1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/dma-mapping.h>
18#include "ath9k.h"
19#include "ar9003_mac.h"
20
21#define BITS_PER_BYTE           8
22#define OFDM_PLCP_BITS          22
23#define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24#define L_STF                   8
25#define L_LTF                   8
26#define L_SIG                   4
27#define HT_SIG                  8
28#define HT_STF                  4
29#define HT_LTF(_ns)             (4 * (_ns))
30#define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32#define TIME_SYMBOLS(t)         ((t) >> 2)
33#define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38static u16 bits_per_symbol[][2] = {
39	/* 20MHz 40MHz */
40	{    26,   54 },     /*  0: BPSK */
41	{    52,  108 },     /*  1: QPSK 1/2 */
42	{    78,  162 },     /*  2: QPSK 3/4 */
43	{   104,  216 },     /*  3: 16-QAM 1/2 */
44	{   156,  324 },     /*  4: 16-QAM 3/4 */
45	{   208,  432 },     /*  5: 64-QAM 2/3 */
46	{   234,  486 },     /*  6: 64-QAM 3/4 */
47	{   260,  540 },     /*  7: 64-QAM 5/6 */
48};
49
50static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51			       struct ath_atx_tid *tid, struct sk_buff *skb);
52static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53			    int tx_flags, struct ath_txq *txq);
54static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55				struct ath_txq *txq, struct list_head *bf_q,
56				struct ath_tx_status *ts, int txok);
57static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58			     struct list_head *head, bool internal);
59static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60			     struct ath_tx_status *ts, int nframes, int nbad,
61			     int txok);
62static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63			      int seqno);
64static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65					   struct ath_txq *txq,
66					   struct ath_atx_tid *tid,
67					   struct sk_buff *skb);
68
69enum {
70	MCS_HT20,
71	MCS_HT20_SGI,
72	MCS_HT40,
73	MCS_HT40_SGI,
74};
75
76/*********************/
77/* Aggregation logic */
78/*********************/
79
80void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81	__acquires(&txq->axq_lock)
82{
83	spin_lock_bh(&txq->axq_lock);
84}
85
86void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87	__releases(&txq->axq_lock)
88{
89	spin_unlock_bh(&txq->axq_lock);
90}
91
92void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93	__releases(&txq->axq_lock)
94{
95	struct sk_buff_head q;
96	struct sk_buff *skb;
97
98	__skb_queue_head_init(&q);
99	skb_queue_splice_init(&txq->complete_q, &q);
100	spin_unlock_bh(&txq->axq_lock);
101
102	while ((skb = __skb_dequeue(&q)))
103		ieee80211_tx_status(sc->hw, skb);
104}
105
106static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107			     struct ath_atx_tid *tid)
108{
109	struct ath_atx_ac *ac = tid->ac;
110	struct list_head *list;
111	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
112	struct ath_chanctx *ctx = avp->chanctx;
113
114	if (!ctx)
115		return;
116
117	if (tid->sched)
118		return;
119
120	tid->sched = true;
121	list_add_tail(&tid->list, &ac->tid_q);
122
123	if (ac->sched)
124		return;
125
126	ac->sched = true;
127
128	list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
129	list_add_tail(&ac->list, list);
130}
131
132static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
133{
134	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
135	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
136		     sizeof(tx_info->rate_driver_data));
137	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
138}
139
140static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
141{
142	if (!tid->an->sta)
143		return;
144
145	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
146			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
147}
148
149static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
150			  struct ath_buf *bf)
151{
152	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
153			       ARRAY_SIZE(bf->rates));
154}
155
156static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
157			     struct sk_buff *skb)
158{
159	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
160	struct ath_frame_info *fi = get_frame_info(skb);
161	int q = fi->txq;
162
163	if (q < 0)
164		return;
165
166	txq = sc->tx.txq_map[q];
167	if (WARN_ON(--txq->pending_frames < 0))
168		txq->pending_frames = 0;
169
170	if (txq->stopped &&
171	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
172		if (ath9k_is_chanctx_enabled())
173			ieee80211_wake_queue(sc->hw, info->hw_queue);
174		else
175			ieee80211_wake_queue(sc->hw, q);
176		txq->stopped = false;
177	}
178}
179
180static struct ath_atx_tid *
181ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
182{
183	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
184	return ATH_AN_2_TID(an, tidno);
185}
186
187static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
188{
189	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
190}
191
192static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
193{
194	struct sk_buff *skb;
195
196	skb = __skb_dequeue(&tid->retry_q);
197	if (!skb)
198		skb = __skb_dequeue(&tid->buf_q);
199
200	return skb;
201}
202
203/*
204 * ath_tx_tid_change_state:
205 * - clears a-mpdu flag of previous session
206 * - force sequence number allocation to fix next BlockAck Window
207 */
208static void
209ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
210{
211	struct ath_txq *txq = tid->ac->txq;
212	struct ieee80211_tx_info *tx_info;
213	struct sk_buff *skb, *tskb;
214	struct ath_buf *bf;
215	struct ath_frame_info *fi;
216
217	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
218		fi = get_frame_info(skb);
219		bf = fi->bf;
220
221		tx_info = IEEE80211_SKB_CB(skb);
222		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
223
224		if (bf)
225			continue;
226
227		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
228		if (!bf) {
229			__skb_unlink(skb, &tid->buf_q);
230			ath_txq_skb_done(sc, txq, skb);
231			ieee80211_free_txskb(sc->hw, skb);
232			continue;
233		}
234	}
235
236}
237
238static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
239{
240	struct ath_txq *txq = tid->ac->txq;
241	struct sk_buff *skb;
242	struct ath_buf *bf;
243	struct list_head bf_head;
244	struct ath_tx_status ts;
245	struct ath_frame_info *fi;
246	bool sendbar = false;
247
248	INIT_LIST_HEAD(&bf_head);
249
250	memset(&ts, 0, sizeof(ts));
251
252	while ((skb = __skb_dequeue(&tid->retry_q))) {
253		fi = get_frame_info(skb);
254		bf = fi->bf;
255		if (!bf) {
256			ath_txq_skb_done(sc, txq, skb);
257			ieee80211_free_txskb(sc->hw, skb);
258			continue;
259		}
260
261		if (fi->baw_tracked) {
262			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
263			sendbar = true;
264		}
265
266		list_add_tail(&bf->list, &bf_head);
267		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
268	}
269
270	if (sendbar) {
271		ath_txq_unlock(sc, txq);
272		ath_send_bar(tid, tid->seq_start);
273		ath_txq_lock(sc, txq);
274	}
275}
276
277static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
278			      int seqno)
279{
280	int index, cindex;
281
282	index  = ATH_BA_INDEX(tid->seq_start, seqno);
283	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
284
285	__clear_bit(cindex, tid->tx_buf);
286
287	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
288		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
289		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
290		if (tid->bar_index >= 0)
291			tid->bar_index--;
292	}
293}
294
295static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
296			     struct ath_buf *bf)
297{
298	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
299	u16 seqno = bf->bf_state.seqno;
300	int index, cindex;
301
302	index  = ATH_BA_INDEX(tid->seq_start, seqno);
303	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
304	__set_bit(cindex, tid->tx_buf);
305	fi->baw_tracked = 1;
306
307	if (index >= ((tid->baw_tail - tid->baw_head) &
308		(ATH_TID_MAX_BUFS - 1))) {
309		tid->baw_tail = cindex;
310		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
311	}
312}
313
314static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
315			  struct ath_atx_tid *tid)
316
317{
318	struct sk_buff *skb;
319	struct ath_buf *bf;
320	struct list_head bf_head;
321	struct ath_tx_status ts;
322	struct ath_frame_info *fi;
323
324	memset(&ts, 0, sizeof(ts));
325	INIT_LIST_HEAD(&bf_head);
326
327	while ((skb = ath_tid_dequeue(tid))) {
328		fi = get_frame_info(skb);
329		bf = fi->bf;
330
331		if (!bf) {
332			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
333			continue;
334		}
335
336		list_add_tail(&bf->list, &bf_head);
337		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
338	}
339}
340
341static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
342			     struct sk_buff *skb, int count)
343{
344	struct ath_frame_info *fi = get_frame_info(skb);
345	struct ath_buf *bf = fi->bf;
346	struct ieee80211_hdr *hdr;
347	int prev = fi->retries;
348
349	TX_STAT_INC(txq->axq_qnum, a_retries);
350	fi->retries += count;
351
352	if (prev > 0)
353		return;
354
355	hdr = (struct ieee80211_hdr *)skb->data;
356	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
357	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
358		sizeof(*hdr), DMA_TO_DEVICE);
359}
360
361static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
362{
363	struct ath_buf *bf = NULL;
364
365	spin_lock_bh(&sc->tx.txbuflock);
366
367	if (unlikely(list_empty(&sc->tx.txbuf))) {
368		spin_unlock_bh(&sc->tx.txbuflock);
369		return NULL;
370	}
371
372	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
373	list_del(&bf->list);
374
375	spin_unlock_bh(&sc->tx.txbuflock);
376
377	return bf;
378}
379
380static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
381{
382	spin_lock_bh(&sc->tx.txbuflock);
383	list_add_tail(&bf->list, &sc->tx.txbuf);
384	spin_unlock_bh(&sc->tx.txbuflock);
385}
386
387static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
388{
389	struct ath_buf *tbf;
390
391	tbf = ath_tx_get_buffer(sc);
392	if (WARN_ON(!tbf))
393		return NULL;
394
395	ATH_TXBUF_RESET(tbf);
396
397	tbf->bf_mpdu = bf->bf_mpdu;
398	tbf->bf_buf_addr = bf->bf_buf_addr;
399	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
400	tbf->bf_state = bf->bf_state;
401	tbf->bf_state.stale = false;
402
403	return tbf;
404}
405
406static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
407			        struct ath_tx_status *ts, int txok,
408			        int *nframes, int *nbad)
409{
410	struct ath_frame_info *fi;
411	u16 seq_st = 0;
412	u32 ba[WME_BA_BMP_SIZE >> 5];
413	int ba_index;
414	int isaggr = 0;
415
416	*nbad = 0;
417	*nframes = 0;
418
419	isaggr = bf_isaggr(bf);
420	if (isaggr) {
421		seq_st = ts->ts_seqnum;
422		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
423	}
424
425	while (bf) {
426		fi = get_frame_info(bf->bf_mpdu);
427		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
428
429		(*nframes)++;
430		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
431			(*nbad)++;
432
433		bf = bf->bf_next;
434	}
435}
436
437
438static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
439				 struct ath_buf *bf, struct list_head *bf_q,
440				 struct ath_tx_status *ts, int txok)
441{
442	struct ath_node *an = NULL;
443	struct sk_buff *skb;
444	struct ieee80211_sta *sta;
445	struct ieee80211_hw *hw = sc->hw;
446	struct ieee80211_hdr *hdr;
447	struct ieee80211_tx_info *tx_info;
448	struct ath_atx_tid *tid = NULL;
449	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
450	struct list_head bf_head;
451	struct sk_buff_head bf_pending;
452	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
453	u32 ba[WME_BA_BMP_SIZE >> 5];
454	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
455	bool rc_update = true, isba;
456	struct ieee80211_tx_rate rates[4];
457	struct ath_frame_info *fi;
458	int nframes;
459	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
460	int i, retries;
461	int bar_index = -1;
462
463	skb = bf->bf_mpdu;
464	hdr = (struct ieee80211_hdr *)skb->data;
465
466	tx_info = IEEE80211_SKB_CB(skb);
467
468	memcpy(rates, bf->rates, sizeof(rates));
469
470	retries = ts->ts_longretry + 1;
471	for (i = 0; i < ts->ts_rateindex; i++)
472		retries += rates[i].count;
473
474	rcu_read_lock();
475
476	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
477	if (!sta) {
478		rcu_read_unlock();
479
480		INIT_LIST_HEAD(&bf_head);
481		while (bf) {
482			bf_next = bf->bf_next;
483
484			if (!bf->bf_state.stale || bf_next != NULL)
485				list_move_tail(&bf->list, &bf_head);
486
487			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
488
489			bf = bf_next;
490		}
491		return;
492	}
493
494	an = (struct ath_node *)sta->drv_priv;
495	tid = ath_get_skb_tid(sc, an, skb);
496	seq_first = tid->seq_start;
497	isba = ts->ts_flags & ATH9K_TX_BA;
498
499	/*
500	 * The hardware occasionally sends a tx status for the wrong TID.
501	 * In this case, the BA status cannot be considered valid and all
502	 * subframes need to be retransmitted
503	 *
504	 * Only BlockAcks have a TID and therefore normal Acks cannot be
505	 * checked
506	 */
507	if (isba && tid->tidno != ts->tid)
508		txok = false;
509
510	isaggr = bf_isaggr(bf);
511	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
512
513	if (isaggr && txok) {
514		if (ts->ts_flags & ATH9K_TX_BA) {
515			seq_st = ts->ts_seqnum;
516			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
517		} else {
518			/*
519			 * AR5416 can become deaf/mute when BA
520			 * issue happens. Chip needs to be reset.
521			 * But AP code may have sychronization issues
522			 * when perform internal reset in this routine.
523			 * Only enable reset in STA mode for now.
524			 */
525			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
526				needreset = 1;
527		}
528	}
529
530	__skb_queue_head_init(&bf_pending);
531
532	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
533	while (bf) {
534		u16 seqno = bf->bf_state.seqno;
535
536		txfail = txpending = sendbar = 0;
537		bf_next = bf->bf_next;
538
539		skb = bf->bf_mpdu;
540		tx_info = IEEE80211_SKB_CB(skb);
541		fi = get_frame_info(skb);
542
543		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
544		    !tid->active) {
545			/*
546			 * Outside of the current BlockAck window,
547			 * maybe part of a previous session
548			 */
549			txfail = 1;
550		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
551			/* transmit completion, subframe is
552			 * acked by block ack */
553			acked_cnt++;
554		} else if (!isaggr && txok) {
555			/* transmit completion */
556			acked_cnt++;
557		} else if (flush) {
558			txpending = 1;
559		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
560			if (txok || !an->sleeping)
561				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
562						 retries);
563
564			txpending = 1;
565		} else {
566			txfail = 1;
567			txfail_cnt++;
568			bar_index = max_t(int, bar_index,
569				ATH_BA_INDEX(seq_first, seqno));
570		}
571
572		/*
573		 * Make sure the last desc is reclaimed if it
574		 * not a holding desc.
575		 */
576		INIT_LIST_HEAD(&bf_head);
577		if (bf_next != NULL || !bf_last->bf_state.stale)
578			list_move_tail(&bf->list, &bf_head);
579
580		if (!txpending) {
581			/*
582			 * complete the acked-ones/xretried ones; update
583			 * block-ack window
584			 */
585			ath_tx_update_baw(sc, tid, seqno);
586
587			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
588				memcpy(tx_info->control.rates, rates, sizeof(rates));
589				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
590				rc_update = false;
591				if (bf == bf->bf_lastbf)
592					ath_dynack_sample_tx_ts(sc->sc_ah,
593								bf->bf_mpdu,
594								ts);
595			}
596
597			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
598				!txfail);
599		} else {
600			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
601				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
602				ieee80211_sta_eosp(sta);
603			}
604			/* retry the un-acked ones */
605			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
606				struct ath_buf *tbf;
607
608				tbf = ath_clone_txbuf(sc, bf_last);
609				/*
610				 * Update tx baw and complete the
611				 * frame with failed status if we
612				 * run out of tx buf.
613				 */
614				if (!tbf) {
615					ath_tx_update_baw(sc, tid, seqno);
616
617					ath_tx_complete_buf(sc, bf, txq,
618							    &bf_head, ts, 0);
619					bar_index = max_t(int, bar_index,
620						ATH_BA_INDEX(seq_first, seqno));
621					break;
622				}
623
624				fi->bf = tbf;
625			}
626
627			/*
628			 * Put this buffer to the temporary pending
629			 * queue to retain ordering
630			 */
631			__skb_queue_tail(&bf_pending, skb);
632		}
633
634		bf = bf_next;
635	}
636
637	/* prepend un-acked frames to the beginning of the pending frame queue */
638	if (!skb_queue_empty(&bf_pending)) {
639		if (an->sleeping)
640			ieee80211_sta_set_buffered(sta, tid->tidno, true);
641
642		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
643		if (!an->sleeping) {
644			ath_tx_queue_tid(sc, txq, tid);
645
646			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
647				tid->ac->clear_ps_filter = true;
648		}
649	}
650
651	if (bar_index >= 0) {
652		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
653
654		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
655			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
656
657		ath_txq_unlock(sc, txq);
658		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
659		ath_txq_lock(sc, txq);
660	}
661
662	rcu_read_unlock();
663
664	if (needreset)
665		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
666}
667
668static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
669{
670    struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
671    return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
672}
673
674static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
675				  struct ath_tx_status *ts, struct ath_buf *bf,
676				  struct list_head *bf_head)
677{
678	struct ieee80211_tx_info *info;
679	bool txok, flush;
680
681	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
682	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
683	txq->axq_tx_inprogress = false;
684
685	txq->axq_depth--;
686	if (bf_is_ampdu_not_probing(bf))
687		txq->axq_ampdu_depth--;
688
689	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
690					     ts->ts_rateindex);
691	if (!bf_isampdu(bf)) {
692		if (!flush) {
693			info = IEEE80211_SKB_CB(bf->bf_mpdu);
694			memcpy(info->control.rates, bf->rates,
695			       sizeof(info->control.rates));
696			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
697			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
698		}
699		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
700	} else
701		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
702
703	if (!flush)
704		ath_txq_schedule(sc, txq);
705}
706
707static bool ath_lookup_legacy(struct ath_buf *bf)
708{
709	struct sk_buff *skb;
710	struct ieee80211_tx_info *tx_info;
711	struct ieee80211_tx_rate *rates;
712	int i;
713
714	skb = bf->bf_mpdu;
715	tx_info = IEEE80211_SKB_CB(skb);
716	rates = tx_info->control.rates;
717
718	for (i = 0; i < 4; i++) {
719		if (!rates[i].count || rates[i].idx < 0)
720			break;
721
722		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
723			return true;
724	}
725
726	return false;
727}
728
729static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
730			   struct ath_atx_tid *tid)
731{
732	struct sk_buff *skb;
733	struct ieee80211_tx_info *tx_info;
734	struct ieee80211_tx_rate *rates;
735	u32 max_4ms_framelen, frmlen;
736	u16 aggr_limit, bt_aggr_limit, legacy = 0;
737	int q = tid->ac->txq->mac80211_qnum;
738	int i;
739
740	skb = bf->bf_mpdu;
741	tx_info = IEEE80211_SKB_CB(skb);
742	rates = bf->rates;
743
744	/*
745	 * Find the lowest frame length among the rate series that will have a
746	 * 4ms (or TXOP limited) transmit duration.
747	 */
748	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
749
750	for (i = 0; i < 4; i++) {
751		int modeidx;
752
753		if (!rates[i].count)
754			continue;
755
756		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
757			legacy = 1;
758			break;
759		}
760
761		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
762			modeidx = MCS_HT40;
763		else
764			modeidx = MCS_HT20;
765
766		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
767			modeidx++;
768
769		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
770		max_4ms_framelen = min(max_4ms_framelen, frmlen);
771	}
772
773	/*
774	 * limit aggregate size by the minimum rate if rate selected is
775	 * not a probe rate, if rate selected is a probe rate then
776	 * avoid aggregation of this packet.
777	 */
778	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
779		return 0;
780
781	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
782
783	/*
784	 * Override the default aggregation limit for BTCOEX.
785	 */
786	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
787	if (bt_aggr_limit)
788		aggr_limit = bt_aggr_limit;
789
790	if (tid->an->maxampdu)
791		aggr_limit = min(aggr_limit, tid->an->maxampdu);
792
793	return aggr_limit;
794}
795
796/*
797 * Returns the number of delimiters to be added to
798 * meet the minimum required mpdudensity.
799 */
800static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
801				  struct ath_buf *bf, u16 frmlen,
802				  bool first_subfrm)
803{
804#define FIRST_DESC_NDELIMS 60
805	u32 nsymbits, nsymbols;
806	u16 minlen;
807	u8 flags, rix;
808	int width, streams, half_gi, ndelim, mindelim;
809	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
810
811	/* Select standard number of delimiters based on frame length alone */
812	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
813
814	/*
815	 * If encryption enabled, hardware requires some more padding between
816	 * subframes.
817	 * TODO - this could be improved to be dependent on the rate.
818	 *      The hardware can keep up at lower rates, but not higher rates
819	 */
820	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
821	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
822		ndelim += ATH_AGGR_ENCRYPTDELIM;
823
824	/*
825	 * Add delimiter when using RTS/CTS with aggregation
826	 * and non enterprise AR9003 card
827	 */
828	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
829	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
830		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
831
832	/*
833	 * Convert desired mpdu density from microeconds to bytes based
834	 * on highest rate in rate series (i.e. first rate) to determine
835	 * required minimum length for subframe. Take into account
836	 * whether high rate is 20 or 40Mhz and half or full GI.
837	 *
838	 * If there is no mpdu density restriction, no further calculation
839	 * is needed.
840	 */
841
842	if (tid->an->mpdudensity == 0)
843		return ndelim;
844
845	rix = bf->rates[0].idx;
846	flags = bf->rates[0].flags;
847	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
848	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
849
850	if (half_gi)
851		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
852	else
853		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
854
855	if (nsymbols == 0)
856		nsymbols = 1;
857
858	streams = HT_RC_2_STREAMS(rix);
859	nsymbits = bits_per_symbol[rix % 8][width] * streams;
860	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
861
862	if (frmlen < minlen) {
863		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
864		ndelim = max(mindelim, ndelim);
865	}
866
867	return ndelim;
868}
869
870static struct ath_buf *
871ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
872			struct ath_atx_tid *tid, struct sk_buff_head **q)
873{
874	struct ieee80211_tx_info *tx_info;
875	struct ath_frame_info *fi;
876	struct sk_buff *skb;
877	struct ath_buf *bf;
878	u16 seqno;
879
880	while (1) {
881		*q = &tid->retry_q;
882		if (skb_queue_empty(*q))
883			*q = &tid->buf_q;
884
885		skb = skb_peek(*q);
886		if (!skb)
887			break;
888
889		fi = get_frame_info(skb);
890		bf = fi->bf;
891		if (!fi->bf)
892			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
893		else
894			bf->bf_state.stale = false;
895
896		if (!bf) {
897			__skb_unlink(skb, *q);
898			ath_txq_skb_done(sc, txq, skb);
899			ieee80211_free_txskb(sc->hw, skb);
900			continue;
901		}
902
903		bf->bf_next = NULL;
904		bf->bf_lastbf = bf;
905
906		tx_info = IEEE80211_SKB_CB(skb);
907		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
908
909		/*
910		 * No aggregation session is running, but there may be frames
911		 * from a previous session or a failed attempt in the queue.
912		 * Send them out as normal data frames
913		 */
914		if (!tid->active)
915			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
916
917		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
918			bf->bf_state.bf_type = 0;
919			return bf;
920		}
921
922		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
923		seqno = bf->bf_state.seqno;
924
925		/* do not step over block-ack window */
926		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
927			break;
928
929		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
930			struct ath_tx_status ts = {};
931			struct list_head bf_head;
932
933			INIT_LIST_HEAD(&bf_head);
934			list_add(&bf->list, &bf_head);
935			__skb_unlink(skb, *q);
936			ath_tx_update_baw(sc, tid, seqno);
937			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
938			continue;
939		}
940
941		return bf;
942	}
943
944	return NULL;
945}
946
947static bool
948ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
949		 struct ath_atx_tid *tid, struct list_head *bf_q,
950		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
951		 int *aggr_len)
952{
953#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
954	struct ath_buf *bf = bf_first, *bf_prev = NULL;
955	int nframes = 0, ndelim;
956	u16 aggr_limit = 0, al = 0, bpad = 0,
957	    al_delta, h_baw = tid->baw_size / 2;
958	struct ieee80211_tx_info *tx_info;
959	struct ath_frame_info *fi;
960	struct sk_buff *skb;
961	bool closed = false;
962
963	bf = bf_first;
964	aggr_limit = ath_lookup_rate(sc, bf, tid);
965
966	do {
967		skb = bf->bf_mpdu;
968		fi = get_frame_info(skb);
969
970		/* do not exceed aggregation limit */
971		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
972		if (nframes) {
973			if (aggr_limit < al + bpad + al_delta ||
974			    ath_lookup_legacy(bf) || nframes >= h_baw)
975				break;
976
977			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
978			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
979			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
980				break;
981		}
982
983		/* add padding for previous frame to aggregation length */
984		al += bpad + al_delta;
985
986		/*
987		 * Get the delimiters needed to meet the MPDU
988		 * density for this node.
989		 */
990		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
991						!nframes);
992		bpad = PADBYTES(al_delta) + (ndelim << 2);
993
994		nframes++;
995		bf->bf_next = NULL;
996
997		/* link buffers of this frame to the aggregate */
998		if (!fi->baw_tracked)
999			ath_tx_addto_baw(sc, tid, bf);
1000		bf->bf_state.ndelim = ndelim;
1001
1002		__skb_unlink(skb, tid_q);
1003		list_add_tail(&bf->list, bf_q);
1004		if (bf_prev)
1005			bf_prev->bf_next = bf;
1006
1007		bf_prev = bf;
1008
1009		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1010		if (!bf) {
1011			closed = true;
1012			break;
1013		}
1014	} while (ath_tid_has_buffered(tid));
1015
1016	bf = bf_first;
1017	bf->bf_lastbf = bf_prev;
1018
1019	if (bf == bf_prev) {
1020		al = get_frame_info(bf->bf_mpdu)->framelen;
1021		bf->bf_state.bf_type = BUF_AMPDU;
1022	} else {
1023		TX_STAT_INC(txq->axq_qnum, a_aggr);
1024	}
1025
1026	*aggr_len = al;
1027
1028	return closed;
1029#undef PADBYTES
1030}
1031
1032/*
1033 * rix - rate index
1034 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1035 * width  - 0 for 20 MHz, 1 for 40 MHz
1036 * half_gi - to use 4us v/s 3.6 us for symbol time
1037 */
1038static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1039			    int width, int half_gi, bool shortPreamble)
1040{
1041	u32 nbits, nsymbits, duration, nsymbols;
1042	int streams;
1043
1044	/* find number of symbols: PLCP + data */
1045	streams = HT_RC_2_STREAMS(rix);
1046	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1047	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1048	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1049
1050	if (!half_gi)
1051		duration = SYMBOL_TIME(nsymbols);
1052	else
1053		duration = SYMBOL_TIME_HALFGI(nsymbols);
1054
1055	/* addup duration for legacy/ht training and signal fields */
1056	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057
1058	return duration;
1059}
1060
1061static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1062{
1063	int streams = HT_RC_2_STREAMS(mcs);
1064	int symbols, bits;
1065	int bytes = 0;
1066
1067	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1068	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1069	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1070	bits -= OFDM_PLCP_BITS;
1071	bytes = bits / 8;
1072	if (bytes > 65532)
1073		bytes = 65532;
1074
1075	return bytes;
1076}
1077
1078void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1079{
1080	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1081	int mcs;
1082
1083	/* 4ms is the default (and maximum) duration */
1084	if (!txop || txop > 4096)
1085		txop = 4096;
1086
1087	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1088	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1089	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1090	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1091	for (mcs = 0; mcs < 32; mcs++) {
1092		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1093		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1094		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1095		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1096	}
1097}
1098
1099static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1100			       u8 rateidx, bool is_40, bool is_cck)
1101{
1102	u8 max_power;
1103	struct sk_buff *skb;
1104	struct ath_frame_info *fi;
1105	struct ieee80211_tx_info *info;
1106	struct ath_hw *ah = sc->sc_ah;
1107
1108	if (sc->tx99_state || !ah->tpc_enabled)
1109		return MAX_RATE_POWER;
1110
1111	skb = bf->bf_mpdu;
1112	fi = get_frame_info(skb);
1113	info = IEEE80211_SKB_CB(skb);
1114
1115	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1116		int txpower = fi->tx_power;
1117
1118		if (is_40) {
1119			u8 power_ht40delta;
1120			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1121
1122			if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1123				bool is_2ghz;
1124				struct modal_eep_header *pmodal;
1125
1126				is_2ghz = info->band == IEEE80211_BAND_2GHZ;
1127				pmodal = &eep->modalHeader[is_2ghz];
1128				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1129			} else {
1130				power_ht40delta = 2;
1131			}
1132			txpower += power_ht40delta;
1133		}
1134
1135		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1136		    AR_SREV_9271(ah)) {
1137			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1138		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1139			s8 power_offset;
1140
1141			power_offset = ah->eep_ops->get_eeprom(ah,
1142							EEP_PWR_TABLE_OFFSET);
1143			txpower -= 2 * power_offset;
1144		}
1145
1146		if (OLC_FOR_AR9280_20_LATER && is_cck)
1147			txpower -= 2;
1148
1149		txpower = max(txpower, 0);
1150		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1151
1152		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1153		 * max_power is set to 0, frames are transmitted at max
1154		 * TX power
1155		 */
1156		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1157			max_power = 1;
1158	} else if (!bf->bf_state.bfs_paprd) {
1159		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1160			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1161					  fi->tx_power);
1162		else
1163			max_power = min_t(u8, ah->tx_power[rateidx],
1164					  fi->tx_power);
1165	} else {
1166		max_power = ah->paprd_training_power;
1167	}
1168
1169	return max_power;
1170}
1171
1172static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1173			     struct ath_tx_info *info, int len, bool rts)
1174{
1175	struct ath_hw *ah = sc->sc_ah;
1176	struct ath_common *common = ath9k_hw_common(ah);
1177	struct sk_buff *skb;
1178	struct ieee80211_tx_info *tx_info;
1179	struct ieee80211_tx_rate *rates;
1180	const struct ieee80211_rate *rate;
1181	struct ieee80211_hdr *hdr;
1182	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1183	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1184	int i;
1185	u8 rix = 0;
1186
1187	skb = bf->bf_mpdu;
1188	tx_info = IEEE80211_SKB_CB(skb);
1189	rates = bf->rates;
1190	hdr = (struct ieee80211_hdr *)skb->data;
1191
1192	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1193	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1194	info->rtscts_rate = fi->rtscts_rate;
1195
1196	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1197		bool is_40, is_sgi, is_sp, is_cck;
1198		int phy;
1199
1200		if (!rates[i].count || (rates[i].idx < 0))
1201			continue;
1202
1203		rix = rates[i].idx;
1204		info->rates[i].Tries = rates[i].count;
1205
1206		/*
1207		 * Handle RTS threshold for unaggregated HT frames.
1208		 */
1209		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1210		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1211		    unlikely(rts_thresh != (u32) -1)) {
1212			if (!rts_thresh || (len > rts_thresh))
1213				rts = true;
1214		}
1215
1216		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1217			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1218			info->flags |= ATH9K_TXDESC_RTSENA;
1219		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1220			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1221			info->flags |= ATH9K_TXDESC_CTSENA;
1222		}
1223
1224		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1225			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1226		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1227			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1228
1229		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1230		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1231		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1232
1233		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1234			/* MCS rates */
1235			info->rates[i].Rate = rix | 0x80;
1236			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1237					ah->txchainmask, info->rates[i].Rate);
1238			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1239				 is_40, is_sgi, is_sp);
1240			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1241				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1242
1243			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1244								is_40, false);
1245			continue;
1246		}
1247
1248		/* legacy rates */
1249		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1250		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1251		    !(rate->flags & IEEE80211_RATE_ERP_G))
1252			phy = WLAN_RC_PHY_CCK;
1253		else
1254			phy = WLAN_RC_PHY_OFDM;
1255
1256		info->rates[i].Rate = rate->hw_value;
1257		if (rate->hw_value_short) {
1258			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1259				info->rates[i].Rate |= rate->hw_value_short;
1260		} else {
1261			is_sp = false;
1262		}
1263
1264		if (bf->bf_state.bfs_paprd)
1265			info->rates[i].ChSel = ah->txchainmask;
1266		else
1267			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1268					ah->txchainmask, info->rates[i].Rate);
1269
1270		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1271			phy, rate->bitrate * 100, len, rix, is_sp);
1272
1273		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1274		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1275							is_cck);
1276	}
1277
1278	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1279	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1280		info->flags &= ~ATH9K_TXDESC_RTSENA;
1281
1282	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1283	if (info->flags & ATH9K_TXDESC_RTSENA)
1284		info->flags &= ~ATH9K_TXDESC_CTSENA;
1285}
1286
1287static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1288{
1289	struct ieee80211_hdr *hdr;
1290	enum ath9k_pkt_type htype;
1291	__le16 fc;
1292
1293	hdr = (struct ieee80211_hdr *)skb->data;
1294	fc = hdr->frame_control;
1295
1296	if (ieee80211_is_beacon(fc))
1297		htype = ATH9K_PKT_TYPE_BEACON;
1298	else if (ieee80211_is_probe_resp(fc))
1299		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1300	else if (ieee80211_is_atim(fc))
1301		htype = ATH9K_PKT_TYPE_ATIM;
1302	else if (ieee80211_is_pspoll(fc))
1303		htype = ATH9K_PKT_TYPE_PSPOLL;
1304	else
1305		htype = ATH9K_PKT_TYPE_NORMAL;
1306
1307	return htype;
1308}
1309
1310static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1311			     struct ath_txq *txq, int len)
1312{
1313	struct ath_hw *ah = sc->sc_ah;
1314	struct ath_buf *bf_first = NULL;
1315	struct ath_tx_info info;
1316	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1317	bool rts = false;
1318
1319	memset(&info, 0, sizeof(info));
1320	info.is_first = true;
1321	info.is_last = true;
1322	info.qcu = txq->axq_qnum;
1323
1324	while (bf) {
1325		struct sk_buff *skb = bf->bf_mpdu;
1326		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1327		struct ath_frame_info *fi = get_frame_info(skb);
1328		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1329
1330		info.type = get_hw_packet_type(skb);
1331		if (bf->bf_next)
1332			info.link = bf->bf_next->bf_daddr;
1333		else
1334			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1335
1336		if (!bf_first) {
1337			bf_first = bf;
1338
1339			if (!sc->tx99_state)
1340				info.flags = ATH9K_TXDESC_INTREQ;
1341			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1342			    txq == sc->tx.uapsdq)
1343				info.flags |= ATH9K_TXDESC_CLRDMASK;
1344
1345			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1346				info.flags |= ATH9K_TXDESC_NOACK;
1347			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1348				info.flags |= ATH9K_TXDESC_LDPC;
1349
1350			if (bf->bf_state.bfs_paprd)
1351				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1352					      ATH9K_TXDESC_PAPRD_S;
1353
1354			/*
1355			 * mac80211 doesn't handle RTS threshold for HT because
1356			 * the decision has to be taken based on AMPDU length
1357			 * and aggregation is done entirely inside ath9k.
1358			 * Set the RTS/CTS flag for the first subframe based
1359			 * on the threshold.
1360			 */
1361			if (aggr && (bf == bf_first) &&
1362			    unlikely(rts_thresh != (u32) -1)) {
1363				/*
1364				 * "len" is the size of the entire AMPDU.
1365				 */
1366				if (!rts_thresh || (len > rts_thresh))
1367					rts = true;
1368			}
1369
1370			if (!aggr)
1371				len = fi->framelen;
1372
1373			ath_buf_set_rate(sc, bf, &info, len, rts);
1374		}
1375
1376		info.buf_addr[0] = bf->bf_buf_addr;
1377		info.buf_len[0] = skb->len;
1378		info.pkt_len = fi->framelen;
1379		info.keyix = fi->keyix;
1380		info.keytype = fi->keytype;
1381
1382		if (aggr) {
1383			if (bf == bf_first)
1384				info.aggr = AGGR_BUF_FIRST;
1385			else if (bf == bf_first->bf_lastbf)
1386				info.aggr = AGGR_BUF_LAST;
1387			else
1388				info.aggr = AGGR_BUF_MIDDLE;
1389
1390			info.ndelim = bf->bf_state.ndelim;
1391			info.aggr_len = len;
1392		}
1393
1394		if (bf == bf_first->bf_lastbf)
1395			bf_first = NULL;
1396
1397		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1398		bf = bf->bf_next;
1399	}
1400}
1401
1402static void
1403ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1404		  struct ath_atx_tid *tid, struct list_head *bf_q,
1405		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1406{
1407	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1408	struct sk_buff *skb;
1409	int nframes = 0;
1410
1411	do {
1412		struct ieee80211_tx_info *tx_info;
1413		skb = bf->bf_mpdu;
1414
1415		nframes++;
1416		__skb_unlink(skb, tid_q);
1417		list_add_tail(&bf->list, bf_q);
1418		if (bf_prev)
1419			bf_prev->bf_next = bf;
1420		bf_prev = bf;
1421
1422		if (nframes >= 2)
1423			break;
1424
1425		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1426		if (!bf)
1427			break;
1428
1429		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1430		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1431			break;
1432
1433		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1434	} while (1);
1435}
1436
1437static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1438			      struct ath_atx_tid *tid, bool *stop)
1439{
1440	struct ath_buf *bf;
1441	struct ieee80211_tx_info *tx_info;
1442	struct sk_buff_head *tid_q;
1443	struct list_head bf_q;
1444	int aggr_len = 0;
1445	bool aggr, last = true;
1446
1447	if (!ath_tid_has_buffered(tid))
1448		return false;
1449
1450	INIT_LIST_HEAD(&bf_q);
1451
1452	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1453	if (!bf)
1454		return false;
1455
1456	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1457	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1458	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1459		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1460		*stop = true;
1461		return false;
1462	}
1463
1464	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1465	if (aggr)
1466		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1467					tid_q, &aggr_len);
1468	else
1469		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1470
1471	if (list_empty(&bf_q))
1472		return false;
1473
1474	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1475		tid->ac->clear_ps_filter = false;
1476		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1477	}
1478
1479	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1480	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1481	return true;
1482}
1483
1484int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1485		      u16 tid, u16 *ssn)
1486{
1487	struct ath_atx_tid *txtid;
1488	struct ath_txq *txq;
1489	struct ath_node *an;
1490	u8 density;
1491
1492	an = (struct ath_node *)sta->drv_priv;
1493	txtid = ATH_AN_2_TID(an, tid);
1494	txq = txtid->ac->txq;
1495
1496	ath_txq_lock(sc, txq);
1497
1498	/* update ampdu factor/density, they may have changed. This may happen
1499	 * in HT IBSS when a beacon with HT-info is received after the station
1500	 * has already been added.
1501	 */
1502	if (sta->ht_cap.ht_supported) {
1503		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1504				      sta->ht_cap.ampdu_factor)) - 1;
1505		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1506		an->mpdudensity = density;
1507	}
1508
1509	/* force sequence number allocation for pending frames */
1510	ath_tx_tid_change_state(sc, txtid);
1511
1512	txtid->active = true;
1513	*ssn = txtid->seq_start = txtid->seq_next;
1514	txtid->bar_index = -1;
1515
1516	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1517	txtid->baw_head = txtid->baw_tail = 0;
1518
1519	ath_txq_unlock_complete(sc, txq);
1520
1521	return 0;
1522}
1523
1524void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1525{
1526	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1527	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1528	struct ath_txq *txq = txtid->ac->txq;
1529
1530	ath_txq_lock(sc, txq);
1531	txtid->active = false;
1532	ath_tx_flush_tid(sc, txtid);
1533	ath_tx_tid_change_state(sc, txtid);
1534	ath_txq_unlock_complete(sc, txq);
1535}
1536
1537void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1538		       struct ath_node *an)
1539{
1540	struct ath_atx_tid *tid;
1541	struct ath_atx_ac *ac;
1542	struct ath_txq *txq;
1543	bool buffered;
1544	int tidno;
1545
1546	for (tidno = 0, tid = &an->tid[tidno];
1547	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1548
1549		ac = tid->ac;
1550		txq = ac->txq;
1551
1552		ath_txq_lock(sc, txq);
1553
1554		if (!tid->sched) {
1555			ath_txq_unlock(sc, txq);
1556			continue;
1557		}
1558
1559		buffered = ath_tid_has_buffered(tid);
1560
1561		tid->sched = false;
1562		list_del(&tid->list);
1563
1564		if (ac->sched) {
1565			ac->sched = false;
1566			list_del(&ac->list);
1567		}
1568
1569		ath_txq_unlock(sc, txq);
1570
1571		ieee80211_sta_set_buffered(sta, tidno, buffered);
1572	}
1573}
1574
1575void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1576{
1577	struct ath_atx_tid *tid;
1578	struct ath_atx_ac *ac;
1579	struct ath_txq *txq;
1580	int tidno;
1581
1582	for (tidno = 0, tid = &an->tid[tidno];
1583	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1584
1585		ac = tid->ac;
1586		txq = ac->txq;
1587
1588		ath_txq_lock(sc, txq);
1589		ac->clear_ps_filter = true;
1590
1591		if (ath_tid_has_buffered(tid)) {
1592			ath_tx_queue_tid(sc, txq, tid);
1593			ath_txq_schedule(sc, txq);
1594		}
1595
1596		ath_txq_unlock_complete(sc, txq);
1597	}
1598}
1599
1600void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1601			u16 tidno)
1602{
1603	struct ath_atx_tid *tid;
1604	struct ath_node *an;
1605	struct ath_txq *txq;
1606
1607	an = (struct ath_node *)sta->drv_priv;
1608	tid = ATH_AN_2_TID(an, tidno);
1609	txq = tid->ac->txq;
1610
1611	ath_txq_lock(sc, txq);
1612
1613	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1614
1615	if (ath_tid_has_buffered(tid)) {
1616		ath_tx_queue_tid(sc, txq, tid);
1617		ath_txq_schedule(sc, txq);
1618	}
1619
1620	ath_txq_unlock_complete(sc, txq);
1621}
1622
1623void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1624				   struct ieee80211_sta *sta,
1625				   u16 tids, int nframes,
1626				   enum ieee80211_frame_release_type reason,
1627				   bool more_data)
1628{
1629	struct ath_softc *sc = hw->priv;
1630	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1631	struct ath_txq *txq = sc->tx.uapsdq;
1632	struct ieee80211_tx_info *info;
1633	struct list_head bf_q;
1634	struct ath_buf *bf_tail = NULL, *bf;
1635	struct sk_buff_head *tid_q;
1636	int sent = 0;
1637	int i;
1638
1639	INIT_LIST_HEAD(&bf_q);
1640	for (i = 0; tids && nframes; i++, tids >>= 1) {
1641		struct ath_atx_tid *tid;
1642
1643		if (!(tids & 1))
1644			continue;
1645
1646		tid = ATH_AN_2_TID(an, i);
1647
1648		ath_txq_lock(sc, tid->ac->txq);
1649		while (nframes > 0) {
1650			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1651			if (!bf)
1652				break;
1653
1654			__skb_unlink(bf->bf_mpdu, tid_q);
1655			list_add_tail(&bf->list, &bf_q);
1656			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1657			if (bf_isampdu(bf)) {
1658				ath_tx_addto_baw(sc, tid, bf);
1659				bf->bf_state.bf_type &= ~BUF_AGGR;
1660			}
1661			if (bf_tail)
1662				bf_tail->bf_next = bf;
1663
1664			bf_tail = bf;
1665			nframes--;
1666			sent++;
1667			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1668
1669			if (an->sta && !ath_tid_has_buffered(tid))
1670				ieee80211_sta_set_buffered(an->sta, i, false);
1671		}
1672		ath_txq_unlock_complete(sc, tid->ac->txq);
1673	}
1674
1675	if (list_empty(&bf_q))
1676		return;
1677
1678	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1679	info->flags |= IEEE80211_TX_STATUS_EOSP;
1680
1681	bf = list_first_entry(&bf_q, struct ath_buf, list);
1682	ath_txq_lock(sc, txq);
1683	ath_tx_fill_desc(sc, bf, txq, 0);
1684	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1685	ath_txq_unlock(sc, txq);
1686}
1687
1688/********************/
1689/* Queue Management */
1690/********************/
1691
1692struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1693{
1694	struct ath_hw *ah = sc->sc_ah;
1695	struct ath9k_tx_queue_info qi;
1696	static const int subtype_txq_to_hwq[] = {
1697		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1698		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1699		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1700		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1701	};
1702	int axq_qnum, i;
1703
1704	memset(&qi, 0, sizeof(qi));
1705	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1706	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1707	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1708	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1709	qi.tqi_physCompBuf = 0;
1710
1711	/*
1712	 * Enable interrupts only for EOL and DESC conditions.
1713	 * We mark tx descriptors to receive a DESC interrupt
1714	 * when a tx queue gets deep; otherwise waiting for the
1715	 * EOL to reap descriptors.  Note that this is done to
1716	 * reduce interrupt load and this only defers reaping
1717	 * descriptors, never transmitting frames.  Aside from
1718	 * reducing interrupts this also permits more concurrency.
1719	 * The only potential downside is if the tx queue backs
1720	 * up in which case the top half of the kernel may backup
1721	 * due to a lack of tx descriptors.
1722	 *
1723	 * The UAPSD queue is an exception, since we take a desc-
1724	 * based intr on the EOSP frames.
1725	 */
1726	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1727		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1728	} else {
1729		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1730			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1731		else
1732			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1733					TXQ_FLAG_TXDESCINT_ENABLE;
1734	}
1735	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1736	if (axq_qnum == -1) {
1737		/*
1738		 * NB: don't print a message, this happens
1739		 * normally on parts with too few tx queues
1740		 */
1741		return NULL;
1742	}
1743	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1744		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1745
1746		txq->axq_qnum = axq_qnum;
1747		txq->mac80211_qnum = -1;
1748		txq->axq_link = NULL;
1749		__skb_queue_head_init(&txq->complete_q);
1750		INIT_LIST_HEAD(&txq->axq_q);
1751		spin_lock_init(&txq->axq_lock);
1752		txq->axq_depth = 0;
1753		txq->axq_ampdu_depth = 0;
1754		txq->axq_tx_inprogress = false;
1755		sc->tx.txqsetup |= 1<<axq_qnum;
1756
1757		txq->txq_headidx = txq->txq_tailidx = 0;
1758		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1759			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1760	}
1761	return &sc->tx.txq[axq_qnum];
1762}
1763
1764int ath_txq_update(struct ath_softc *sc, int qnum,
1765		   struct ath9k_tx_queue_info *qinfo)
1766{
1767	struct ath_hw *ah = sc->sc_ah;
1768	int error = 0;
1769	struct ath9k_tx_queue_info qi;
1770
1771	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1772
1773	ath9k_hw_get_txq_props(ah, qnum, &qi);
1774	qi.tqi_aifs = qinfo->tqi_aifs;
1775	qi.tqi_cwmin = qinfo->tqi_cwmin;
1776	qi.tqi_cwmax = qinfo->tqi_cwmax;
1777	qi.tqi_burstTime = qinfo->tqi_burstTime;
1778	qi.tqi_readyTime = qinfo->tqi_readyTime;
1779
1780	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1781		ath_err(ath9k_hw_common(sc->sc_ah),
1782			"Unable to update hardware queue %u!\n", qnum);
1783		error = -EIO;
1784	} else {
1785		ath9k_hw_resettxqueue(ah, qnum);
1786	}
1787
1788	return error;
1789}
1790
1791int ath_cabq_update(struct ath_softc *sc)
1792{
1793	struct ath9k_tx_queue_info qi;
1794	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1795	int qnum = sc->beacon.cabq->axq_qnum;
1796
1797	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1798
1799	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1800			    ATH_CABQ_READY_TIME) / 100;
1801	ath_txq_update(sc, qnum, &qi);
1802
1803	return 0;
1804}
1805
1806static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1807			       struct list_head *list)
1808{
1809	struct ath_buf *bf, *lastbf;
1810	struct list_head bf_head;
1811	struct ath_tx_status ts;
1812
1813	memset(&ts, 0, sizeof(ts));
1814	ts.ts_status = ATH9K_TX_FLUSH;
1815	INIT_LIST_HEAD(&bf_head);
1816
1817	while (!list_empty(list)) {
1818		bf = list_first_entry(list, struct ath_buf, list);
1819
1820		if (bf->bf_state.stale) {
1821			list_del(&bf->list);
1822
1823			ath_tx_return_buffer(sc, bf);
1824			continue;
1825		}
1826
1827		lastbf = bf->bf_lastbf;
1828		list_cut_position(&bf_head, list, &lastbf->list);
1829		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1830	}
1831}
1832
1833/*
1834 * Drain a given TX queue (could be Beacon or Data)
1835 *
1836 * This assumes output has been stopped and
1837 * we do not need to block ath_tx_tasklet.
1838 */
1839void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1840{
1841	ath_txq_lock(sc, txq);
1842
1843	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1844		int idx = txq->txq_tailidx;
1845
1846		while (!list_empty(&txq->txq_fifo[idx])) {
1847			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1848
1849			INCR(idx, ATH_TXFIFO_DEPTH);
1850		}
1851		txq->txq_tailidx = idx;
1852	}
1853
1854	txq->axq_link = NULL;
1855	txq->axq_tx_inprogress = false;
1856	ath_drain_txq_list(sc, txq, &txq->axq_q);
1857
1858	ath_txq_unlock_complete(sc, txq);
1859}
1860
1861bool ath_drain_all_txq(struct ath_softc *sc)
1862{
1863	struct ath_hw *ah = sc->sc_ah;
1864	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1865	struct ath_txq *txq;
1866	int i;
1867	u32 npend = 0;
1868
1869	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1870		return true;
1871
1872	ath9k_hw_abort_tx_dma(ah);
1873
1874	/* Check if any queue remains active */
1875	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1876		if (!ATH_TXQ_SETUP(sc, i))
1877			continue;
1878
1879		if (!sc->tx.txq[i].axq_depth)
1880			continue;
1881
1882		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1883			npend |= BIT(i);
1884	}
1885
1886	if (npend)
1887		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1888
1889	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1890		if (!ATH_TXQ_SETUP(sc, i))
1891			continue;
1892
1893		/*
1894		 * The caller will resume queues with ieee80211_wake_queues.
1895		 * Mark the queue as not stopped to prevent ath_tx_complete
1896		 * from waking the queue too early.
1897		 */
1898		txq = &sc->tx.txq[i];
1899		txq->stopped = false;
1900		ath_draintxq(sc, txq);
1901	}
1902
1903	return !npend;
1904}
1905
1906void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1907{
1908	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1909	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1910}
1911
1912/* For each acq entry, for each tid, try to schedule packets
1913 * for transmit until ampdu_depth has reached min Q depth.
1914 */
1915void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1916{
1917	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1918	struct ath_atx_ac *ac, *last_ac;
1919	struct ath_atx_tid *tid, *last_tid;
1920	struct list_head *ac_list;
1921	bool sent = false;
1922
1923	if (txq->mac80211_qnum < 0)
1924		return;
1925
1926	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1927		return;
1928
1929	spin_lock_bh(&sc->chan_lock);
1930	ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1931
1932	if (list_empty(ac_list)) {
1933		spin_unlock_bh(&sc->chan_lock);
1934		return;
1935	}
1936
1937	rcu_read_lock();
1938
1939	last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
1940	while (!list_empty(ac_list)) {
1941		bool stop = false;
1942
1943		if (sc->cur_chan->stopped)
1944			break;
1945
1946		ac = list_first_entry(ac_list, struct ath_atx_ac, list);
1947		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1948		list_del(&ac->list);
1949		ac->sched = false;
1950
1951		while (!list_empty(&ac->tid_q)) {
1952
1953			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1954					       list);
1955			list_del(&tid->list);
1956			tid->sched = false;
1957
1958			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1959				sent = true;
1960
1961			/*
1962			 * add tid to round-robin queue if more frames
1963			 * are pending for the tid
1964			 */
1965			if (ath_tid_has_buffered(tid))
1966				ath_tx_queue_tid(sc, txq, tid);
1967
1968			if (stop || tid == last_tid)
1969				break;
1970		}
1971
1972		if (!list_empty(&ac->tid_q) && !ac->sched) {
1973			ac->sched = true;
1974			list_add_tail(&ac->list, ac_list);
1975		}
1976
1977		if (stop)
1978			break;
1979
1980		if (ac == last_ac) {
1981			if (!sent)
1982				break;
1983
1984			sent = false;
1985			last_ac = list_entry(ac_list->prev,
1986					     struct ath_atx_ac, list);
1987		}
1988	}
1989
1990	rcu_read_unlock();
1991	spin_unlock_bh(&sc->chan_lock);
1992}
1993
1994void ath_txq_schedule_all(struct ath_softc *sc)
1995{
1996	struct ath_txq *txq;
1997	int i;
1998
1999	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2000		txq = sc->tx.txq_map[i];
2001
2002		spin_lock_bh(&txq->axq_lock);
2003		ath_txq_schedule(sc, txq);
2004		spin_unlock_bh(&txq->axq_lock);
2005	}
2006}
2007
2008/***********/
2009/* TX, DMA */
2010/***********/
2011
2012/*
2013 * Insert a chain of ath_buf (descriptors) on a txq and
2014 * assume the descriptors are already chained together by caller.
2015 */
2016static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2017			     struct list_head *head, bool internal)
2018{
2019	struct ath_hw *ah = sc->sc_ah;
2020	struct ath_common *common = ath9k_hw_common(ah);
2021	struct ath_buf *bf, *bf_last;
2022	bool puttxbuf = false;
2023	bool edma;
2024
2025	/*
2026	 * Insert the frame on the outbound list and
2027	 * pass it on to the hardware.
2028	 */
2029
2030	if (list_empty(head))
2031		return;
2032
2033	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2034	bf = list_first_entry(head, struct ath_buf, list);
2035	bf_last = list_entry(head->prev, struct ath_buf, list);
2036
2037	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2038		txq->axq_qnum, txq->axq_depth);
2039
2040	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2041		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2042		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2043		puttxbuf = true;
2044	} else {
2045		list_splice_tail_init(head, &txq->axq_q);
2046
2047		if (txq->axq_link) {
2048			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2049			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2050				txq->axq_qnum, txq->axq_link,
2051				ito64(bf->bf_daddr), bf->bf_desc);
2052		} else if (!edma)
2053			puttxbuf = true;
2054
2055		txq->axq_link = bf_last->bf_desc;
2056	}
2057
2058	if (puttxbuf) {
2059		TX_STAT_INC(txq->axq_qnum, puttxbuf);
2060		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2061		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2062			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2063	}
2064
2065	if (!edma || sc->tx99_state) {
2066		TX_STAT_INC(txq->axq_qnum, txstart);
2067		ath9k_hw_txstart(ah, txq->axq_qnum);
2068	}
2069
2070	if (!internal) {
2071		while (bf) {
2072			txq->axq_depth++;
2073			if (bf_is_ampdu_not_probing(bf))
2074				txq->axq_ampdu_depth++;
2075
2076			bf_last = bf->bf_lastbf;
2077			bf = bf_last->bf_next;
2078			bf_last->bf_next = NULL;
2079		}
2080	}
2081}
2082
2083static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2084			       struct ath_atx_tid *tid, struct sk_buff *skb)
2085{
2086	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2087	struct ath_frame_info *fi = get_frame_info(skb);
2088	struct list_head bf_head;
2089	struct ath_buf *bf = fi->bf;
2090
2091	INIT_LIST_HEAD(&bf_head);
2092	list_add_tail(&bf->list, &bf_head);
2093	bf->bf_state.bf_type = 0;
2094	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2095		bf->bf_state.bf_type = BUF_AMPDU;
2096		ath_tx_addto_baw(sc, tid, bf);
2097	}
2098
2099	bf->bf_next = NULL;
2100	bf->bf_lastbf = bf;
2101	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2102	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2103	TX_STAT_INC(txq->axq_qnum, queued);
2104}
2105
2106static void setup_frame_info(struct ieee80211_hw *hw,
2107			     struct ieee80211_sta *sta,
2108			     struct sk_buff *skb,
2109			     int framelen)
2110{
2111	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2112	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2113	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2114	const struct ieee80211_rate *rate;
2115	struct ath_frame_info *fi = get_frame_info(skb);
2116	struct ath_node *an = NULL;
2117	enum ath9k_key_type keytype;
2118	bool short_preamble = false;
2119	u8 txpower;
2120
2121	/*
2122	 * We check if Short Preamble is needed for the CTS rate by
2123	 * checking the BSS's global flag.
2124	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2125	 */
2126	if (tx_info->control.vif &&
2127	    tx_info->control.vif->bss_conf.use_short_preamble)
2128		short_preamble = true;
2129
2130	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2131	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2132
2133	if (sta)
2134		an = (struct ath_node *) sta->drv_priv;
2135
2136	if (tx_info->control.vif) {
2137		struct ieee80211_vif *vif = tx_info->control.vif;
2138
2139		txpower = 2 * vif->bss_conf.txpower;
2140	} else {
2141		struct ath_softc *sc = hw->priv;
2142
2143		txpower = sc->cur_chan->cur_txpower;
2144	}
2145
2146	memset(fi, 0, sizeof(*fi));
2147	fi->txq = -1;
2148	if (hw_key)
2149		fi->keyix = hw_key->hw_key_idx;
2150	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2151		fi->keyix = an->ps_key;
2152	else
2153		fi->keyix = ATH9K_TXKEYIX_INVALID;
2154	fi->keytype = keytype;
2155	fi->framelen = framelen;
2156	fi->tx_power = txpower;
2157
2158	if (!rate)
2159		return;
2160	fi->rtscts_rate = rate->hw_value;
2161	if (short_preamble)
2162		fi->rtscts_rate |= rate->hw_value_short;
2163}
2164
2165u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2166{
2167	struct ath_hw *ah = sc->sc_ah;
2168	struct ath9k_channel *curchan = ah->curchan;
2169
2170	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2171	    (chainmask == 0x7) && (rate < 0x90))
2172		return 0x3;
2173	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2174		 IS_CCK_RATE(rate))
2175		return 0x2;
2176	else
2177		return chainmask;
2178}
2179
2180/*
2181 * Assign a descriptor (and sequence number if necessary,
2182 * and map buffer for DMA. Frees skb on error
2183 */
2184static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2185					   struct ath_txq *txq,
2186					   struct ath_atx_tid *tid,
2187					   struct sk_buff *skb)
2188{
2189	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2190	struct ath_frame_info *fi = get_frame_info(skb);
2191	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2192	struct ath_buf *bf;
2193	int fragno;
2194	u16 seqno;
2195
2196	bf = ath_tx_get_buffer(sc);
2197	if (!bf) {
2198		ath_dbg(common, XMIT, "TX buffers are full\n");
2199		return NULL;
2200	}
2201
2202	ATH_TXBUF_RESET(bf);
2203
2204	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2205		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2206		seqno = tid->seq_next;
2207		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2208
2209		if (fragno)
2210			hdr->seq_ctrl |= cpu_to_le16(fragno);
2211
2212		if (!ieee80211_has_morefrags(hdr->frame_control))
2213			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2214
2215		bf->bf_state.seqno = seqno;
2216	}
2217
2218	bf->bf_mpdu = skb;
2219
2220	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2221					 skb->len, DMA_TO_DEVICE);
2222	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2223		bf->bf_mpdu = NULL;
2224		bf->bf_buf_addr = 0;
2225		ath_err(ath9k_hw_common(sc->sc_ah),
2226			"dma_mapping_error() on TX\n");
2227		ath_tx_return_buffer(sc, bf);
2228		return NULL;
2229	}
2230
2231	fi->bf = bf;
2232
2233	return bf;
2234}
2235
2236void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2237{
2238	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2239	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2240	struct ieee80211_vif *vif = info->control.vif;
2241	struct ath_vif *avp;
2242
2243	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2244		return;
2245
2246	if (!vif)
2247		return;
2248
2249	avp = (struct ath_vif *)vif->drv_priv;
2250
2251	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2252		avp->seq_no += 0x10;
2253
2254	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2255	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2256}
2257
2258static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2259			  struct ath_tx_control *txctl)
2260{
2261	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2262	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2263	struct ieee80211_sta *sta = txctl->sta;
2264	struct ieee80211_vif *vif = info->control.vif;
2265	struct ath_vif *avp;
2266	struct ath_softc *sc = hw->priv;
2267	int frmlen = skb->len + FCS_LEN;
2268	int padpos, padsize;
2269
2270	/* NOTE:  sta can be NULL according to net/mac80211.h */
2271	if (sta)
2272		txctl->an = (struct ath_node *)sta->drv_priv;
2273	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2274		avp = (void *)vif->drv_priv;
2275		txctl->an = &avp->mcast_node;
2276	}
2277
2278	if (info->control.hw_key)
2279		frmlen += info->control.hw_key->icv_len;
2280
2281	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2282
2283	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2284	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2285	    !ieee80211_is_data(hdr->frame_control))
2286		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2287
2288	/* Add the padding after the header if this is not already done */
2289	padpos = ieee80211_hdrlen(hdr->frame_control);
2290	padsize = padpos & 3;
2291	if (padsize && skb->len > padpos) {
2292		if (skb_headroom(skb) < padsize)
2293			return -ENOMEM;
2294
2295		skb_push(skb, padsize);
2296		memmove(skb->data, skb->data + padsize, padpos);
2297	}
2298
2299	setup_frame_info(hw, sta, skb, frmlen);
2300	return 0;
2301}
2302
2303
2304/* Upon failure caller should free skb */
2305int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2306		 struct ath_tx_control *txctl)
2307{
2308	struct ieee80211_hdr *hdr;
2309	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2310	struct ieee80211_sta *sta = txctl->sta;
2311	struct ieee80211_vif *vif = info->control.vif;
2312	struct ath_frame_info *fi = get_frame_info(skb);
2313	struct ath_vif *avp = NULL;
2314	struct ath_softc *sc = hw->priv;
2315	struct ath_txq *txq = txctl->txq;
2316	struct ath_atx_tid *tid = NULL;
2317	struct ath_buf *bf;
2318	bool queue, skip_uapsd = false, ps_resp;
2319	int q, ret;
2320
2321	if (vif)
2322		avp = (void *)vif->drv_priv;
2323
2324	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2325		txctl->force_channel = true;
2326
2327	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2328
2329	ret = ath_tx_prepare(hw, skb, txctl);
2330	if (ret)
2331	    return ret;
2332
2333	hdr = (struct ieee80211_hdr *) skb->data;
2334	/*
2335	 * At this point, the vif, hw_key and sta pointers in the tx control
2336	 * info are no longer valid (overwritten by the ath_frame_info data.
2337	 */
2338
2339	q = skb_get_queue_mapping(skb);
2340
2341	ath_txq_lock(sc, txq);
2342	if (txq == sc->tx.txq_map[q]) {
2343		fi->txq = q;
2344		if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2345		    !txq->stopped) {
2346			if (ath9k_is_chanctx_enabled())
2347				ieee80211_stop_queue(sc->hw, info->hw_queue);
2348			else
2349				ieee80211_stop_queue(sc->hw, q);
2350			txq->stopped = true;
2351		}
2352	}
2353
2354	queue = ieee80211_is_data_present(hdr->frame_control);
2355
2356	/* Force queueing of all frames that belong to a virtual interface on
2357	 * a different channel context, to ensure that they are sent on the
2358	 * correct channel.
2359	 */
2360	if (((avp && avp->chanctx != sc->cur_chan) ||
2361	     sc->cur_chan->stopped) && !txctl->force_channel) {
2362		if (!txctl->an)
2363			txctl->an = &avp->mcast_node;
2364		queue = true;
2365		skip_uapsd = true;
2366	}
2367
2368	if (txctl->an && queue)
2369		tid = ath_get_skb_tid(sc, txctl->an, skb);
2370
2371	if (!skip_uapsd && ps_resp) {
2372		ath_txq_unlock(sc, txq);
2373		txq = sc->tx.uapsdq;
2374		ath_txq_lock(sc, txq);
2375	} else if (txctl->an && queue) {
2376		WARN_ON(tid->ac->txq != txctl->txq);
2377
2378		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2379			tid->ac->clear_ps_filter = true;
2380
2381		/*
2382		 * Add this frame to software queue for scheduling later
2383		 * for aggregation.
2384		 */
2385		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2386		__skb_queue_tail(&tid->buf_q, skb);
2387		if (!txctl->an->sleeping)
2388			ath_tx_queue_tid(sc, txq, tid);
2389
2390		ath_txq_schedule(sc, txq);
2391		goto out;
2392	}
2393
2394	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2395	if (!bf) {
2396		ath_txq_skb_done(sc, txq, skb);
2397		if (txctl->paprd)
2398			dev_kfree_skb_any(skb);
2399		else
2400			ieee80211_free_txskb(sc->hw, skb);
2401		goto out;
2402	}
2403
2404	bf->bf_state.bfs_paprd = txctl->paprd;
2405
2406	if (txctl->paprd)
2407		bf->bf_state.bfs_paprd_timestamp = jiffies;
2408
2409	ath_set_rates(vif, sta, bf);
2410	ath_tx_send_normal(sc, txq, tid, skb);
2411
2412out:
2413	ath_txq_unlock(sc, txq);
2414
2415	return 0;
2416}
2417
2418void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2419		 struct sk_buff *skb)
2420{
2421	struct ath_softc *sc = hw->priv;
2422	struct ath_tx_control txctl = {
2423		.txq = sc->beacon.cabq
2424	};
2425	struct ath_tx_info info = {};
2426	struct ieee80211_hdr *hdr;
2427	struct ath_buf *bf_tail = NULL;
2428	struct ath_buf *bf;
2429	LIST_HEAD(bf_q);
2430	int duration = 0;
2431	int max_duration;
2432
2433	max_duration =
2434		sc->cur_chan->beacon.beacon_interval * 1000 *
2435		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2436
2437	do {
2438		struct ath_frame_info *fi = get_frame_info(skb);
2439
2440		if (ath_tx_prepare(hw, skb, &txctl))
2441			break;
2442
2443		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2444		if (!bf)
2445			break;
2446
2447		bf->bf_lastbf = bf;
2448		ath_set_rates(vif, NULL, bf);
2449		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2450		duration += info.rates[0].PktDuration;
2451		if (bf_tail)
2452			bf_tail->bf_next = bf;
2453
2454		list_add_tail(&bf->list, &bf_q);
2455		bf_tail = bf;
2456		skb = NULL;
2457
2458		if (duration > max_duration)
2459			break;
2460
2461		skb = ieee80211_get_buffered_bc(hw, vif);
2462	} while(skb);
2463
2464	if (skb)
2465		ieee80211_free_txskb(hw, skb);
2466
2467	if (list_empty(&bf_q))
2468		return;
2469
2470	bf = list_first_entry(&bf_q, struct ath_buf, list);
2471	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2472
2473	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2474		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2475		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2476			sizeof(*hdr), DMA_TO_DEVICE);
2477	}
2478
2479	ath_txq_lock(sc, txctl.txq);
2480	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2481	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2482	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2483	ath_txq_unlock(sc, txctl.txq);
2484}
2485
2486/*****************/
2487/* TX Completion */
2488/*****************/
2489
2490static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2491			    int tx_flags, struct ath_txq *txq)
2492{
2493	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2494	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2495	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2496	int padpos, padsize;
2497	unsigned long flags;
2498
2499	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2500
2501	if (sc->sc_ah->caldata)
2502		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2503
2504	if (!(tx_flags & ATH_TX_ERROR)) {
2505		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2506			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2507		else
2508			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2509	}
2510
2511	padpos = ieee80211_hdrlen(hdr->frame_control);
2512	padsize = padpos & 3;
2513	if (padsize && skb->len>padpos+padsize) {
2514		/*
2515		 * Remove MAC header padding before giving the frame back to
2516		 * mac80211.
2517		 */
2518		memmove(skb->data + padsize, skb->data, padpos);
2519		skb_pull(skb, padsize);
2520	}
2521
2522	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2523	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2524		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2525		ath_dbg(common, PS,
2526			"Going back to sleep after having received TX status (0x%lx)\n",
2527			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2528					PS_WAIT_FOR_CAB |
2529					PS_WAIT_FOR_PSPOLL_DATA |
2530					PS_WAIT_FOR_TX_ACK));
2531	}
2532	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2533
2534	__skb_queue_tail(&txq->complete_q, skb);
2535	ath_txq_skb_done(sc, txq, skb);
2536}
2537
2538static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2539				struct ath_txq *txq, struct list_head *bf_q,
2540				struct ath_tx_status *ts, int txok)
2541{
2542	struct sk_buff *skb = bf->bf_mpdu;
2543	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2544	unsigned long flags;
2545	int tx_flags = 0;
2546
2547	if (!txok)
2548		tx_flags |= ATH_TX_ERROR;
2549
2550	if (ts->ts_status & ATH9K_TXERR_FILT)
2551		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2552
2553	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2554	bf->bf_buf_addr = 0;
2555	if (sc->tx99_state)
2556		goto skip_tx_complete;
2557
2558	if (bf->bf_state.bfs_paprd) {
2559		if (time_after(jiffies,
2560				bf->bf_state.bfs_paprd_timestamp +
2561				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2562			dev_kfree_skb_any(skb);
2563		else
2564			complete(&sc->paprd_complete);
2565	} else {
2566		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2567		ath_tx_complete(sc, skb, tx_flags, txq);
2568	}
2569skip_tx_complete:
2570	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2571	 * accidentally reference it later.
2572	 */
2573	bf->bf_mpdu = NULL;
2574
2575	/*
2576	 * Return the list of ath_buf of this mpdu to free queue
2577	 */
2578	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2579	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2580	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2581}
2582
2583static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2584			     struct ath_tx_status *ts, int nframes, int nbad,
2585			     int txok)
2586{
2587	struct sk_buff *skb = bf->bf_mpdu;
2588	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2589	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2590	struct ieee80211_hw *hw = sc->hw;
2591	struct ath_hw *ah = sc->sc_ah;
2592	u8 i, tx_rateindex;
2593
2594	if (txok)
2595		tx_info->status.ack_signal = ts->ts_rssi;
2596
2597	tx_rateindex = ts->ts_rateindex;
2598	WARN_ON(tx_rateindex >= hw->max_rates);
2599
2600	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2601		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2602
2603		BUG_ON(nbad > nframes);
2604	}
2605	tx_info->status.ampdu_len = nframes;
2606	tx_info->status.ampdu_ack_len = nframes - nbad;
2607
2608	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2609	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2610		/*
2611		 * If an underrun error is seen assume it as an excessive
2612		 * retry only if max frame trigger level has been reached
2613		 * (2 KB for single stream, and 4 KB for dual stream).
2614		 * Adjust the long retry as if the frame was tried
2615		 * hw->max_rate_tries times to affect how rate control updates
2616		 * PER for the failed rate.
2617		 * In case of congestion on the bus penalizing this type of
2618		 * underruns should help hardware actually transmit new frames
2619		 * successfully by eventually preferring slower rates.
2620		 * This itself should also alleviate congestion on the bus.
2621		 */
2622		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2623		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2624		    ieee80211_is_data(hdr->frame_control) &&
2625		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2626			tx_info->status.rates[tx_rateindex].count =
2627				hw->max_rate_tries;
2628	}
2629
2630	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2631		tx_info->status.rates[i].count = 0;
2632		tx_info->status.rates[i].idx = -1;
2633	}
2634
2635	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2636}
2637
2638static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2639{
2640	struct ath_hw *ah = sc->sc_ah;
2641	struct ath_common *common = ath9k_hw_common(ah);
2642	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2643	struct list_head bf_head;
2644	struct ath_desc *ds;
2645	struct ath_tx_status ts;
2646	int status;
2647
2648	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2649		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2650		txq->axq_link);
2651
2652	ath_txq_lock(sc, txq);
2653	for (;;) {
2654		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2655			break;
2656
2657		if (list_empty(&txq->axq_q)) {
2658			txq->axq_link = NULL;
2659			ath_txq_schedule(sc, txq);
2660			break;
2661		}
2662		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2663
2664		/*
2665		 * There is a race condition that a BH gets scheduled
2666		 * after sw writes TxE and before hw re-load the last
2667		 * descriptor to get the newly chained one.
2668		 * Software must keep the last DONE descriptor as a
2669		 * holding descriptor - software does so by marking
2670		 * it with the STALE flag.
2671		 */
2672		bf_held = NULL;
2673		if (bf->bf_state.stale) {
2674			bf_held = bf;
2675			if (list_is_last(&bf_held->list, &txq->axq_q))
2676				break;
2677
2678			bf = list_entry(bf_held->list.next, struct ath_buf,
2679					list);
2680		}
2681
2682		lastbf = bf->bf_lastbf;
2683		ds = lastbf->bf_desc;
2684
2685		memset(&ts, 0, sizeof(ts));
2686		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2687		if (status == -EINPROGRESS)
2688			break;
2689
2690		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2691
2692		/*
2693		 * Remove ath_buf's of the same transmit unit from txq,
2694		 * however leave the last descriptor back as the holding
2695		 * descriptor for hw.
2696		 */
2697		lastbf->bf_state.stale = true;
2698		INIT_LIST_HEAD(&bf_head);
2699		if (!list_is_singular(&lastbf->list))
2700			list_cut_position(&bf_head,
2701				&txq->axq_q, lastbf->list.prev);
2702
2703		if (bf_held) {
2704			list_del(&bf_held->list);
2705			ath_tx_return_buffer(sc, bf_held);
2706		}
2707
2708		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2709	}
2710	ath_txq_unlock_complete(sc, txq);
2711}
2712
2713void ath_tx_tasklet(struct ath_softc *sc)
2714{
2715	struct ath_hw *ah = sc->sc_ah;
2716	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2717	int i;
2718
2719	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2720		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2721			ath_tx_processq(sc, &sc->tx.txq[i]);
2722	}
2723}
2724
2725void ath_tx_edma_tasklet(struct ath_softc *sc)
2726{
2727	struct ath_tx_status ts;
2728	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2729	struct ath_hw *ah = sc->sc_ah;
2730	struct ath_txq *txq;
2731	struct ath_buf *bf, *lastbf;
2732	struct list_head bf_head;
2733	struct list_head *fifo_list;
2734	int status;
2735
2736	for (;;) {
2737		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2738			break;
2739
2740		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2741		if (status == -EINPROGRESS)
2742			break;
2743		if (status == -EIO) {
2744			ath_dbg(common, XMIT, "Error processing tx status\n");
2745			break;
2746		}
2747
2748		/* Process beacon completions separately */
2749		if (ts.qid == sc->beacon.beaconq) {
2750			sc->beacon.tx_processed = true;
2751			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2752
2753			if (ath9k_is_chanctx_enabled()) {
2754				ath_chanctx_event(sc, NULL,
2755						  ATH_CHANCTX_EVENT_BEACON_SENT);
2756			}
2757
2758			ath9k_csa_update(sc);
2759			continue;
2760		}
2761
2762		txq = &sc->tx.txq[ts.qid];
2763
2764		ath_txq_lock(sc, txq);
2765
2766		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2767
2768		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2769		if (list_empty(fifo_list)) {
2770			ath_txq_unlock(sc, txq);
2771			return;
2772		}
2773
2774		bf = list_first_entry(fifo_list, struct ath_buf, list);
2775		if (bf->bf_state.stale) {
2776			list_del(&bf->list);
2777			ath_tx_return_buffer(sc, bf);
2778			bf = list_first_entry(fifo_list, struct ath_buf, list);
2779		}
2780
2781		lastbf = bf->bf_lastbf;
2782
2783		INIT_LIST_HEAD(&bf_head);
2784		if (list_is_last(&lastbf->list, fifo_list)) {
2785			list_splice_tail_init(fifo_list, &bf_head);
2786			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2787
2788			if (!list_empty(&txq->axq_q)) {
2789				struct list_head bf_q;
2790
2791				INIT_LIST_HEAD(&bf_q);
2792				txq->axq_link = NULL;
2793				list_splice_tail_init(&txq->axq_q, &bf_q);
2794				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2795			}
2796		} else {
2797			lastbf->bf_state.stale = true;
2798			if (bf != lastbf)
2799				list_cut_position(&bf_head, fifo_list,
2800						  lastbf->list.prev);
2801		}
2802
2803		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2804		ath_txq_unlock_complete(sc, txq);
2805	}
2806}
2807
2808/*****************/
2809/* Init, Cleanup */
2810/*****************/
2811
2812static int ath_txstatus_setup(struct ath_softc *sc, int size)
2813{
2814	struct ath_descdma *dd = &sc->txsdma;
2815	u8 txs_len = sc->sc_ah->caps.txs_len;
2816
2817	dd->dd_desc_len = size * txs_len;
2818	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2819					  &dd->dd_desc_paddr, GFP_KERNEL);
2820	if (!dd->dd_desc)
2821		return -ENOMEM;
2822
2823	return 0;
2824}
2825
2826static int ath_tx_edma_init(struct ath_softc *sc)
2827{
2828	int err;
2829
2830	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2831	if (!err)
2832		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2833					  sc->txsdma.dd_desc_paddr,
2834					  ATH_TXSTATUS_RING_SIZE);
2835
2836	return err;
2837}
2838
2839int ath_tx_init(struct ath_softc *sc, int nbufs)
2840{
2841	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2842	int error = 0;
2843
2844	spin_lock_init(&sc->tx.txbuflock);
2845
2846	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2847				  "tx", nbufs, 1, 1);
2848	if (error != 0) {
2849		ath_err(common,
2850			"Failed to allocate tx descriptors: %d\n", error);
2851		return error;
2852	}
2853
2854	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2855				  "beacon", ATH_BCBUF, 1, 1);
2856	if (error != 0) {
2857		ath_err(common,
2858			"Failed to allocate beacon descriptors: %d\n", error);
2859		return error;
2860	}
2861
2862	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2863
2864	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2865		error = ath_tx_edma_init(sc);
2866
2867	return error;
2868}
2869
2870void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2871{
2872	struct ath_atx_tid *tid;
2873	struct ath_atx_ac *ac;
2874	int tidno, acno;
2875
2876	for (tidno = 0, tid = &an->tid[tidno];
2877	     tidno < IEEE80211_NUM_TIDS;
2878	     tidno++, tid++) {
2879		tid->an        = an;
2880		tid->tidno     = tidno;
2881		tid->seq_start = tid->seq_next = 0;
2882		tid->baw_size  = WME_MAX_BA;
2883		tid->baw_head  = tid->baw_tail = 0;
2884		tid->sched     = false;
2885		tid->active	   = false;
2886		__skb_queue_head_init(&tid->buf_q);
2887		__skb_queue_head_init(&tid->retry_q);
2888		acno = TID_TO_WME_AC(tidno);
2889		tid->ac = &an->ac[acno];
2890	}
2891
2892	for (acno = 0, ac = &an->ac[acno];
2893	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2894		ac->sched    = false;
2895		ac->clear_ps_filter = true;
2896		ac->txq = sc->tx.txq_map[acno];
2897		INIT_LIST_HEAD(&ac->tid_q);
2898	}
2899}
2900
2901void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2902{
2903	struct ath_atx_ac *ac;
2904	struct ath_atx_tid *tid;
2905	struct ath_txq *txq;
2906	int tidno;
2907
2908	for (tidno = 0, tid = &an->tid[tidno];
2909	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2910
2911		ac = tid->ac;
2912		txq = ac->txq;
2913
2914		ath_txq_lock(sc, txq);
2915
2916		if (tid->sched) {
2917			list_del(&tid->list);
2918			tid->sched = false;
2919		}
2920
2921		if (ac->sched) {
2922			list_del(&ac->list);
2923			tid->ac->sched = false;
2924		}
2925
2926		ath_tid_drain(sc, txq, tid);
2927		tid->active = false;
2928
2929		ath_txq_unlock(sc, txq);
2930	}
2931}
2932
2933#ifdef CONFIG_ATH9K_TX99
2934
2935int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2936		    struct ath_tx_control *txctl)
2937{
2938	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2939	struct ath_frame_info *fi = get_frame_info(skb);
2940	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2941	struct ath_buf *bf;
2942	int padpos, padsize;
2943
2944	padpos = ieee80211_hdrlen(hdr->frame_control);
2945	padsize = padpos & 3;
2946
2947	if (padsize && skb->len > padpos) {
2948		if (skb_headroom(skb) < padsize) {
2949			ath_dbg(common, XMIT,
2950				"tx99 padding failed\n");
2951		return -EINVAL;
2952		}
2953
2954		skb_push(skb, padsize);
2955		memmove(skb->data, skb->data + padsize, padpos);
2956	}
2957
2958	fi->keyix = ATH9K_TXKEYIX_INVALID;
2959	fi->framelen = skb->len + FCS_LEN;
2960	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2961
2962	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2963	if (!bf) {
2964		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2965		return -EINVAL;
2966	}
2967
2968	ath_set_rates(sc->tx99_vif, NULL, bf);
2969
2970	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2971	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2972
2973	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2974
2975	return 0;
2976}
2977
2978#endif /* CONFIG_ATH9K_TX99 */
2979