)
781{
782	struct ath_common *common = ath9k_hw_common(ah);
783
784	ath_dbg(common, INTERRUPT, "disable IER\n");
785	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
786	(void) REG_READ(ah, AR_IER);
787	if (!AR_SREV_9100(ah)) {
788		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
789		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
790
791		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
792		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
793	}
794}
795EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
796
797void ath9k_hw_disable_interrupts(struct ath_hw *ah)
798{
799	if (!(ah->imask & ATH9K_INT_GLOBAL))
800		atomic_set(&ah->intr_ref_cnt, -1);
801	else
802		atomic_dec(&ah->intr_ref_cnt);
803
804	ath9k_hw_kill_interrupts(ah);
805}
806EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
807
808void ath9k_hw_enable_interrupts(struct ath_hw *ah)
809{
810	struct ath_common *common = ath9k_hw_common(ah);
811	u32 sync_default = AR_INTR_SYNC_DEFAULT;
812	u32 async_mask;
813
814	if (!(ah->imask & ATH9K_INT_GLOBAL))
815		return;
816
817	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
818		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
819			atomic_read(&ah->intr_ref_cnt));
820		return;
821	}
822
823	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
824	    AR_SREV_9561(ah))
825		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
826
827	async_mask = AR_INTR_MAC_IRQ;
828
829	if (ah->imask & ATH9K_INT_MCI)
830		async_mask |= AR_INTR_ASYNC_MASK_MCI;
831
832	ath_dbg(common, INTERRUPT, "enable IER\n");
833	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
834	if (!AR_SREV_9100(ah)) {
835		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
836		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
837
838		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
839		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
840	}
841	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
842		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
843}
844EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
845
846void ath9k_hw_set_interrupts(struct ath_hw *ah)
847{
848	enum ath9k_int ints = ah->imask;
849	u32 mask, mask2;
850	struct ath9k_hw_capabilities *pCap = &ah->caps;
851	struct ath_common *common = ath9k_hw_common(ah);
852
853	if (!(ints & ATH9K_INT_GLOBAL))
854		ath9k_hw_disable_interrupts(ah);
855
856	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
857
858	mask = ints & ATH9K_INT_COMMON;
859	mask2 = 0;
860
861	if (ints & ATH9K_INT_TX) {
862		if (ah->config.tx_intr_mitigation)
863			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
864		else {
865			if (ah->txok_interrupt_mask)
866				mask |= AR_IMR_TXOK;
867			if (ah->txdesc_interrupt_mask)
868				mask |= AR_IMR_TXDESC;
869		}
870		if (ah->txerr_interrupt_mask)
871			mask |= AR_IMR_TXERR;
872		if (ah->txeol_interrupt_mask)
873			mask |= AR_IMR_TXEOL;
874	}
875	if (ints & ATH9K_INT_RX) {
876		if (AR_SREV_9300_20_OR_LATER(ah)) {
877			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
878			if (ah->config.rx_intr_mitigation) {
879				mask &= ~AR_IMR_RXOK_LP;
880				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
881			} else {
882				mask |= AR_IMR_RXOK_LP;
883			}
884		} else {
885			if (ah->config.rx_intr_mitigation)
886				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
887			else
888				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
889		}
890		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
891			mask |= AR_IMR_GENTMR;
892	}
893
894	if (ints & ATH9K_INT_GENTIMER)
895		mask |= AR_IMR_GENTMR;
896
897	if (ints & (ATH9K_INT_BMISC)) {
898		mask |= AR_IMR_BCNMISC;
899		if (ints & ATH9K_INT_TIM)
900			mask2 |= AR_IMR_S2_TIM;
901		if (ints & ATH9K_INT_DTIM)
902			mask2 |= AR_IMR_S2_DTIM;
903		if (ints & ATH9K_INT_DTIMSYNC)
904			mask2 |= AR_IMR_S2_DTIMSYNC;
905		if (ints & ATH9K_INT_CABEND)
906			mask2 |= AR_IMR_S2_CABEND;
907		if (ints & ATH9K_INT_TSFOOR)
908			mask2 |= AR_IMR_S2_TSFOOR;
909	}
910
911	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
912		mask |= AR_IMR_BCNMISC;
913		if (ints & ATH9K_INT_GTT)
914			mask2 |= AR_IMR_S2_GTT;
915		if (ints & ATH9K_INT_CST)
916			mask2 |= AR_IMR_S2_CST;
917	}
918
919	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
920		if (ints & ATH9K_INT_BB_WATCHDOG) {
921			mask |= AR_IMR_BCNMISC;
922			mask2 |= AR_IMR_S2_BB_WATCHDOG;
923		}
924	}
925
926	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
927	REG_WRITE(ah, AR_IMR, mask);
928	ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
929			   AR_IMR_S2_DTIM |
930			   AR_IMR_S2_DTIMSYNC |
931			   AR_IMR_S2_CABEND |
932			   AR_IMR_S2_CABTO |
933			   AR_IMR_S2_TSFOOR |
934			   AR_IMR_S2_GTT |
935			   AR_IMR_S2_CST);
936
937	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
938		if (ints & ATH9K_INT_BB_WATCHDOG)
939			ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
940	}
941
942	ah->imrs2_reg |= mask2;
943	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
944
945	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
946		if (ints & ATH9K_INT_TIM_TIMER)
947			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
948		else
949			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
950	}
951
952	return;
953}
954EXPORT_SYMBOL(ath9k_hw_set_interrupts);
955
956#define ATH9K_HW_MAX_DCU       10
957#define ATH9K_HW_SLICE_PER_DCU 16
958#define ATH9K_HW_BIT_IN_SLICE  16
959void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
960{
961	int dcu_idx;
962	u32 filter;
963
964	for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
965		filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
966		filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
967		filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
968			     AR_D_TXBLK_WRITE_SLICE);
969		filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
970		ath_dbg(ath9k_hw_common(ah), PS,
971			"DCU%d staid %d set %d txfilter %08x\n",
972			dcu_idx, destidx, set, filter);
973		REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
974	}
975}
976EXPORT_SYMBOL(ath9k_hw_set_tx_filter);
977